Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (10): 3370-3386    DOI: 10.1016/j.jia.2024.01.035
Section 1: Cotton functional genomics Advanced Online Publication | Current Issue | Archive | Adv Search |
Knockdown of the atypical protein kinase genes GhABC1K2-A05 and GhABC1K12-A07 make cotton more sensitive to salt and PEG stress
Caixiang Wang1*, Meili Li1*, Dingguo Zhang3, Xueli Zhang1, Juanjuan Liu1, Junji Su1, 2#
1 State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
2 Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
3 College of Biology and Geographical Sciences, Yili Normal University, Yining 835000, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

bc1复合体激酶(ABC1K)是一种非典型蛋白激酶(aPK),在植物线粒体或质体胁迫反应中起着至关重要的作用,但ABC1Ks在棉花Gossypium spp.)中对胁迫的反应知之甚少。我们在陆地棉Gossypium hirsutum L.)中验证了40ABC1K基因,发现GhABC1K基因不均匀地分布在17条染色体上。GhABC1K家族成员包含35对同源基因,并通过片段复制进行扩增,其启动子序列包含多种与激素或应激反应相关的顺式调控元件。qRT-PCR结果显示,暴露于不同的胁迫下,大多数GhABC1K基因上调表达。至少三种胁迫处理上调了GhABC1K2-A05GhABC1K12-A07的表达。通过病毒诱导的基因沉默(VIGS)进一步对这些基因进行了功能分析。与对照相比,在NaClPEG胁迫下,GhABC1K2-A05-GhABC1K12-A07沉默棉花植株的丙二醛(MDA)含量升高,过氧化氢酶(CAT)、过氧化物酶(POD)和超氧化物歧化酶(SOD)活性降低,叶绿素和可溶性糖含量降低。此外,胁迫后应激标记基因GhDREB2AGhSOS1GhCIPK6GhSOS2GhWRKY33GhRD29AGhABC1K2-A05-GhABC1K12-A07沉默植株中的表达显著下调。结果表明,GhABC1K2-A05GhABC1K12-A07基因的敲低使棉花对盐和PEG胁迫更加敏感。这些发现可以为深入研究GhABC1K基因在棉花对非生物胁迫的响应和抗性中的作用提供有价值的信息。



Abstract  
Activity of bc1 complex kinase (ABC1K) is an atypical protein kinase (aPK) that plays a crucial role in plant mitochondrial and plastid stress responses, but little is known about the responses of ABC1Ks to stress in cotton (Gossypium spp.).  Here, we identified 40 ABC1Ks in upland cotton (Gossypium hirsutum L.) and found that the GhABC1Ks were unevenly distributed across 17 chromosomes.  The GhABC1K family members included 35 paralogous gene pairs and were expanded by segmental duplication.  The GhABC1K promoter sequences contained diverse cis-acting regulatory elements relevant to hormone or stress responses.  The qRT-PCR results revealed that most GhABC1Ks were upregulated by exposure to different stresses.  GhABC1K2-A05 and GhABC1K12-A07 expression levels were upregulated by at least three stress treatments.  These genes were further functionally characterized by virus-induced gene silencing (VIGS).  Compared with the controls, the GhABC1K2-A05- and GhABC1K12-A07-silenced cotton lines exhibited higher malondialdehyde (MDA) contents, lower catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) activities and reduced chlorophyll and soluble sugar contents under NaCl and PEG stress.  In addition, the expression levels of six stress marker genes (GhDREB2A, GhSOS1, GhCIPK6, GhSOS2, GhWRKY33, and GhRD29A) were significantly downregulated after stress in the GhABC1K2-A05- and GhABC1K12-A07-silenced lines.  The results indicate that knockdown of GhABC1K2-A05 and GhABC1K12-A07 make cotton more sensitive to salt and PEG stress.  These findings can provide valuable information for intensive studies of GhABC1Ks in the responses and resistance of cotton to abiotic stresses.


