Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (10): 3387-3405    DOI: 10.1016/j.jia.2024.04.011
Section 1: Cotton functional genomics Advanced Online Publication | Current Issue | Archive | Adv Search |
Exogenous melatonin improves cotton yield under drought stress by enhancing root development and reducing root damage
Lingxiao Zhu1, 2, Hongchun Sun1, Ranran Wang1, Congcong Guo1, Liantao Liu1#, Yongjiang Zhang1, Ke Zhang1, Zhiying Bai1, Anchang Li1, Jiehua Zhu2#, Cundong Li1#
1 State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding 071000, China
2 College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
灌根法施用外源褪黑素是提高作物抗旱能力的有效途径。然而,灌根法施用褪黑素的最佳浓度以及其诱导棉花(Gossypium hirsutum L.)耐旱性的生理机制仍不清楚。本研究旨在确定灌根法施用褪黑素的最佳浓度,并探讨褪黑素对棉花根系的保护作用。结果表明,50 μmol·L-1的褪黑素效果最佳,能显著减轻干旱对棉花幼苗生长的抑制作用。外源褪黑素显著增加棉花根系的长度、投影面积、表面积、体积、直径和生物量,从而促进干旱胁迫下棉花根系的发育。褪黑激素还可以提高干旱胁迫下的光合能力,并通过调节激素合成基因的表达调控内源激素含量。褪黑素提高了干旱胁迫下抗氧化酶的活力和非酶抗氧化物的含量,降低活性氧和丙二醛的积累,从而减少了干旱胁迫对棉花根系的损害(如线粒体损伤)。此外,褪黑激素缓解了干旱胁迫造成的产量和纤维长度的下降。总之,上述结果阐明了灌根施用外源褪黑素通过促进根系发育和减少干旱胁迫造成的根系损伤来提高棉花产量。综上所述,本研究为通过灌根法在大田中应用褪黑素提供了基础。


Abstract  
The exogenous application of melatonin by the root drenching method is an effective way to improve crop drought resistance.  However, the optimal concentration of melatonin by root drenching and the physiological mechanisms underlying melatonin-induced drought tolerance in cotton (Gossypium hirsutum L.) roots remain elusive.  This study determined the optimal concentration of melatonin by root drenching and explored the protective effects of melatonin on cotton roots.  The results showed that 50 μmol L–1 melatonin was optimal and significantly mitigated the inhibitory effect of drought on cotton seedling growth.  Exogenous melatonin promoted root development in drought-stressed cotton plants by remarkably increasing the root length, projected area, surface area, volume, diameter, and biomass.  Melatonin also mitigated the drought-weakened photosynthetic capacity of cotton and regulated the endogenous hormone contents by regulating the relative expression levels of hormone-synthesis genes under drought stress.  Melatonin-treated cotton seedlings maintained optimal enzymatic and non-enzymatic antioxidant capacities, and produced relatively lower levels of reactive oxygen species and malondialdehyde, thus reducing the drought stress damage to cotton roots (such as mitochondrial damage).  Moreover, melatonin alleviated the yield and fiber length declines caused by drought stress.  Taken together, these findings show that root drenching with exogenous melatonin increases the cotton yield by enhancing root development and reducing the root damage induced by drought stress.  In summary, these results provide a foundation for the application of melatonin in the field by the root drenching method.


Keywords:  cotton        drought        melatonin        root morphology        root physiology        yield  
Received: 13 November 2023   Accepted: 14 March 2024
Fund: This study was supported by grants from the National Natural Science Foundation of China (No. 32301947, 32272220 and 32172120), the China Postdoctoral Science Foundation (2023M730909), and Natural Science Foundation of Hebei Province (C2020204066 and C2021204140).
About author:  Lingxiao Zhu, E-mail: zlxhbnydx@163.com; #Correspondence Cundong Li, E-mail: auhlcd@163.com; Liantao Liu, E-mail: liultday@126.com; Jiehua Zhu, E-mail: Zhujiehua356@126.com

Cite this article: 

Lingxiao Zhu, Hongchun Sun, Ranran Wang, Congcong Guo, Liantao Liu, Yongjiang Zhang, Ke Zhang, Zhiying Bai, Anchang Li, Jiehua Zhu, Cundong Li. 2024. Exogenous melatonin improves cotton yield under drought stress by enhancing root development and reducing root damage. Journal of Integrative Agriculture, 23(10): 3387-3405.

