Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (7): 2619-2639    DOI: 10.1016/j.jia.2024.11.005
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Ppbbx24-del mutant positively regulates light-induced anthocyanin accumulation in the ‘Red Zaosu’ pear (Pyrus pyrifolia White Pear Group)

Shuran Li1, 2*, Chunqing Ou1*, Fei Wang1, Yanjie Zhang1, Omayma Ismail3, Yasser S. G. Abd Elaziz4, Sherif Edris5, 6, He Li2#, Shuling Jiang1#

1 Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China

2 College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China

3 Horticultural Crops Technology Department, National Research Centre, Cairo 12622, Egypt

4 Fruit Breeding Department, Horticulture Research Institute-Agriculture Research Centre, Giza 12619, Egypt

5 Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia

6 Department of Genetics, Ain Shams University, Cairo 11241, Egypt

 Highlights 
Functional studies via transient overexpression, gene silencing, and stable overexpression systems in pear calli/tobacco demonstrated that PpBBX24 and its mutant Ppbbx24-del exert antagonistic regulatory effects on anthocyanin accumulation.
Light treatment was demonstrated to differentially modulate peel pigmentation and upregulate anthocyanin biosynthesis-related genes in ‘Zaosu’ and its red-peel mutant ‘Red Zaosu’ pears.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
红梨因外观艳丽、营养丰富深受消费者喜爱,而花青苷是红梨果皮的主要色素。许多具有红色果皮的梨品种起源于芽变,然而这种现象背后的遗传机制尚不清楚。我们前期自‘早酥’梨红色芽变‘红早酥’梨中鉴定出一个发生移码突变的PpBBX24基因,命名为Ppbbx24-del,该基因与‘红早酥’梨花青苷的积累密切相关。在此,我们分析了突变基因在红梨着色中的作用及其作用机制。结果表明,光照促进了‘红早酥’梨果皮着色,Ppbbx24-del对光诱导花青苷的生物合成有促进作用,这与正常的PpBBX24相反。瞬时转化和稳定转化实验证实Ppbbx24-del能促进梨果皮、愈伤组织和烟草花青苷的积累。亚细胞定位结果表明,PpBBX24与Ppbbx24-del蛋白的亚细胞定位不同,PpBBX24定位于细胞核;而由于NLS和VP结构域的缺失,Ppbbx24-del为核质共定位。酵母双杂交、Pull-down和BiFC试验结果表明PpBBX24可以与PpHY5互作,但Ppbbx24-del不能;酵母单杂交、EMSA和双荧光素酶表达活性分析试验结果表明PpHY5、PpBBX24与Ppbbx24-del均可与PpMYB10PpCHSPpCHI基因启动子上的G-box元件结合,PpHY5和Ppbbx24-del单独存在时,均对下游基因的表达起正调控作用,二者同时存在时,对下游基因的激活呈累加效应;而PpBBX24单独存在时,对下游基因的表达没有显著影响,与PpHY5同时存在时,抑制了PpHY5对下游基因的激活作用。本研究系统证明了突变的Ppbbx24-del基因由花青苷积累负调控因子突变成了正调控因子,并解析了其作用机制,丰富了植物花青素生物合成调控网络,为利用该基因创制红梨资源奠定了理论基础。