Keywords:  cotton       ABC1K        abiotic stress responses        expression patterns        virus-induced gene silencing (VIGS)  
Received: 25 July 2023   Accepted: 13 November 2023
Fund: 
The work was supported by the State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, China (GSCS-2019-10), the National Natural Science Foundation of China (31801414 and 32260478), the Gansu Province Science and Technology Program, China (20JR10RA531), the Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (2022D01E103), and the Education Technology Innovation Project of Gansu Province, China (2022QB-076).

About author:  Caixiang Wang, E-mail: wangcaix@gsau.edu.cn; #Correspondence Junji Su, Tel/Fax: +86-931-7631875, E-mail: sujj@gsau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Caixiang Wang, Meili Li, Dingguo Zhang, Xueli Zhang, Juanjuan Liu, Junji Su. 2024. Knockdown of the atypical protein kinase genes GhABC1K2-A05 and GhABC1K12-A07 make cotton more sensitive to salt and PEG stress. Journal of Integrative Agriculture, 23(10): 3370-3386.

Bita C E, Gerats T. 2013. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science4, 273–290.

Bousquet I, Dujardin G, Slonimski P P. 1991. ABC1, a novel yeast nuclear gene has a dual function in mitochondria: It suppresses a cytochrome b mRNA translation defect and is essential for the electron transfer in the bc1 complex. The EMBO Journal10, 2023–2031.

Boyer J S, Byrne P, Cassman K G, Cooper M, Delmer D, Greene T, Gruis F, Habben J, Hausmann N, Kenny N, Lafitte R, Paszkiewicz S, Porter D, Schlegel A, Schussler J, Boyer J S, Byrne P, Cassman K G, Cooper M, Delmer D, et al. 2013. The U.S. drought of 2012 in perspective: A call to action. Global Food Security2, 139–143.

Cannon S B, Mitra A, Baumgarten A, Young N D, May G. 2004. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thalianaBMC Plant Biology4, 10–31.

Cardazzo B, Hamel P, Sakamoto W, Wintz H, Dujardin G. 1998. Isolation of an Arabidopsis thaliana cDNA by complementation of a yeast abc1 deletion mutant deficient in complex III respiratory activity. Gene221, 117–125.

Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant13, 1194–1202.

Chen X, Ding Y, Yang Y, Song C, Wang B, Yang S, Guo Y, Gong Z. 2021. Protein kinases in plant responses to drought, salt, and cold stress. Journal of Integrative Plant Biology63, 53–78.

Dubois M, Gilles K A, Hamilton J K, Rebers P T, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry28, 350–356.

El-Gebali S, Mistry J, Bateman A, Eddy S R, Luciani A, Potter S C, Qureshi M, Richardson L J, Salazar G A, Smart A, Sonnhammer E, Hirsh L, Paladin L, Piovesan D, Tosatto S, Finn R D. 2019. The Pfam protein families database in 2019. Nucleic Acid Research47, D427–D432.

Espinoza-Corral R, Lundquist P K. 2022. The plastoglobule-localized protein AtABC1K6 is a Mn2+-dependent kinase necessary for timely transition to reproductive growth. Journal of Biological Chemistry298, 101762–101777.

Finn R D, Clements J, Eddy S R. 2011. HMMER web server: interactive sequence similarity searching. Nucleic Acids Research39, W29–W37.

Freeling M. 2009. Bias in plant gene content following different sorts of duplication: Tandem, whole-genome, segmental, or by transposition. Annual Review of Plant Biology60, 433–453.

Gao Q S, Yang Z F, Zhou Y, Yin Z T, Qiu J, Liang G H, Xu C W. 2012. Characterization of an Abc1 kinase family gene OsABC1-2 conferring enhanced tolerance to dark-induced stress in rice. Gene498, 155–163.