Ahmad S, Muhammad I, Wang G, Zeeshan M, Yang L, Ali I, Zhou X. 2021. Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings. BMC Plant Biology21, 1–14.

Ahn H, Kim Y, Lim Y, Duan S, Eom S, Jung K. 2021. Key genes in the melatonin biosynthesis pathway with circadian rhythm are associated with various abiotic stresses. Plants10, 129.

Altaf M, Shahid R, Ren M, Naz S, Altaf M, Khan L, Tiwari R, Lal M, Shahid M, Kumar R, Nawaz M, Jahan M, Jan B, Ahmad P. 2022. Melatonin improves drought stress tolerance of tomato by modulating plant growth, root architecture, photosynthesis, and antioxidant defense system. Antioxidants11, 309.

Antoniou C, Chatzimichail G, Xenofontos R, Pavlou J, Panagiotou E, Christou A, Fotopoulos V. 2017. Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism. Journal of Pineal Research62, e12401.

Apel K, Hirt H. 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology55, 373–399.

Arnao M, Hernández-Ruiz J. 2007. Melatonin promotes adventitious- and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. Journal of Pineal Research42, 147–152.

Arnao M, Hernández-Ruiz J. 2013. Growth conditions determine different melatonin levels in Lupinus albus L. Journal of Pineal Research55, 149–155.

Arnao M, Hernández-Ruiz J. 2018. Melatonin and its relationship to plant hormones. Annals of Botany121, 195–207.

Arnao M, Hernández-Ruiz J. 2019. Melatonin: A new plant hormone and/or a plant master regulator? Trends in Plant Science24, 38–48.

Bose J, Rodrigo-Moreno A, Shabala S. 2014. ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany65, 1241–1257.

Chaves M, Maroco J, Pereira J. 2003. Understanding plant responses to drought - From genes to the whole plant. Functional Plant Biology30, 239–264.

Chen Q, Qi W, Reiter R, Wei W, Wang B. 2009. Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica junceaJournal of Plant Physiology166, 324–328.

Chen X, Qi Z, Gui D, Sima M, Zeng F, Li L, Li X, Feng S. 2022. Responses of cotton photosynthesis and growth to a new irrigation control method under deficit irrigation. Field Crops Research275, 108373.

Chen Z, Tao X, Khan A, Tan D, Luo H. 2018. Biomass accumulation, photosynthetic traits and root development of cotton as affected by irrigation and nitrogen-fertilization. Frontiers in Plant Science9, 173.

Cui G, Zhao X, Liu S, Sun F, Zhang C, Xi Y. 2017. Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiology and Biochemistry118, 138–149.

Dai A. 2013. Increasing drought under global warming in observations and models. Nature Climate Change3, 52–58.

Dai L, Li J, Harmens H, Zheng X, Zhang C. 2020. Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed (Brassica napus L.) genotypes. Plant Physiology and Biochemistry149, 86–95.

Dinneny J. 2019. Developmental responses to water and salinity in root systems. Annual Review of Cell and Developmental Biology35, 239–257.

Du Y, Zhao Q, Chen L, Yao X, Xie F. 2020. Effect of drought stress at reproductive stages on growth and nitrogen metabolism in soybean. Agronomy10, 302.

Gilbert M, Medina V. 2016. Drought adaptation mechanisms should guide experimental design. Trends in Plant Science21, 639–647.