Abstract  

Red fruit peel is one of pear’s most valuable economic traits and is mainly determined by anthocyanins.  Many pear cultivars with a red peel originated from bud sports; however, little is known about the genetic mechanisms underlying this trait.  We have previously identified a mutant PpBBX24 containing a 14-nucleotide deletion in the coding region (Ppbbx24-del) as the only known variant associated with the red coloration of the mutant ‘Red Zaosu’ pear (Pyrus pyrifolia White Pear Group).  Herein, we analyzed the role of the mutant gene in red coloration and its mechanism of action.  The results showed that light promoted red peel coloration in the ‘Red Zaosu’ pear, and Ppbbx24-del positively affected light-induced anthocyanin biosynthesis, while normal PpBBX24 had the opposite effects.  Transient and stable transformation experiments confirmed that Ppbbx24-del could promote anthocyanin accumulation in pear fruit peels, calli, and tobacco flowers.  Due to the loss of nuclear localization sequence (NLS) and viral protein (VP) domains, Ppbbx24-del co-localized in the nucleus and cytoplasm, whereas PpBBX24 localized only in the nucleus.  Real-time PCR and transcriptome analyses indicated that PpMYB10 and PpHY5 are highly expressed in the ‘Red Zaosu’ pear.  In yeast one-hybrid and dual-luciferase assays, Ppbbx24-del and PpHY5 independently promoted the expression of PpCHS, PpCHI, and PpMYB10 by binding to their promoters; however, PpBBX24 did not affect the expression of these genes.  Additionally, we found that Ppbbx24-del and PpHY5 had additive effects on the expression of PpCHS, PpCHI, and PpMYB10, as they promote the expression of anthocyanin synthesis genes separately.  The co-expression of PpBBX24 and PpHY5 inhibited the activation of downstream genes by PpHY5, which was attributed to the interaction between the two loci.  In conclusion, our results clarify the molecular mechanism by which mutant Ppbbx24-del and PpBBX24 exert opposite effects in regulating anthocyanin accumulation in pear.  These findings lay an important theoretical foundation for using Ppbbx24-del to create red pear cultivars.

Keywords:  pear       anthocyanin        Ppbbx24-del        gene mutation        transcriptional regulation  
Received: 28 March 2024   Online: 04 November 2024   Accepted: 24 September 2024
Fund: 

We thank the National Natural Science Foundation of China (32072531), the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2016-RIP), the National Key Research and Development Program of China (2021YFE0190700), and the Science, Technology & Innovation Funding Authority (STDF) of Egypt (43093) for funding this work.

About author:  Shuran Li, E-mail: suera142@163.com; Chunqing Ou, E-mail: ouchunqing@caas.cn; #Correspondence He Li, E-mail: lihe@syau.edu.cn; Shuling Jiang, E-mail: jshling@163.com * These authors contributed equally to this study.

Cite this article: 

Shuran Li, Chunqing Ou, Fei Wang, Yanjie Zhang, Omayma Ismail, Yasser S. G. Abd Elaziz, Sherif Edris, , He Li, Shuling Jiang. 2025. Ppbbx24-del mutant positively regulates light-induced anthocyanin accumulation in the ‘Red Zaosu’ pear (Pyrus pyrifolia White Pear Group). Journal of Integrative Agriculture, 24(7): 2619-2639.

Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard A J, Bambrick J, Bodenstein S W, Evans D A, Hung C C, O’Neill M, Reiman D, Tunyasuvunakool K, Wu Z, Zemgulyte A, Arvaniti E, Beattie C, et al. 2024. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature630, 493–500.

Alabd A, Ahmad M, Zhang X, Gao Y H, Peng L, Zhang L, Ni J B, Bai S L, Teng Y W. 2022. Light-responsive transcription factor PpWRKY44 induces anthocyanin accumulation by regulating PpMYB10 expression in pear. Horticulture Research9, uhac199.

An J P, Wang X F, Zhang X W, Bi S Q, You C X, Hao Y J. 2019. MdBBX22 regulates UV-B-induced anthocyanin biosynthesis through regulating the function of MdHY5 and is targeted by MdBT2 for 26S proteasome-mediated degradation. Plant Biotechnology Journal17, 2223–2383.

An J P, Zhang X W, Bi S Q, You C M, Wang X F, Hao Y J. 2020. The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple. The Plant Journal101, 573–589.

An X H, Tian Y, Chen K Q, Liu X J, Liu D D, Xie X B, Cheng C G, Cong P H, Hao Y J. 2015. MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples. Plant Cell Physiology56, 650–662.

Bai S L, Saito T, Honda C, Hatsuyama Y, Ito A, Moriguchi T. 2014. An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis. Planta240, 1051–1062.