Gao Q S, Yang Z F, Zhou Y, Zhang D, Yan C H, Liang G H, Xu C W. 2010. Cloning of an ABC1-like gene ZmABC1-10 and its responses to cadmium and other abiotic stresses in maize (Zea mays L.). Acta Agronomica Sinica36, 2073–2083. (in Chinese)

Gao S Q, Chen M, Xia L Q, Xiu H J, Xu Z S, Li L C, Zhao C P, Cheng X G, Ma Y Z. 2009. A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Reports28, 301–311.

Gao W, Long L, Xu L, Lindsey K, Zhang X L, Zhu L F. 2016. Suppression of the homeobox gene HDTF1 enhances resistance to Verticillium dahliae and Botrytis cinerea in cotton. Journal of Integrative Plant Biology58, 503–513.

Gao X, Zou R , Sun H, Liu J, Duan W, Hu Y, Yan Y. 2022. Genome-wide identification of wheat ABC1K gene family and functional dissection of TaABC1K3 and TaABC1K6 involved in drought tolerance. Frontiers in Plant Science13, 991171.

Gong Z Z, Xiong L M, Shi H Z, Yang S H, Herrera-Estrella L R, Xu G H, Chao D Y, Li J R, Wang P Y, Qin F, Li J J, Ding Y L, Shi Y T, Wang Y, Yang Y Q, Guo Y, Zhu J K. 2020. Plant abiotic stress response and nutrient use efficiency. Science China (Life Science), 63, 635–674.

He L, Yang X, Wang L, Zhu L, Zhou T, Deng J, Zhang X. 2013. Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Biochemical and Biophysical Research Communications435, 209–215.

He P, Zhang H, Zhang L, Jiang B, Xiao G, Yu J. 2022.
The GhMAX2 gene regulates plant growth and fiber development in cotton. Journal of Integrative Agriculture21, 1563–1575.

Hu B, Jin J, Guo A Y, Zhang H, Luo J C, Gao G. 2015. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics31, 1296–1297.

Huang H, Yang M, Su Y E, Qu L J, Deng X W. 2015. Arabidopsis atypical kinases ABC1K1 and ABC1K3 act oppositely to cope with photodamage under red light. Molecular Plant8, 1122–1124.

Jasinski M, Sudre D, Schansker G, Schellenberg M, Constant S, Martinoia E, Bovet L. 2008. AtOSA1, a member of the Abc1-like family, as a new factor in cadmium and oxidative stress response. Plant Physiology147, 719–731.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution33, 1870–1874.

Lang Y H, Liu Z. 2020. Basic Helix-Loop-Helix (bHLH) transcription factor family in yellow horn (Xanthoceras sorbifolia Bunge): Genome-wide characterization, chromosome location, phylogeny, structures and expression patterns. International Journal of Biological Macromolecules160, 711–723.

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acid Research30, 325–327.

Letunic I, Bork P. 2019. Interactive tree of life (iTOL) v4: Recent updates and new developments. Nucleic Acid Research47, W256–W259.

Li J B, Zhou H, Xiong C W, Peng Z J, Du W, Li H, Wang L, Ruan C J. 2022. Genome-wide analysis R2R3-MYB transcription factors in Xanthoceras sorbifolium Bunge and functional analysis of XsMYB30 in drought and salt stresses tolerance. Industrial Crops and Products178, 114597.

Li T, Jiang J M, Zhang S C, Shu H R, Wang Y Q, Lai J B, Du J J, Yang C W. 2015. OsAGSW1, an ABC1-like kinase gene, is involved in the regulation of grain size and weight in rice. Journal of Experimental Botany66, 5691–5701.

Lichtenthaler H K, Wellburn A R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions11, 591–592.

Liu H, Jiang W B, Cao J K, Ma L. 2018. A combination of 1-methylcyclopropene treatment and intermittent warming alleviates chilling injury and affects phenolics and antioxidant activity of peach fruit during storage. Scientia Horticulturae229, 175–181.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CTMethod25, 402–408.

Lundquist P K, Davis J I, van Wijk K J. 2012a. ABC1K atypical kinases in plants: Filling the organellar kinase void. Trends in Plant Science17, 546–555.