Grygoruk D. 2016. Root vitality of Fagus sylvatica L., Quercus petraea Liebl. and Acer pseudoplatanus L. in mature mixed forest stand. Folia Forestalia Polonica58, 55–61.

He X, Yin B, Zhang J, Zhou S, Li Z, Zhang X, Xu J, Liang B. 2023. Exogenous melatonin alleviates apple replant disease by regulating rhizosphere soil microbial community structure and nitrogen metabolism. Science of the Total Environment884, 163830.

Hernández-Ruiz J, Cano A, Arnao M B. 2005. Melatonin acts as a growth-stimulating compound in some monocot species. Journal of Pineal Research39, 137–142.

Hosseini M, Samsampour D, Zahedi S, Zamanian K, Rahman M, Mostofa M, Tran L. 2021. Melatonin alleviates drought impact on growth and essential oil yield of lemon verbena by enhancing antioxidant responses, mineral balance, and abscisic acid content. Physiologia Plantarum172, 1363–1375.

Hu W, Zhang J, Wu Z, Loka D, Zhao W, Chen B, Wang Y, Meng Y, Zhou Z, Gao L. 2022. Effects of single and combined exogenous application of abscisic acid and melatonin on cotton carbohydrate metabolism and yield under drought stress. Industrial Crops and Products176, 114302.

Hu W, Zhang J, Yan K, Zhou Z, Zhao W, Zhang X, Pu Y, Yu R. 2021. Beneficial effects of abscisic acid and melatonin in overcoming drought stress in cotton (Gossypium hirsutum L.). Physiologia Plantarum173, 2041–2054.

Huang B, Chen Y, Zhao Y, Ding C, Liao J, Hu C, Zhou L, Zhang Z, Yuan S, Yuan M. 2019. Exogenous melatonin alleviates oxidative damages and protects photosystem II in maize seedlings under drought stress. Frontiers in Plant Science10, 677.

Hund A, Ruta N, Liedgens M. 2009. Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance. Plant and Soil318, 311–325.

Jiang M, Zhang J. 2002. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany53, 2401–2410.

Kajikawa M, Morikawa K, Abe Y, Yokota A, Akashi K. 2010. Establishment of a transgenic hairy root system in wild and domesticated watermelon (Citrullus lanatus) for studying root vigor under drought. Plant Cell Reports29, 771–778.

Kapoor D, Bhardwaj S, Landi M, Sharma A, Ramakrishnan M, Sharma A. 2020. The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Applied Sciences10, 5692.

Kuromori T, Seo M, Shinozaki K. 2018. ABA transport and plant water stress responses. Trends in Plant Science23, 513–522.

Lambers H, Atkin O, Millenaar F. 2002. Plant Roots: The Hidden Half. Chapter: Respiratory Patterns in Roots in Relation to Their Functioning. 3rd ed. Marcel Dekker, New York. pp. 521–552.

Lee S, Luan S. 2012. ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell & Environment35, 53–60.

Lesk C, Rowhani P, Ramankutty N. 2016. Influence of extreme weather disasters on global crop production. Nature529, 84–87.

Li B, Chen L, Sun W, Wu D, Wang M, Yu Y, Chen G, Yang W, Lin Z, Zhang X, Duan L, Yang X. 2020. Phenomics-based GWAS analysis reveals the genetic architecture for drought resistance in cotton. Plant Biotechnology Journal18, 2533–2544.

Li C, Tan D, Liang D, Chang C, Jia D, Ma F. 2015. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. Journal of Experimental Botany66, 669–680.

Li H, Chang J, Zheng J, Dong Y, Liu Q, Yang X, Wei C, Zhang Y, Ma J, Zhang X. 2017. Local melatonin application induces cold tolerance in distant organs of Citrullus lanatus L. via long distance transport. Scientific Reports7, 40858.

Liu L, Yang X, Zhou H, Liu S, Zhou L, Li X, Yang J, Han X, Wu J. 2018. Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy. Science of the Total Environment625, 1208–1217.

