Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (10): 3941-3952    DOI: 10.1016/j.jia.2024.01.029
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Involvement of FoVEL1 and FoLAE1 in conidiation, virulence and secondary metabolism of Fusarium oxysporum f. sp. niveum

Yang Sun1, 2*, Xuhuan Zhang1*, Zhenqin Chai1, Yuying Li1, Zheng Ren3, Miaomiao Wang1, Zhiqing Ma1, Yong Wang1#, Juntao Feng1#

1 College of Plant Protection, Northwest A&F University, Yangling 712100, China

2 College of Plant Protection, Anhui Agricultural University, Hefei 230036, China

3 College of Language and Culture, Northwest A&F University, Yangling 712100, China

 Highlights 
The VEL1 and LAE1 genes play a role in determining the virulence of Fusarium oxysporum f. sp. niveum.
Yeast two-hybrid demonstrated an interaction between FoVel1 and FoLae1 in Fusarium oxysporum f. sp. niveum.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
[目的] 研究Velvet蛋白家族FoVEL1基因和甲基转移酶FoLAE1基因在西瓜枯萎病菌中的功能。[方法] 以西瓜枯萎病菌为研究对象,构建FoVEL1 FoLAE1基因的敲除突变体(∆fovel1∆folae1)和回补突变体(∆fovel1-C∆folae1-C);分别测定敏感菌株及各突变体的菌丝生长速率和分生孢子萌发情况;使用电导率计测定敏感菌株及各突变体分别在0、50、100、150、200和250分钟后的电导率,以反映细胞膜通透性;测定敏感菌株及各突变体对不同胁迫条件(光,NaCl,SDS,H2O2)的敏感性;将敏感菌株及各突变体培养7天后,用UV-5100紫外分光光度计测定镰刀菌酸含量;盆栽试验测定敏感菌株及各突变体的致病力;将敏感菌株及各突变体培养7天后,提取总RNA反转录为cDNA,利用实时荧光定量分析各突变体中与致病性相关的3个基因(FOW1FMK1MPK1)及比卡菌红素主要调控基因(BIK1BIK2BIK3)表达水平;利用酵母双杂测定FoVel1和 FoLae1的互作关系。[结果] 与野生型菌株相比,∆fovel1 和 ∆folae1 突变体表现出不同的菌丝体表型,色素沉着显著减少,分生孢子数量显著减少。qRT-PCR结果表明与野生型菌株相比,∆fovel1∆folae1突变体中BIK1BIK2BIK3表达水平显著降低。电导率实验和胁迫实验表明,∆fovel1突变体的细胞膜通透性显著提高,对渗透压、细胞壁抑制剂和氧化压力等胁迫条件的敏感性略有提高。镰刀菌酸是西瓜枯萎病菌产生的主要毒素之一,∆fovel1∆folae1突变体的镰刀菌酸含量明显减少,侵染能力显著降低。qRT-PCR结果表明,∆fovel1∆folae1突变体中与致病性相关的三个基因(FOW1FMK1MPK1)表达水平显著低于野生型菌株。酵母双杂结果表明,Velvet蛋白FoVel1可与位于细胞核的甲基转移酶FoLae1相互作用。 [结论] 西瓜枯萎病菌中,Velvet蛋白家族FoVEL1基因和甲基转移酶FoLAE1基因在分生孢子产生、致病力和调节次生代谢中起关键作用。


Abstract  

The velvet protein family serves as a crucial factor in coordinating development and secondary metabolism in numerous pathogenic fungi.  However, no previous research has examined the function of the velvet protein family in Fusarium oxysporum f. sp. niveum (FON), a pathogen causing a highly destructive disease in watermelon.  In this study, ∆fovel1 and ∆folae1 deletion mutants and ∆fovel1-C and ∆folae1-C corresponding complementation mutants of FON were validated.  Additionally, the phenotypic, biochemical, and virulence effects of the deletion mutants were investigated.  Compared to the wild-type strains, the ∆fovel1 and ∆folae1 mutants exhibited altered mycelial phenotype, reduced conidiation, and decreased production of bikaverin and fusaric acid.  Furthermore, their virulence on watermelon plant roots significantly decreased.  All these alterations in mutants were restored in corresponding complementation strains.  Notably, yeast two-hybrid results demonstrated an interaction between FoVel1 and FoLae1.  This study reveals that FoVEL1 and FoLAE1 play essential roles in secondary metabolism, conidiation, and virulence in FON.  These findings enhance our understanding of the genetic and functional roles of VEL1 and LAE1 in pathogenic fungi.