Bai S L, Tao R Y, Tang Y X, Yin L, Ma Y J, Ni J B, Yan X H, Yang Q S, Wu Z Y, Zeng Y L, Teng Y W. 2019a. BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear. Plant Biotechnology Journal17, 1985–1997.

Bai S L, Tao R Y, Yin L, Ni J B, Yang Q S, Yan X H, Yang F, Guo X P, Li H X, Teng Y W. 2019b. Two B-box proteins, PpBBX18 and PpBBX21, antagonistically regulate anthocyanin biosynthesis via competitive association with Pyrus pyrifolia ELONGATED HYPOCOTYL 5 in the peel of pear fruit. The Plant Journal100, 1208–1223.

Bao L, Chen K S, Zhang D, Lin X G, Teng Y W. 2008. An assessment of genetic variability and relationships within Asian pears based on AFLP (amplified fragment length polymorphism) markers. Scientia Horticulturae116, 374–380.

Bayer-Császár E, Haag S, Jörg A, Glass F, Hartel B, Obata T, Meyer H E, Brennicke A, Takenaka M. 2017. The conserved domain in MORF proteins has distinct affinities to the PPR and E elements in PPR RNA editing factors. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms8, 813–828.

Brusch K, Toledo-Ortiz G, Pireyre M, Lohr M, Braatz B, Johansson H. 2020. Identification of BBX proteins as rate-limiting cofactors of HY5. Nature Plants6, 921–928.

Castillejo C, Waurich V, Wagner H, Ramos R, Oiza N, Muñoz P, Triviño J C, Caruana J, Liu Z, Cobo N, Hardigan M A, Knapp S J, Vallarino J G, Osorio S, Martín-Pizarro C, Posé D, Toivainen T, Hytönen T, Oh Y, Barbey C R, et al. 2020. Allelic V ariation of MYB10 is the major force controlling natural V ariation of skin and flesh color in strawberry (Fragaria spp.) fruit. The Plant Cell, 32, 3723–3749.

Chagné D, Lin-Wang K, Espley R V, Volz R K, How N M, Rouse S, Brendolise C, Carlisle C M, Kumar S, De SilvaN, Micheletti D, McGhie T, Crowhurst R N, Storey R D, Velasco R, Hellens R P, Gardiner S E, Allan A C. 2013. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiology161, 225–239.

Ding L, Wang S, Song Z T, Jiang Y P, Han J J, Lu S J, Li L, Liu J X. 2018. Two B-box domain proteins, BBX18 and BBX23, interact with ELF3 and regulate thermomorphogenesis in ArabidopsisCell Reports25, 1718–1728.

Espley R V, Hellens R P, Putterill J, Stevenson D E, Kutty-Amma S, Allan A C. 2017. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. The Plant Journal49, 414–427.

Fang H C, Dong Y H, Yue X X, Chen X L, He N B, Hu J F, Jiang S H, Xu H F, Wang Y C, Su M Y, Zhang J, Zhang Z Y, Wang N, Chen X S. 2019a. MdCOL4 interaction mediates crosstalk between UV-B and high temperature to control fruit coloration in apple. Plant Cell Physiology60, 1055–1066.

Fang H C, Dong Y H, Yue X X, Hu J F, Jiang S H, Xu H F, Wang Y C, Su M Y, Zhang J, Zhang Z Y, Wang N, Chen X S. 2019b. The B-box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature. Plant Cell Environment42, 2090–2104.

Feng S Q, Sun S S, Chen X L, Wu S J, Wang D Y, Chen X S. 2015. PyMYB10 and PyMYB10.1 interact with bHLH to enhance anthocyanin accumulation in pears. PLoS ONE10, e0142112.

Feng S Q, Wang Y L, Song Y, Xu Y T, Chen X S. 2010. Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10. Planta232, 245–255.