Liu Q, Zhang S, Zhang H, Bai Y, Zhang J. 2020. Monitoring drought using composite drought indices based on remote sensing. Science of the Total Environment711, 134585.

Livak K, Schmittgen T. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆Ct method. Methods25, 402–408.

Luo C, Min W, Akhtar M, Lu X, Bai X, Zhang Y, Tian L, Li P. 2022. Melatonin enhances drought tolerance in rice seedlings by modulating antioxidant systems, osmoregulation, and corresponding gene expression. International Journal of Molecular Sciences23, 12075.

Lynch J. 2018. Rightsizing root phenotypes for drought resistance. Journal of Experimental Botany69, 3279–3292.

Markesteijn L, Poorter L. 2009. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. Journal of Ecology97, 311–325.

Madebo M, Luo S, Wang L, Zheng Y, Jin P. 2021. Melatonin treatment induces chilling tolerance by regulating the contents of polyamine, γ-aminobutyric acid, and proline in cucumber fruit. Journal of Integrative Agriculture20, 3060–3074.

Meng J, Xu T, Wang Z, Fang Y, Xi Z, Zhang Z. 2014. The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress: Antioxidant metabolites, leaf anatomy, and chloroplast morphology. Journal of Pineal Research57, 200–212.

Mittler R. 2017. ROS are good. Trends in Plant Science22, 11–19.

Murch S, Campbell S, Saxena P. 2001. The role of serotonin and melatonin in plant morphogenesis: Regulation of auxin-induced root organogenesis in in vitro-cultured explants of st.John’s Wort (Hypericum perforatum L.). In Vitro Cellular & Developmental Biology-Plant37, 786–793.

Overvoorde P, Fukaki H, Beeckman T. 2010. Auxin control of root development. Cold Spring Harbor Perspectives in Biology2, a1537.

Papastylianou P, Argyrokastritis I. 2014. Effect of limited drip irrigation regime on yield, yield components, and fiber quality of cotton under Mediterranean conditions. Agricultural Water Management142, 127–134.

Park S, Back K. 2012. Melatonin promotes seminal root elongation and root growth in transgenic rice after germination. Journal of Pineal Research53, 385–389.

Pelagio-Flores R, Muñoz-Parra E, Ortiz-Castro R, López-Bucio J. 2012. Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling. Journal of Pineal Research53, 279–288.

Peng X, Li J, Sun L, Gao Y, Cao M, Luo J. 2022. Impacts of water deficit and post-drought irrigation on transpiration rate, root activity, and biomass yield of Festuca arundinacea during phytoextraction. Chemosphere294, 133842.

Qiao Y, Ren J, Yin L, Liu Y, Deng X, Liu P, Wang S. 2020. Exogenous melatonin alleviates PEG-induced short-term water deficiency in maize by increasing hydraulic conductance. BMC Plant Biology20, 1–14.

Raposo V, Costa V, Rodrigues A. 2023. A review of recent developments on drought characterization, propagation, and influential factors. Science of the Total Environment898, 165550.

Reddy A, Chaitanya K, Vivekanandan M. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology161, 1189–1202.

Ren J, Yang X, Ma C, Wang Y, Zhao J. 2021. Melatonin enhances drought stress tolerance in maize through coordinated regulation of carbon and nitrogen assimilation. Plant Physiology Biochemistry167, 958–969.

Sarropoulou V, Dimassi-Theriou K, Therios I, Koukourikou-Petridou M. 2012a. Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunus avium×Prunus cerasus). Plant Physiology and Biochemistry61, 162–168.

Sarropoulou V, Therios I, Dimassi-Theriou K. 2012b. Melatonin promotes adventitious root regeneration in in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB-6P (Prunus cerasus L.), Gisela 6 (Pcerasus×Pcanescens), and MxM 60 (Pavium×Pmahaleb). Journal of Pineal Research52, 38–46.