Keywords:  velvet complex        Fusarium oxysporum f. sp. Niveum        fusaric acid        virulence       protein interaction  
Received: 04 September 2023   Online: 20 January 2024   Accepted: 01 December 2023
Fund: This investigation was supported by the National Natural Science Foundation of China (32072461) and the Open Foundation of Shaanxi Key Laboratory of Plant Nematology, China (2021-SKL-01). 
About author:  Yang Sun, E-mail: Sunyang@ahau.edu.cn; Xuhuan Zhang, E-mail: zhangxuhuan01@163.com; #Correspondence Yong Wang, E-mail: wy2010102163@163.com; Juntao Feng, E-mail: jtfeng@126.com * These authors contributed equally to this study.

Cite this article: 

Yang Sun, Xuhuan Zhang, Zhenqin Chai, Yuying Li, Zheng Ren, Miaomiao Wang, Zhiqing Ma, Yong Wang, Juntao Feng. 2025. Involvement of FoVEL1 and FoLAE1 in conidiation, virulence and secondary metabolism of Fusarium oxysporum f. sp. niveum. Journal of Integrative Agriculture, 24(10): 3941-3952.

Akhberdi O, Zhang Q, Wang D, Wang H, Hao X, Liu Y, Wei D S, Zhu X D. 2018. Distinct Roles of Velvet complex in the development, stress tolerance, and secondary metabolism in Pestalotiopsis microspora, a taxol producer. Gene, 9, 164.

Bai G, Shaner G E. 1996. Variation in Fusarium graminearum and cultivar resistance to wheat scab. Plant Disease, 80, 975–979.

Bayram O, Braus G H, Fischer R, Rodriguez-Romero J. 2010. Spotlight on Aspergillus nidulans photosensory systems. Fungal Genetics and Biology47, 900–908.

Bayram O, Krappmann S, Ni M, Bok J W, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon N J, Keller N P, Yu J H, Braus G H. 2008. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science, 320, 1504–1506.

Bazafkan H, Dattenbock C, Stappler E, Beier S, Schmoll M. 2017. Interrelationships of VEL1 and ENV1 in light response and development in Trichoderma reeseiPLoS ONE, 12, e0175946.

Bowers J H, Locke J C. 2000. Effect of botanical extracts on the population density of Fusarium oxysporum in soil and control of Fusarium wilt in the greenhouse. Plant Disease, 84, 300–305.

Brown A, Budge S, Kaloriti D, Tillmann A, Jacobsen M, Yin Z K, Ene I V, Bohovych I, Sandai D, Kastora S, Potrykus J, Ballou E R, Childers D S, Shahana S, Leach M D. 2014. Stress adaptation in a pathogenic fungus. Journal of Experimental Biology217, 144–155.

Brown D, Lee S H, Kim L, Ryu J G, Lee S, Seo Y, Kim Y H, Busman M, Yun S H, Proctor R H, Lee T. 2014. Identification of a 12-gene fusaric acid biosynthetic gene cluster in Fusarium species through comparative and functional genomics. Molecular Plant–Microbe Interactions, 28, 319–332.

Butchko R E, Brown D, Busman M, Tudzynski B, Wiemann P. 2012. LAE1 regulates expression of multiple secondary metabolite gene clusters in Fusarium verticillioidesFungal Genetics and Biology, 49, 602–612.

Choi Y E, Goodwin S. 2011. MVE1, Encoding the velvet gene product homolog in Mycosphaerella graminicola, is associated with aerial mycelium formation, melanin biosynthesis, hyphal swelling, and light signaling. Applied and Environmental Microbiology, 77, 942–953.