Fu Z Z, Shang H Q, Jiang H, Gao J, Dong X Y, Wang H J, Li Y M, Wang L M, Zhang J, Shu Q Y, Chao Y C, Xu M L, Wang R, Wang L S, Zhang H C. 2020. Systematic identification of the light-quality responding anthocyanin synthesis-related transcripts in Petunia petalsHorticultural Plant Journal6, 428–438.

Gamble J, Jaeger S R, Harker F R. 2006. Preferences in pear appearance and response to novelty among Australian and New Zealand consumers. Postharvest Biology and Technology, 41, 38–47.

Gangappa S N, Crocco C D, Johansson H, Datta S, Hettiarachchi C, Holm M, Botto J F. 2013. The Arabidopsis B-BOX protein BBX25 interacts with HY5, negatively regulating BBX22 expression to suppress seedling photomorphogenesis. The Plant Cell25, 1243–1257.

Gao Y H, Li H X, Wang Z W, Xue H B, Li J Z, Yu W J, Zhang J B, Ni J B, Teng Y W, Bai S L. 2024. Genetic variations at BBX24 and MYB110a loci regulated anthocyanin accumulation in pear bud sports. Horticultural Plant Journal, https://doi.org/10.1016/j.hpj.2024.01.001

Hu Y J, Cheng H, Zhang Y, Zhang J, Niu S Q, Wang X S, Li W J, Zhang J, Yao Y C. 2021. The MdMYB16/MdMYB1-miR7125-MdCCR module regulates the homeostasis between anthocyanin and lignin biosynthesis during light induction in apple. New Phytologist231, 1105–1122.

Huang J Y, Zhao X B, Weng X Y, Wang L, Xie W B. 2012. The rice B-Box zinc finger gene family: Genomic identification, characterization, expression profiling and diurnal analysis. PLoS ONE7, e48242.

Jiang G X, Li Z W, Song Y B, Zhu H, Lin S, Huang R M, Jiang Y M, Duan X W. 2019. LcNAC13 physically interacts with LcR1MYB1 to coregulate anthocyanin biosynthesis-related genes during litchi fruit ripening. Biomolecules9, 135.

Job N, Yadukrishnan P, Bursch K, Datta S, Johansson H. 2018. Two B-Box proteins regulate photomorphogenesis by oppositely modulating HY5 through their diverse C-terminal domains. Plant Physiology176, 2963–2976.

Lee B J, Cansizoglu A E, Suel K E, Louis T H, Zhang Z C, Chook Y M. 2006. Rules for nuclear localization sequence recognition by karyopherinβ2. Cell126, 543–558.

Li S P, Deng B L, Tian S, Guo M X, Liu H X, Zhao X S. 2021. Metabolic and transcriptomic analyses reveal different metabolite biosynthesis profiles between leaf buds and mature leaves in Ziziphus jujuba mill. Food Chemistry347, 129005.

Li Y, Xu P B, Chen G Q, Wu J, Liu Z C, Lian H L. 2020. FvbHLH9 functions as a positive regulator of anthocyanin biosynthesis by forming a HY5-bHLH9 transcription complex in strawberry fruits. Plant and Cell Physiology61, 826–837.

Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie T K, Espley R V, Hellens R P, Allan A C. 2010. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in RosaceaeBMC Plant Biology10, 50.

Lippuner V, Cyert M S, Gasser C S. 1996. Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast. Journal of Biological Chemistry271, 12859–12866.

Liu H N, Shu Q, Lin-Wang K, Allan A C, Espley R V, Su J, Pei M S, Wu J. 2021a. The PyPIF5-PymiR156a-PySPL9-PyMYB114/MYB10 module regulates light-induced anthocyanin biosynthesis in red pear. Molecular Horticulture1, 14.

Liu X, Li R, Dai Y Q, Chen X S, Wang X Y. 2018. Genome-wide identification and expression analysis of the B-box gene family in the Apple (Malus domestica Borkh.) genome. Molecular Genetics and Genomics293, 303–315.