Seki M, Umezawa T, Urano K, Shinozaki K. 2007. Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology10, 296–302.

Sharma A, Zheng B. 2019. Melatonin mediated regulation of drought stress: Physiological and molecular aspects. Plants8, 190.

Shi R, Ye M, Liu Y, Wu Q, Abd-Allah E, Zhou N. 2023. Exogenous melatonin regulates physiological responses and active ingredient levels in polygonum cuspidatum under drought stress. Plants12, 2141.

Shreya S, Supriya L, Padmaja G. 2022. Melatonin induces drought tolerance by modulating lipoxygenase expression, redox homeostasis and photosynthetic efficiency in Arachis hypogaea L. Frontiers in Plant Science13, 1069143.

Sun C, Liu L, Wang L, Li B, Jin C, Lin X. 2021. Melatonin: A master regulator of plant development and stress responses. Journal of Integrative Plant Biology63, 126–145.

Tan D, Manchester L, Liu X, Rosales-Corral S, Acuna-Castroviejo D, Reiter R. 2013. Mitochondria and chloroplasts as the original sites of melatonin synthesis: A hypothesis related to melatonin’s primary function and evolution in eukaryotes. Journal of Pineal Research54, 127–138.

Tan D, Manchester L, Reiter R, Plummer B, Limson J, Weintraub S, Qi W. 2000. Melatonin directly scavenges hydrogen peroxide: A potentially new metabolic pathway of melatonin biotransformation. Free Radical Biology and Medicine29, 1177–1185.

Tiwari R, Lal M, Kumar R, Chourasia K, Naga K, Kumar D, Das S, Zinta G. 2021. Mechanistic insights on melatonin-mediated drought stress mitigation in plants. Physiologia Plantarum172, 1212–1226.

Tiwari R, Lal M, Naga K, Kumar R, Chourasia K, Subhash S, Kumar D, Sharma S. 2020. Emerging roles of melatonin in mitigating abiotic and biotic stresses of horticultural crops. Scientia Horticulturae272, 109592.

Turk H, Genisel M. 2020. Melatonin-related mitochondrial respiration responses are associated with growth promotion and cold tolerance in plants. Cryobiology92, 76–85.

Ullah A, Sun H, Yang X, Zhang X. 2017. Drought coping strategies in cotton: Increased crop per drop. Plant Biotechnology Journal15, 271–284.

Wang D, Hu X, Ye H, Wang Y, Yang Q, Liang X, Wang Z, Zhou Y, Wen M, Yuan X, Zheng X, Ye W, Guo B, Yusuyin M, Russinova E, Zhou Y, Wang K. 2023. Cell-specific clock-controlled gene expression program regulates rhythmic fiber cell growth in cotton. Genome Biology24, 1–28.

Wang K, Xing Q, Ahammed G, Zhou J. 2022. Functions and prospects of melatonin in plant growth, yield, and quality. Journal of Experimental Botany73, 5928–5946.

Wang P, Sun X, Li C, Wei Z, Liang D, Ma F. 2013. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. Journal of Pineal Research54, 292–302.

Wang P, Yin L, Liang D, Li C, Ma F, Yue Z. 2012. Delayed senescence of apple leaves by exogenous melatonin treatment: Toward regulating the ascorbate-glutathione cycle. Journal of Pineal Research53, 11–20.

Wang R, Ji S, Zhang P, Meng Y, Wang Y, Chen B, Zhou Z. 2016. Drought effects on cotton yield and fiber quality on different fruiting branches. Crop Science56, 1265–1276.

Wei W, Li Q, Chu Y, Reiter R, Yu X, Zhu D, Zhang W, Ma B, Lin Q, Zhang J, Chen S. 2015. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany66, 695–707.

Wen D, Gong B, Sun S, Liu S, Wang X, Wei M, Yang F, Li Y, Shi Q. 2016. Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling. Frontiers in Plant Science7, 718.