Ding S, Zhou D, Wei H, Wu S, Xie B. 2021. Alleviating soil degradation caused by watermelon continuous cropping obstacle: Application of urban waste compost. Chemosphere, 262, 128387.

Dong X, Ling N, Wang M, Shen Q, Guo S. 2012. Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants. Plant Physiology and Biochemistry, 60, 171–179.

Duan Y, Ge C, Liu S, Wang J, Zhou M. 2013. A two-component histidine kinase Shk1 controls stress response, sclerotial formation and fungicide resistance in Sclerotinia sclerotiorumMolecular Plant Pathology, 14, 708–718.

Estiarte N, Lawrence C B, Sanchis V, Ramos A J, Crespo-Sempere A. 2016. LAEA and VEA are involved in growth morphology, asexual development, and mycotoxin production in Alternaria alternataInternational Journal of Food Microbiology, 238, 153–164.

Fravel D, Olivain C, Alabouvette C. 2003. Fusarium oxysporum and its biocontrol. New Phytologist, 157, 493–502.

Fisher M C, Henk D A, Briggs C J, Brownstein J S, Madoff L C, McCraw S L, Gurr S J. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature, 484, 186–194.

Gies H, Sondergaard T E, Sørensen J L. 2013. The AreA transcription factor in Fusarium graminearum regulates the use of some nonpreferred nitrogen sources and secondary metabolite production. Fungal Biology, 117, 814–821.

Guo S, Zhang J, Sun H, Salse J, Lucas W J, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, Min J, Guo X, Murat F, Ham B K, Zhang Z, Gao S, Huang M, Xu Y, Zhong S, Bombarely A, et al. 2013. The draft genome of watermelon Citrullus lanatus. and resequencing of 20 diverse accessions. Nature Genetics, 45, 51–58.

He W J, Zhang L, Yi S Y, Tang X L, Yuan Q S, Guo M W, Wu A B, Qu B, Li H P, Liao Y C. 2017. An aldo-keto reductase is responsible for Fusarium toxin-degrading activity in a soil Sphingomonas strain. Scientific Reports, 7, 9549.

Hofer A M, Harting R, Aßmann N F, Gerke J, Schmitt K, Starke J, Bayram O, Tran V T, Valerius O, Braus-Stromeyer S A, Braus G H. 2021. The velvet protein VEL1 controls initial plant root colonization and conidia formation for xylem distribution in Verticillium wiltPLoS Genetics, 17, e1009434.

Hua G K, Wang L, Chen J, Ji P S. 2019. Biological control of Fusarium wilt on watermelon by fluorescent pseudomonads. Biocontrol Science and Technology, 30, 1–16.

Jiang C, Zhang C, Wu C, Sun P, Hou R, Liu H, Wang C F, Xu J R. 2016. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol DON. production by cAMP signalling in Fusarium graminearumEnvironmental Microbiology, 18, 3689–3701.

Karimi-Aghcheh R, Bok J W, Phatale P A, Smith K M, Baker S E, Lichius A, Omann M, Zeilinger S, Seiboth B, Rhee C, Keller N P, Freitag M, Kubicek C P. 2013. Functional analyses of Trichoderma reesei LAE1 reveal conserved and contrasting roles of this regulator. Genes, 3, 369–378.

Keinath A P, Wechter W P, Rutter W B, Agudelo P A. 2019. Cucurbit rootstocks resistant to Fusarium oxysporum f. sp. niveum remain resistant when coinfected by meloidogyne incognita in the field. Plant Disease, 103, 1383–1390.

Krappmann S, Bayram O, Braus G H. 2005. Deletion and allelic exchange of the Aspergillus fumigatus VEA locus via a novel recyclable marker module. Eukaryotic Cell, 4, 1298–1307.