Liu X F, Li S R, Feng X X, Li L L. 2021b. Study on cell wall composition, fruit quality and tissue structure of hardened ‘Suli’ pears (Pyrus bretschneideri Rehd). Journal of Plant Growth Regulation40, 5.

Lyu G Z, Li D B, Li S S. 2020. Bioinformatics analysis of BBX family genes and its response to UV-B in Arabidopsis thalianaPlant Signaling & Behavior15, 1782647.

Mao W W, Han Y, Chen Y T, Sun M Z, Feng Q Q, Li L, Liu L P, Zhang K K, Wei L Z, Han Z H, Li B B. 2022. Low temperature inhibits anthocyanin accumulation in strawberry fruit by activating FvMAPK3-induced phosphorylation of FvMYB10 and degradation of Chalcone Synthase 1. The Plant Cell34, 1226–1249.

Martínez-Rivas F J, Blanco-Portales R, Pérez-Serratosa M, Ric-Varas P, Guerrero-Sánchez V, Medina-Puche L, Moyano L, Mercado J A, Alseekh S, Caballero J L, Fernie A R, Muñoz-Blanco J, Molina-Hidalgo F J. 2023. FaMYB123 interacts with FabHLH3 to regulate the late steps of anthocyanin and flavonol accumulation during ripening. The Plant Journal144, 683–698.

Ni J B, Bai S L, Zhao Y, Qian M J, Tao R Y, Yin L, Gao L, Teng W Y. 2019. Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynthesis in ‘Red Zaosu’ pear fruits by interacting with MYB114. Plant Molecular Biology99, 67–78.

Ni J B, Premathilake A T, Gao Y H, Yu W J, Tao R Y, Teng Y W, Bai S L. 2021. Ethylene-activated PpERF105 induces the expression of the repressor-type R2R3-MYB gene PpMYB140 to inhibit anthocyanin biosynthesis in red pear fruit. The Plant Journal105, 167–181.

Ou C Q, Zhang X L, Wang F, Zhang L Y, Zhang Y J, Fang M, Wang J H, Wang J X, Jiang S L, Zhang Z H. 2020. A 14 nucleotide deletion mutation in the coding region of the PpBBX24 gene is associated with the red skin of “Zaosu Red” pear (Pyrus pyrifolia White Pear Group): A deletion in the PpBBX24 gene is associated with the red skin of pear. Horticulture Research7, 39.

Premathilake A, Ni J B, Bai S L, Yao R Y, Ahmad M, Teng Y W. 2020. R2R3-MYB transcription factor PpMYB17 positively regulates flavonoid biosynthesis in pear fruit. Planta252, 59.

Qian M J, Sun Y W, Allan A C, Teng Y W, Zhang D. 2014. The red sport of ‘Zaosu’ pear and its red-striped pigmentation pattern are associated with demethylation of the PyMYB10 promoter. Phytochemistry107, 16–23.

Ren Y R, Zhao Q, Yang Y Y, Zhang T N, Wang X F, You C X, Hao Y J. 2021. The apple 14-3-3 protein MdGRF11 interacts with the BTB protein MdBT2 to regulate nitrate deficiency-induced anthocyanin accumulation. Horticulture Research, 8, 22.

Rosenberg O S, Deindl S, Sung R J, Nairn A C, Kuriyan J. 2006. Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. Cell123, 849–860.

Song L Y, Wang X L, Han W, Qu Y Y, Wang Z G, Zhai R, Yang C Q, Ma F W, Xu L F. 2020. PbMYB120 negatively regulates anthocyanin accumulation in pear. International Journal of Molecular Sciences21, 1528.

Su L, Qi M, Meng D, Yang Q, Wang Y M, Ren F S, Yang L Y, Chen Y C, Liu L Y, Tang M L, Song Y B, Gong L. 2023. Transcriptome analysis reveals the central role of the transcription factor MYB in regulating anthocyanin accumulation in economic grape species (Vitis vinifera). Forests14, 416.