Lundquist P K, Poliakov A, Bhuiyan N H, Zybailov B, Sun Q, Wijk K J. 2012b. The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis. Plant Physiology158, 1172–1192.

Macinga D R, Cook G M, Poole R K, Rather P N. 1998. Identification and characterization of aarF, a locus required for production of ubiquinone in Providencia stuartii and Escherichia coli and for expression of 2´-N-acetyltransferase in PstuartiiJournal of Bacteriology180, 128–135.

Manara A, DalCorso G, Furini A. 2016. The role of the atypical kinases ABC1K7 and ABC1K8 in abscisic acid responses. Frontiers in Plant Science7, 366–378.

Manara A, DalCorso G, Guzzo F, Furini A. 2015. Loss of the atypical kinases ABC1K7 and ABC1K8 changes the lipid composition of the chloroplast membrane. Plant Cell Physiology56, 1193–1204.

Manara A, DalCorso G, Leister D, Jahns P, Baldan B, Furini A. 2014. AtSIA1 and AtOSA1: Two Abc1 proteins involved in oxidative stress responses and iron distribution within chloroplasts. New Phytologist201, 452–465.

Manivannan A, Cheeran Amal T. 2023. Deciphering the complex cotton genome for improving fiber traits and abiotic stress resilience in sustainable agriculture. Molecular Biology Reports50, 6937–6953.

Martinis J, Glauser G, Valimareanu S, Stettler M, Zeeman S C, Yamamoto H, Shikanai T, Kessler F. 2014. ABC1K1/ PGR6 kinase: A regulatory link between photosynthetic activity and chloroplast metabolism. The Plant Journal77, 269–283.

Moore R C, Purugganan M D. 2003. The early stages of duplicate gene evolution. Proceedings of the National Academy of Sciences of the United States of America100, 15682–15687.

Moustakas M, Sperdouli I, Kouna T, Antonopoulou C I, Therios I. 2011. Exogenous proline induces soluble sugar accumulation and alleviates drought stress effects on photosystem II functioning of Arabidopsis thaliana leaves. Plant Growth Regulation65, 315–325.

Poon W W, Davis D E, Ha H T, Jonassen T, Rather P N, Clarke C F. 2000. Identification of Escherichia coli ubiB, a gene required for the first monooxygenase step in ubiquinone biosynthesis. Journal of Bacteriology182, 5139–5146.

Pralon T, Shanmugabalaji V, Longoni P, Glauser G, Ksas B, Collombat J, Desmeules S, Havaux M, Finazzi G, Kessler F. 2019. Plastoquinone homoeostasis by Arabidopsis proton gradient regulation 6 is essential for photosynthetic efficiency. Communications Biology2, 220–230.

Pryor S C, Barthelmie R J, Schoof J T. 2013. High-resolution projections of climate-related risks for the Midwestern USA. Climate Research56, 61–79.

Qin X H, Duan Z K, Zheng Y, Liu W C, Guo S Y, Botella J R, Song C P. 2020. ABC1K10a, an atypical kinase, functions in plant salt stress tolerance. BMC Plant Biology20, 270–283.

Stefely J A, Licitra F, Laredj L, Reidenbach A G, Kemmerer Z A, Grangeray A, Jaeg-Ehret T, Minogue C E, Ulbrich A, Hutchins P D, Wilkerson E M, Ruan Z, Aydin D, Hebert A S, Guo X, Freiberger E C, Reutenauer L, Jochem A, Chergova M, Johnson I E, et al. 2016. Cerebellar ataxia and coenzyme Q defciency through loss of unorthodox kinase activity. Molecular Cell63, 608–620.

Voorrips R E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity93, 77–78.

Wang C X, Jing R L, Mao X G, Chang X P, Li A. 2011. TaABC1, a member of the activity of bc1 complex protein kinase family from common wheat, confers enhanced tolerance to abiotic stresses in ArabidopsisJournal of Experimental Botany62, 1299–1311.