Kuang Y, Scherlach K, Hertweck C, Yang S, Sampietro D A, Karlovsky P. 2022. Fusaric acid detoxification: A strategy of Gliocladium roseum involved in its antagonism against Fusarium verticillioidesMycotoxin Research, 38, 13–25.

Levin D E. 2005. Cell wall integrity signaling in Saccharomyces cerevisiaeMicrobiology and Molecular Biology Reviews, 69, 262–291.

Li H, Yuan G, Zhu C, Zhao T, Ruimin Z, Wang X L, Yang J Q, Ma Jian X, Zhang Y, Zhang X. 2019. Soil fumigation with ammonium bicarbonate or metam sodium under high temperature alleviates continuous cropping-induced Fusarium wilt in watermelon. Scientia Horticulturae, 246, 979–986.

Lin C H, Chung K R. 2010. Specialized and shared functions of the histidine kinase and HOG1 MAP kinase-mediated signaling pathways in Alternaria alternata, a filamentous fungal pathogen of citrus. Fungal Genetics and Biology47, 818–827.

Liu K, Dong Y, Wang F, Jiang B, Wang M, Fang X. 2016. Regulation of cellulase expression, sporulation, and morphogenesis by velvet family proteins in Trichoderma reeseiApplied Microbiology and Biotechnology, 100, 769–779.

Liu S, Li J, Zhang Y, Liu N, Viljoen A, Mostert D, Mostert D, Zuo C, Hu C H, Bi F C, Gao H J, Sheng O, Deng G M, Yang Q S, Dong T, Dou T X, Yi G J, Ma L J, Li C Y. 2020. Fusaric acid instigates the invasion of banana by Fusarium oxysporum f. sp. cubense TR4. New Phytologist, 225, 913–929.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-Delta delta C T. method. Methods, 25, 402–408.

Lopez-Berges M, Hera C, Sulyok M, Schäfer K, Capilla J, Guarro J, Pietro A D. 2012. The velvet complex governs mycotoxin production and virulence of Fusarium oxysporum on plant and mammalian hosts. Molecular Microbiology, 87, 49–65.

Ma L J, van der Does H C, Borkovich K A, Coleman J J, Daboussi M J, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B, Houterman P M, Kang S, Shim W B, Woloshuk C, Xie X, Xu J R, Antoniw J, Baker S E, Bluhm B H, Breakspear A, et al. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in FusariumNature, 464, 367–373.

Mamur S, Ünal F, Yılmaz S, Erikel E, Yuzbasioglu D. 2020. Evaluation of the cytotoxic and genotoxic effects of mycotoxin fusaric acid. Drug and Chemical Toxicology, 43, 149–157.

Mateo E M, Tarazona A, Aznar R, Mateo F. 2023. Exploring the impact of lactic acid bacteria on the biocontrol of toxigenic Fusarium spp. and their main mycotoxins. International Journal of Food Microbiology, 387, 110054.

Mukherjee P, Kenerley C. 2010. Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a velvet protein, Vel1. Applied and Environmental Microbiology, 76, 2345–2352.

Niehaus E M, Von Bargen K, Espino J, Pfannmuller A, Humpf H U, Tudzynski B. 2014. Characterization of the fusaric acid gene cluster in Fusarium fujikuroiApplied Microbiology and Biotechnology, 98, 1749–1762.

Inoue I, Namiki F, Tsuge T. 2002. Plant Colonization by the vascular wilt fungus Fusarium oxysporum requires FOW1, a gene encoding a mitochondrial protein. The Plant Cell14, 1869–1883.

Pal S, Eguru S, Reddy D C L, Dayandhi E. 2023. QTL-seq identifies and QTL mapping refines genomic regions conferring resistance to Fusarium oxysporum f. sp. niveum race 2 in cultivated watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai]. Scientia Horticulturae, 319, 112180.

Perchepied L, Pitrat M. 2005. Polygenic inheritance of partial resistance to Fusarium oxysporum f. sp. melonis race 1.2 in melon. Phytopathology, 94, 1331–1336.