Sun Y W, Qian M J, Wu R Y, Niu Q F, Teng Y W, Zhang D. 2014. Postharvest pigmentation in red Chinese sand pears (Pyrus pyrifolia Nakai) in response to optimum light and temperature. Postharvest Biology and Technology91, 64–71.

Tao R Y, Yu W J, Gao Y H, Ni J B, Yin L, Zhang X, Li H X, Wang D S, Bai S L, Teng Y W. 2020. Light-induced basic/helix-loop-helix 64 enhances anthocyanin biosynthesis and undergoes CONSTITUTIVELY PHOTOMORPHOGENIC 1-mediated degradation in pear. Plant Physiology184, 1684–1701.

Trofimov K, Ivanov R, Eutebach M, Acaroglu B, Mohr I, Bauer P, Brumbarova T. 2019. Mobility and localization of the iron deficiency-induced transcription factor bHLH039 change in the presence of FIT. Plant Direct3, e00190.

Tu M X, Fang J H, Zhao R K, Liu X Y, Yin W C, Wang Y, Wang X H, Wang X P, Fang Y L. 2022. CRISPR/Cas9-mediated mutagenesis of VvbZIP36 promotes anthocyanin accumulation in grapevine (Vitis vinifera). Horticulture Research, 9, uhac022.

Vimolmangkang S, Han Y P, Wei G C, Korban S S. 2013. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development. BMC Plant Biology13, 176.

Wang C Q, Sarmast M K, Jiang J, Dehesh K. 2015. The transcriptional regulator BBX19 promotes hypocotyl growth by facilitating COP1-mediated EARLY FLOWERING3 degradation in ArabidopsisThe Plant Cell27, 1128–1139.

Wang F, Chen L, Chen H P, Chen S W, Liu Y P. 2019. Analysis of flavonoid metabolites in citrus peels (Citrus reticulata ‘Dahongpao’) using UPLC-ESI-MS/MS. Molecules24, 2680.

Wang M L, Wang Y R, Ding T Y, Yan Z L, Zhou Z, Li C Y, Yao J, Zhang H T. 2023a. Red-TE homozygous alleles of MdMYB10 confer full-red apple fruit skin in a high-temperature region. Horticulturae9, 270.

Wang R J, Wang R X, Liu M M, Yuan W W, Zhao Z Y, Liu X Q, Peng Y M, Yang X R, Sun Y, Tang W Q. 2021. Nucleocytoplasmic trafficking and turnover mechanisms of BRASSINAZOLE RESISTANT1 in Arabidopsis thalianaProceedings of the National Academy of Sciences of the United States of America118, e2101838118.

Wang X F, Shao D N, Liang Q, Feng X K, Zhu Q H, Yang Y L, Liu F, Zhang X Y, Li YJ, Sun J, Xue F. 2023b. A 2-bp frameshift deletion at GhDR encoding a B-BOX protein co-segregatiing with dwarf-red phenotype in Gossypium hirsutum L. Journal of Integrative Agriculture, 22, 2000–2014.

Wang Y C, Xu H F, Wang N, Jiang S H, Liu J X, Wang D Y, Zuo W F, Chen X S. 2017. Molecular cloning and expression analysis of an auxin signaling related gene MdARF3 in red flesh apple. Acta Horticulturae Sinica44, 633–643. (in Chinese)

Wang Y Y, Zhang X D, Zhao Y R, Yang J, He Y Y, Li G C, Ma W R, Huang X L, Su J. 2020. Transcription factor PyHY5 binds to the promoters of PyWD40 and PyMYB10 and regulates its expression in red pear ‘Yunhongli No. 1’. Plant Physiology and Biochemistry154, 665–674.

Xing Y F, Sun W J, Sun Y Y, Li J L, Zhang J, Wu T, Song T T, Yao Y C, Tian J. 2023. MPK6-mediated HY5 phosphorylation regulates light-induced anthocyanin accumulation in apple fruit. Plant Biotechnology Journal21, 283–301.