Woodward A, Bartel B. 2005. Auxin: Regulation, action, and interaction. Annals of Botany95, 707–735.

Xie Q, Frugis G, Colgan D, Chua N. 2000. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes & Development14, 3024–3036.

Xu Y, Zhang J, Wan Z, Huang S, Di H, He Y, Jin S. 2023. Physiological and transcriptome analyses provide new insights into the mechanism mediating the enhanced tolerance of melatonin-treated rhododendron plants to heat stress. Journal of Integrative Agriculture22, 2397–2411.

Yang K, Sun H, Liu M, Zhu L, Zhang K, Zhang Y, Li A, Zhang H, Zhu J, Liu X, Bai Z, Liu L, Li C. 2023. Morphological and physiological mechanisms of melatonin on delaying drought-induced leaf senescence in cotton. International Journal of Molecular Sciences24, 7269.

Yang L, You J, Li J, Wang Y, Chan Z. 2021. Melatonin promotes Arabidopsis primary root growth in an IAA-dependent manner. Journal of Experimental Botany72, 5599–5611.

El-Yazied A, Ibrahim M, Ibrahim M, Nasef I, Al-Qahtani S, Al-harbi N, Alzuaibr F, Alaklabi A, Dessoky E, Alabdallah N, Omar M, Ibrahim M, Metwally A, Hassan K, Shehata S. 2022. Melatonin mitigates drought induced oxidative stress in potato plants through modulation of osmolytes, sugar metabolism, ABA homeostasis and antioxidant enzymes. Plants11, 1151.

Ye F, Jiang M, Zhang P, Liu L, Liu S, Zhao C, Li X. 2022. Exogenous melatonin reprograms the rhizosphere microbial community to modulate the responses of barley to drought stress. International Journal of Molecular Sciences23, 9665.

Yu L, Wu S, Peng Y, Liu R, Chen X, Zhao P, Xu P, Zhu J, Jiao G, Pei Y, Xiang C. 2016. Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnology Journal14, 72–84.

Yue Y, Zhang M, Zhang J, Tian X, Duan L, Li Z. 2012. Overexpression of the ATLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. Journal of Experimental Botany63, 3741–3748.

Zhang H, Zhang N, Yang R, Wang L, Sun Q, Li D, Cao Y, Weeda S, Zhao B, Ren S, Guo Y. 2014. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). Journal of Pineal Research57, 269–279.

Zhang H, Zhang Y. 2014. Melatonin: A well-documented antioxidant with conditional pro-oxidant actions. Journal of Pineal Research57, 131–146.

Zhang J, Zhang S, Cheng M, Jiang H, Zhang X, Peng C, Lu X, Zhang M, Jin J. 2018. Effect of drought on agronomic traits of rice and wheat: A meta-analysis. International Journal of Environmental Research and Public Health15, 839.

Zhang N, Sun Q, Zhang H, Cao Y, Weeda S, Ren S, Guo Y. 2015. Roles of melatonin in abiotic stress resistance in plants. Journal of Pineal Research66, 647–656.

Zhang N, Zhang H, Zhao B, Sun Q, Cao Y, Li R, Wu X, Weeda S, Li L, Ren S, Reiter R, Guo Y. 2014. The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. Journal of Pineal Research56, 39–50.

Zhang N, Zhao B, Zhang H, Weeda S, Yang C, Yang Z, Ren S, Guo Y. 2013. Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). Journal of Pineal Research54, 15–23.

Zhang Y, Zhou X, Dong Y, Zhang F, He Q, Chen J, Zhu S, Zhao T. 2021. Seed priming with melatonin improves salt tolerance in cotton through regulating photosynthesis, scavenging reactive oxygen species and coordinating with phytohormone signal pathways. Industrial Crops and Products169, 113671.

Zhou X, Smaill S, Gu X, Clinton P. 2021. Manipulation of soil methane oxidation under drought stress. Science of the Total Environment757, 144089.