Phasha M M, Wingfield B D, Wingfield M J, Coetzee M P A, Hammerbacher A, Steenkamp E T. 2021. Deciphering the effect of FUB1 disruption on fusaric acid production and pathogenicity in Fusarium circinatumFungal Biology, 125, 1036–1047.

Karimi-Aghcheh R, Bok J W, Phatale P A, Smith K M, Baker S E, Lichius A. 2013. Functional analyses of Trichoderma reesei LAE1 reveal conserved and contrasting roles of this regulator. G3-Genes Genomes Genetics, 3, 369–378.

Sarikaya-Bayram O, Bayram O, Valerius O, Park H S, Irniger S, Gerke J, Ni M, Han K H, Yu J H, Braus G H. 2010. LAEA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genetics, 6, e1001226.

Schumacher J, Pradier J M, Simon A, Traeger S, Moraga J, Collado I G, Viaud M, Tudzynski B. 2012. Natural variation in the Velvet gene bcvel1 affects virulence and light-dependent differentiation in Botrytis cinereaPLoS ONE, 7, e47840.

Schumacher J, Simon A, Cohrs K, Traeger S, Porquier A, Dalmais B, Viaud M, Tudzynski B. 2015. The velvet complex in the gray mold fungus Botrytis cinerea: Impact of BcLAE1 on differentiation, secondary metabolism, and virulence. Molecular Plant–Microbe Interactions, 28, 659–674.

Segorbe D, Pietro A D, Perez N E, Turra D. 2017. Three Fusarium oxysporum mitogen-activated protein kinases (MAPKs) have distinct and complementary roles in stress adaptation and cross-kingdom pathogenicity. Molecular Plant Pathology18, 912–924.

Singh V K, Singh H B, Upadhyay R S. 2017. Role of fusaric acid in the development of ‘Fusarium wilt’ symptoms in tomato: Physiological, biochemical and proteomic perspectives. Plant Physiology and Biochemistry, 118, 320–332.

Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular evolutionary genetics analysis MEGA. software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

Tang G, Chen A, Dawood D H, Liang J, Chen Y, Ma Z. 2020. Capping proteins regulate fungal development, DON-toxisome formation and virulence in Fusarium graminearumMolecular Plant Pathology, 21, 173–187.

Tran M T, Ameye M, Thi-Kim Phan L, Devlieghere F, De Saeger S, Eeckhout M, Audenaert K. 2021. Impact of ethnic pre-harvest practices on the occurrence of Fusarium verticillioides and fumonisin B1 in maize fields from Vietnam. Food Control, 120, 107567.

Tudzynski P, Sharon A. 2003. Fungal pathogenicity genes. Applied Mycology and Biotechnology, 3, 187–212.

Van T N, Schafer W, Bormann J. 2012. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearumMolecular Plant25, 1142–1156.

Velluti A, Marín S, Bettucci L, Ramos A J, Sanchis V. 2000. The effect of fungal competition on colonization of maize grain by Fusarium moniliformeFproliferatum and Fgraminearum and on fumonisin B1 and zearalenone formation. International Journal of Food Microbiology, 59, 59–66.

Wang W, Wu D, Pan H, Turgeon B G. 2014. VEL2 and VOS1 hold essential roles in ascospore and asexual spore development of the heterothallic maize pathogen Cochliobolus heterostrophusFungal Genetics and Biology, 70, 113–124.

Wang Y, Duan Y, Wang J, Zhou M. 2015. A new point mutation in the iron-sulfur subunit of succinate dehydrogenase confers resistance to boscalid in Sclerotinia sclerotiorumMolecular Plant Pathology, 16, 653–661.

Wiemann P, Brown D, Kleigrewe K, Bok J, Keller N, Humpf H U, Tudzynski B. 2010. FfVEL1 and FfLAE1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Molecular Microbiology, 77, 972–994.

Wu D, Oide S, Zhang N, Choi M Y, Turgeon B G. 2012. ChLAE1 and ChVEL1 regulate T-toxin production, virulence, oxidative stress response, and development of the maize pathogen Cochliobolus heterostrophusPLoS Pathogens, 8, e1002542.