Yan H, Marquardt K, Indorf M, Jutt D, Kircher S, Neuhaus G, Rodríguez-Franco M. 2011. Nuclear localization and interaction with COP1 are required for STO/BBX24 function during photomorphogenesis. Plant Physiology156, 1772–1782.

Yang G Y, Sun M Y, Brewer L, Tang Z K, Nieuwenhuizen N, Cooney J, Xu S Z, Sheng J W, Andre C, Xue C, Rebstock R, Yang B, Chang W J, Liu Y Y, Li J M, Wang R Z, Qin M F, Brendolise C, Allan A C, Espley R V, et al. 2024. Allelic variation of BBX24 is a dominant determinant controlling red coloration and dwarfism in pear. Plant Biotechnology Journalhttps://doi.org/10.1111/pbi.14280

Yang S, Liu H D, Wang H B, Zhang H J, Liu F Z. 2019. Molecular cloning and functional characterization of VcNAC072 reveals its involvement in anthocyanin accumulation in blueberry. Scientia Agricultura Sinica52, 503–511. (in Chinese)

Yao G F, Gou S S, Zhong T Y, Wei S W, An X, Sun H Y, Sun C, Hu K D, Zhang H. 2023. Persulfidation of transcription factor MYB10 inhibits anthocyanin synthesis in red-skinned pear. Plant Physiology192, 2185–2202.

Yin X J, Wang T T, Zhang M, Zhang Y B, Irfan M, Chen L J, Zhang L. 2021. Role of core structural genes for flavonoid biosynthesis and transcriptional factors in flower color of plants. Biotechnology & Biotechnological Equipment35, 1214–1229.

Zhai R, Zhao Y X, Wu M, Yang J, Li X Y, Liu H T, Wu T, Liang F F, Yang C Q, Wang Z G, Ma F W, Xu L F. 2019. The MYB transcription factor PbMYB12b positively regulates flavonol biosynthesis in pear fruit. BMC Plant Biology19, 85.

Zhang S H, Wang H, Wang T, Liu W J, Zhang J, Fang H C, Zhang Z Y, Peng F T, Chen X S, Wang N. 2023. MdMYB305-MdbHLH33-MdMYB10 regulates sugar and anthocyanin balance in red-fleshed apple fruits. The Plant Journal133, 1062–1079.

Zhang X Y, Huai J L, Shang F F, Xu G, Tang W J, Jing Y J, Lin R C. 2017. A PIF1/PIF3-HY5-BBX23 transcription factor cascade affects photomorphogenesis. Plant Physiology174, 2487–2500.

Zhang Y Z, Xu S Z, Cheng Y W, Wang J, Wang X X, Liu R X, Han J M. 2020. Functional identification of PsMYB57 involved in anthocyanin regulation of tree peony. BMC Genetics21, 124.