Wang N N, Xu S W, Sun Y L, Liu D, Zhou L, Li Y, Li X B. 2019. The cotton WRKY transcription factor (GhWRKY33) reduces transgenic Arabidopsis resistance to drought stress. Scientific Reports9, 724.

Wang X J, Wang X J, Duan Y H, Yin S N, Zhang H C, Huang L, Kang Z S. 2013. TaAbc1, a member of Abc1-like family involved in hypersensitive response against the stripe rust fungal pathogen in wheat. PLoS ONE8, e58969.

Xie L X, Hsieh E J, Watanabe S, Allan C M, Chen J Y, Tran U C, Clarke C F. 2011. Expression of the human atypical kinase ADCK3 rescues coenzyme Q biosynthesis and phosphorylation of Coq polypeptides in yeast coq8 mutants. Biochimica et Biophysica Acta1811, 348–360.

Yang S G, Zeng X Q, Li T, Liu M, Zhang S C, Gao S J, Wang Y Q, Peng C L, Li L, Yang C W. 2012. AtACDO1, an ABC1-like kinase gene, is involved in chlorophyll degradation and the response to photooxidative stress in ArabidopsisJournal of Experimental Botany63, 3959–3973.

Yang S Y, Zhang Q, Li T, Du J J, Yang S G, Yang C W. 2012. AtSIA1, an ABC1-like kinase, regulates salt response in ArabidopsisBiologia67, 1107–1111.

Zhang H, Zhu J, Gong Z, Zhu J K. 2022. Abiotic stress responses in plants. Nature Reviews Genetics23, 104–119.

Zhang J B, He S P, Luo J W, Wang X P, Li D D, Li X B. 2020. A histone deacetylase, GhHDT4D, is positively involved in cotton response to drought stress. Plant Molecular Biology104, 67–79.

Zhou H, Xiao F, Zheng Y, Liu G, Zhuang Y, Wang Z, Zhang Y, He J, Fu C, Lin H. 2022. PAMP-INDUCED SECRETED PEPTIDE 3 modulates salt tolerance through RECEPTOR-LIKE KINASE 7 in plants. Plant Cell34, 927–944.

Zhu J K. 2016. Abiotic stress signaling and responses in plants. Cell167, 313–324.

[1] Congcong Guo, Hongchun Sun, Xiaoyuan Bao, Lingxiao Zhu, Yongjiang Zhang, Ke Zhang, Anchang Li, Zhiying Bai, Liantao Liu, Cundong Li. Increasing root-lower characteristics improves drought tolerance in cotton cultivars at the seedling stage[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2242-2254.
[2] Yuting Liu, Hanjia Li, Yuan Chen, Tambel Leila. I. M., Zhenyu Liu, Shujuan Wu, Siqi Sun, Xiang Zhang, Dehua Chen.

Inhibition of protein degradation increases the Bt protein concentration in Bt cotton [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1897-1909.

[3] Yunze Wen, Peng He, Xiaohan Bai, Huizhi Zhang, Yunfeng Zhang, Jianing Yu.

Strigolactones modulate cotton fiber elongation and secondary cell wall thickening [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1850-1863.

[4] Changqin Yang, Xiaojing Wang, Jianan Li, Guowei Zhang, Hongmei Shu, Wei Hu, Huanyong Han, Ruixian Liu, Zichun Guo.

Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system [J]. >Journal of Integrative Agriculture, 2024, 23(2): 669-679.