Xu W, Wang K, Wang H, Liu Z, Shi Y, Gao Z, Wang Z G. 2020. Evaluation of the biocontrol potential of Bacillus sp. WB against Fusarium oxysporum f. sp. niveumBiological Control, 147, 104288.

Yao X, Mi D D, Li Z J, Yang B Y, Zheng Y, Qi Y J, Guo J H. 2019. Comparative transcriptome analysis reveals the biocontrol mechanism of Bacillus velezensis F21 against Fusarium wilt on watermelon. Frontiers in Microbiology, 10, 652.

Yu M, Yu J, Cao H, Pan X, Song T, Qi Z Q, Du Y, Huang S W, Liu Y F. 2022. The velvet protein UvVea regulates conidiation and chlamydospore formation in Ustilaginoidea virensJournal of Fungi, 8, 479.

Zhang R, Xu Q, Zhang Y, Zhu F. 2018. Baseline sensitivity and toxic actions of prochloraz to Sclerotinia sclerotiorumPlant Disease102, 2149–2157.

[1] Xiaolin Liu, Jie Zhu, Ruixiang Li, Yang Feng, Qian Yao, Dong Duan. The role of the transcription factor NAC17 in enhancing plant resistance and stress tolerance in Vitis quinquangularis[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3435-3450.
[2] Ming Ma, Tingting Hao, Xipeng Ren, Chang Liu, Gela A, Agula Hasi, Gen Che. NAC family gene CmNAC34 positively regulates fruit ripening through interaction with CmNAC-NOR in Cucumis melo[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2601-2618.
[3] Yuxiang Qin, Bao Zhang, Shoufu Cui, Xiaochun Qin, Genying Li. TaFLZ54D enhances salt stress tolerance in wheat by interacting with TaSGT1 and TaPP2C[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1017-1029.
[4] Xiaojie Xu, Shaoyan Jiang, Chunju Liu, Xujie Sun, Qing Zhu, Xiuzhai Chen, Pengchao Jiang, Fenglong Wang, Yanping Tian, Xiangdong Li. Development of a stable attenuated double-mutant of tobacco mosaic virus for cross-protection[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2318-2331.
[5] XU Xiao-hui, LI Wen-lan, YANG Shu-ke, ZHU Xiang-zhen, SUN Hong-wei, LI Fan, LU Xing-bo, CUI Jin-jie. Identification, evolution, expression and protein interaction analysis of genes encoding B-box zinc-finger proteins in maize[J]. >Journal of Integrative Agriculture, 2023, 22(2): 371-388.
[6] FENG Shi-qian, ZHANG Neng, CHEN Jun, ZHANG Dao-gang, ZHU Kai-hui, CAI Ni, TU Xiong-bing, ZHANG Ze-hua. Serine protease inhibitors LmSPN2 and LmSPN3 co-regulate embryonic diapause in Locusta migratoria manilensis (Meyen) via the Toll pathway[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3720-3730.
[7] ZHANG Jia, HU Yong, XU Li-he, HE Qin, FAN Xiao-wei, XING Yong-zhong. The CCT domain-containing gene family has large impacts on heading date, regional adaptation, and grain yield in rice[J]. >Journal of Integrative Agriculture, 2017, 16(12): 2686-2697.
[8] QIANG Xiao-jing, YU Guo-hong, JIANG Lin-lin, SUN Lin-lin, ZHANG Shu-hui, LI Wei, CHENG Xian-guo. Thellungiella halophila ThPIP1 gene enhances the tolerance of the transgenic rice to salt stress[J]. >Journal of Integrative Agriculture, 2015, 14(10): 1911-1922.
[9] LIU Yu-chen, WANG Juan, SU Pei-ying, MA Chun-mei , ZHU Shu-hua. Effect of Nitric Oxide on the Interaction Between Mitochondrial Malate Dehydrogenase and Citrate Synthase[J]. >Journal of Integrative Agriculture, 2014, 13(12): 2616-2624.
No Suggested Reading articles found!