[1] Congrui Sun, Runze Wang, Jiaming Li, Xiaolong Li, Bobo Song, David Edwards, Jun Wu. Pan-transcriptome analysis provides insights into resistance and fruit quality breeding of pear (Pyrus pyrifolia)[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1813-1830.
[2] Tong Shen, Mengdi Ye, Yeping Xu, Bohan Ding, Hongtao Li, Li Zhang, Jun Wang, Yanli Tian, Baishi Hu, Youfu Zhao. Cytospora pyri promotes Erwinia amylovora virulence by providing metabolites and hyphae[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3045-3054.
[3] Guoling Guo, Haiyan Zhang, Weiyu Dong, Bo Xu, Youyu Wang, Qingchen Zhao, Lun Liu, Xiaomei Tang, Li Liu, Zhenfeng Ye, Wei Heng, Liwu Zhu, Bing Jia. Overexpression of PbrGA2ox1 enhances pear drought tolerance through the regulation of GA3-inhibited reactive oxygen species detoxification and abscisic acid signaling[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2989-3011.
[4] Wanting Yu, Xinnan Zhang, Weiwei Yan, Xiaonan Sun, Yang Wang, Xiaohui Jia. Effects of 1-methylcyclopropene on skin greasiness and quality of ‘Yuluxiang’ pear during storage at 20°C[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2476-2490.
[5] Berhane S. GEBREGZIABHER, ZHANG Sheng-rui, Muhammad AZAM, QI Jie, Kwadwo G. AGYENIM-BOATENG, FENG Yue, LIU Yi-tian, LI Jing, LI Bin, SUN Jun-ming. Natural variations and geographical distributions of seed carotenoids and chlorophylls in 1 167 Chinese soybean accessions[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2632-2647.
[6] WANG Xue-feng, SHAO Dong-nan, LIANG Qian, FENG Xiao-kang, ZHU Qian-hao, YANG Yong-lin, LIU Feng, ZHANG Xin-yu, LI Yan-jun, SUN Jie, XUE Fei. A 2-bp frameshift deletion at GhDR, which encodes a B-BOX protein that co-segregates with the dwarf-red phenotype in Gossypium hirsutum L.[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2000-2014.
[7] JIAO Hui-jun, WANG Hong-wei, RAN Kun, DONG Xiao-chang, DONG Ran, WEI Shu-wei, WANG Shao-min. Identification and functional analysis of arabinogalactan protein expressed in pear pollen tubes[J]. >Journal of Integrative Agriculture, 2023, 22(3): 776-789.
[8] WEI Wei-lin, JIANG Fu-dong, LIU Hai-nan, SUN Man-yi, LI Qing-yu, CHANG Wen-jing, LI Yuan-jun, LI Jia-ming, WU Jun. The PcHY5 methylation is associated with anthocyanin biosynthesis and transport in ‘Max Red Bartlett’ and ‘Bartlett’ pears[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3256-3268.
[9] GUAN Zhi-bin, ZHANG Yan-qi, CHAI Xiu-juan, CHAI Xin, ZHANG Ning, ZHANG Jian-hua, SUN Tan. Visual learning graph convolution for multi-grained orange quality grading[J]. >Journal of Integrative Agriculture, 2023, 22(1): 279-291.
[10] SHAN Yan-fei, LI Meng-yan, WANG Run-ze, LI Xiao-gang, LIN Jing, LI Jia-ming, ZHAO Ke-jiao, WU Jun. Evaluation of the early defoliation trait and identification of resistance genes through a comprehensive transcriptome analysis in pears[J]. >Journal of Integrative Agriculture, 2023, 22(1): 120-138.
[11] ZHANG Ying, CAO Yu-fen, HUO Hong-liang, XU Jia-yu, TIAN Lu-ming, DONG Xing-guang, QI Dan, LIU Chao. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2275-2290.
[12] TANG Zi-kai, SUN Man-yi, LI Jia-ming, SONG Bo-bo, LIU Yue-yuan, TIAN Yi-ke, WANG Cai-hong, WU Jun. Comparative transcriptome analysis provides insights into the mechanism of pear dwarfing[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1952-1967.
[13] SONG Jun-xing, CHEN Ying-can, LU Zhao-hui, ZHAO Guang-ping, WANG Xiao-li, ZHAI Rui, WANG Zhi-gang, YANG Cheng-quan, XU Ling-fei. PbPH5, an H+ P-ATPase on the tonoplast, is related to malic acid accumulation in pear fruit[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1645-1657.
[14] LIU Jian-long, ZHANG Chen-xiao, LI Tong-tong, LIANG Cheng-lin, YANG Ying-jie, LI Ding-Li, CUI Zhen-hua, WANG Ran, SONG Jian-kun. Phenotype and mechanism analysis of plant dwarfing in pear regulated by abscisic acid[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1346-1356.
[15] GUO Bing-bing, LI Jia-ming, LIU Xing, QIAO Xin, Musana Rwalinda FABRICE, WANG Peng, ZHANG Shao-ling, WU Ju-you. Identification and expression analysis of the PbrMLO gene family in pear, and functional verification of PbrMLO23[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2410-2423.
No Suggested Reading articles found!