[5] Zhili Chong, Yunxiao Wei, Kaili Li, Muhammad Aneeq Ur Rahman, Chengzhen Liang, Zhigang Meng, Yuan Wang, Sandui Guo, Liangrong He, Rui Zhang. GbLMI1 over-expression improves cotton aboveground vegetative growth[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3457-3467.
[6] Nurimanguli Aini, Yuanlong Wu, Zhenyuan Pan, Yizan Ma, Qiushuang An, Guangling Shui, Panxia Shao, Dingyi Yang, Hairong Lin, Binghui Tang, Xin Wei, Chunyuan You, Longfu Zhu, Dawei Zhang, Zhongxu Lin, Xinhui Nie. Cotton ethylene response factor GhERF91 is involved in the defense against Verticillium dahliae[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3328-3342.
[7] Hongge Li, Shurong Tang, Zhen Peng, Guoyong Fu, Yinhua Jia, Shoujun Wei, Baojun Chen, Muhammad Shahid Iqbal, Shoupu He, Xiongming Du. Genetic dissection and origin of pleiotropic loci underlying multi-level fiber quality traits in upland cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3250-3263.
[8] Qingdi Yan, Wei Hu, Chenxu Gao, Lan Yang, Jiaxian Yang, Renju Liu, Masum Billah, Yongjun Lin, Ji Liu, Pengfei Miao, Zhaoen Yang, Fuguang Li, Wenqiang Qin. EPSPS regulates cell elongation by disrupting the balance of lignin and flavonoid biosynthesis in cotton[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3437-3456.
[9] Wenwen Wang, Lei Chen, Yan Wu, Xin Guo, Jinming Yang, Dexin Liu, Xueying Liu, Kai Guo, Dajun Liu, Zhonghua Teng, Yuehua Xiao, Zhengsheng Zhang. Map-based cloning of qLPA01.1, a favorable allele from Gossypium tomentosum chromosome segment line[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3283-3293.
[10] Zhenyu Liu, Shu Dong, Yuting Liu, Hanjia Li, Fuqin Zhou, Junfeng Ding, Zixu Zhao, Yinglong Chen, Xiang Zhang, Yuan Chen, Dehua Chen. Optimizing the Bacillus thuringiensis (Bt) protein concentration in cotton: Coordinated application of exogenous amino acids and EDTA to reduce spatiotemporal variability in boll and leaf toxins[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3419-3436.
[11] Huaxiang Wu, Xiaohui Song, Muhammad Waqas-Amjid, Chuan Chen, Dayong Zhang, Wangzhen Guo. Mining elite loci and candidate genes for root morphology-related traits at the seedling stage by genome-wide association studies in upland cotton (Gossypium hirsutum L.) [J]. >Journal of Integrative Agriculture, 2024, 23(10): 3406-3418.
[12] Lingxiao Zhu, Hongchun Sun, Ranran Wang, Congcong Guo, Liantao Liu, Yongjiang Zhang, Ke Zhang, Zhiying Bai, Anchang Li, Jiehua Zhu, Cundong Li. Exogenous melatonin improves cotton yield under drought stress by enhancing root development and reducing root damage[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3387-3405.
[13] Liang Ma, Tingli Hu, Meng Kang, Xiaokang Fu, Pengyun Chen, Fei Wei, Hongliang Jian, Xiaoyan Lü, Meng Zhang, Yonglin Yang. Identification of candidate genes for early-maturity traits by combining BSA-seq and QTL mapping in upland cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3472-3486.
[14] Qichao Chai, Meina Zheng, Yanli Li, Mingwei Gao, Yongcui Wang, Xiuli Wang, Chao Zhang, Hui Jiang, Ying Chen, Jiabao Wang, Junsheng Zhao. GhWRKY75 positively regulates GhPR6-5b via binding to a W-box TTGAC (C/T) to orchestrate cotton resistance to Verticillium dahliae [J]. >Journal of Integrative Agriculture, 2024, 23(10): 3343-3357.
[15] Jie Liu, Zhicheng Wang, Bin Chen, Guoning Wang, Huifeng Ke, Jin Zhang, Mengjia Jiao, Yan Wang, Meixia Xie, Yanbin Li, Dongmei Zhang, Xingyi Wang, Qishen Gu, Zhengwen Sun, Liqiang Wu, Xingfen Wang, Zhiying Ma, Yan Zhang. Expression analysis of the R2R3-MYB gene family in upland cotton and functional study of GhMYB3D5 in regulating Verticillium wilt resistance[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3294-3310.
No Suggested Reading articles found!