Zhu L, Li A, Sun H, Li P, Liu X, Guo C, Zhang Y, Zhang K, Bai Z, Dong H, Liu L, Li C. 2023. The effect of exogenous melatonin on root growth and lifespan and seed cotton yield under drought stress. Industrial Crops and Products204, 117344.

Zhu L, Liu L, Sun H, Zhang K, Zhang Y, Li A, Bai Z, Wang G, Liu X, Dong H, Li C. 2022. Low nitrogen supply inhibits root growth but prolongs lateral root lifespan in cotton. Industrial Crops and Products189, 115733.

Zhu L, Liu L, Sun H, Zhang Y, Zhu J, Zhang K, Li A, Bai Z, Wang G, Li C. 2021. Physiological and comparative transcriptomic analysis provide insight into cotton (Gossypium hirsutum L.) root senescence in response. Frontiers in Plant Science12, 748715.

Zou J, Yu H, Yu Q, Jin X, Cao L, Wang M, Wang M, Ren C, Zhang Y. 2021. Physiological and UPLC-MS/MS widely targeted metabolites mechanisms of alleviation of drought stress-induced soybean growth inhibition by melatonin. Industrial Crops and Products163, 113323.

[1] Congcong Guo, Hongchun Sun, Xiaoyuan Bao, Lingxiao Zhu, Yongjiang Zhang, Ke Zhang, Anchang Li, Zhiying Bai, Liantao Liu, Cundong Li. Increasing root-lower characteristics improves drought tolerance in cotton cultivars at the seedling stage[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2242-2254.
[2] Yang Cao, Peihua Du, Yuwei Shang, Jiahao Ji, Leiqing Tan, Xue Zhang, Jizhong Xu, Bowen Liang. Melatonin and dopamine alleviate waterlogging stress in apples by recruiting beneficial endophytes to enhance physiological resilience[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2270-2291.
[3] Yuting Liu, Hanjia Li, Yuan Chen, Tambel Leila. I. M., Zhenyu Liu, Shujuan Wu, Siqi Sun, Xiang Zhang, Dehua Chen.

Inhibition of protein degradation increases the Bt protein concentration in Bt cotton [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1897-1909.

[4] Yunze Wen, Peng He, Xiaohan Bai, Huizhi Zhang, Yunfeng Zhang, Jianing Yu.

Strigolactones modulate cotton fiber elongation and secondary cell wall thickening [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1850-1863.

[5] Changqin Yang, Xiaojing Wang, Jianan Li, Guowei Zhang, Hongmei Shu, Wei Hu, Huanyong Han, Ruixian Liu, Zichun Guo.

Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system [J]. >Journal of Integrative Agriculture, 2024, 23(2): 669-679.

[6] Wenwen Wang, Lei Chen, Yan Wu, Xin Guo, Jinming Yang, Dexin Liu, Xueying Liu, Kai Guo, Dajun Liu, Zhonghua Teng, Yuehua Xiao, Zhengsheng Zhang. Map-based cloning of qLPA01.1, a favorable allele from Gossypium tomentosum chromosome segment line[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3283-3293.
[7] Zhenyu Liu, Shu Dong, Yuting Liu, Hanjia Li, Fuqin Zhou, Junfeng Ding, Zixu Zhao, Yinglong Chen, Xiang Zhang, Yuan Chen, Dehua Chen. Optimizing the Bacillus thuringiensis (Bt) protein concentration in cotton: Coordinated application of exogenous amino acids and EDTA to reduce spatiotemporal variability in boll and leaf toxins[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3419-3436.
[8] Huaxiang Wu, Xiaohui Song, Muhammad Waqas-Amjid, Chuan Chen, Dayong Zhang, Wangzhen Guo. Mining elite loci and candidate genes for root morphology-related traits at the seedling stage by genome-wide association studies in upland cotton (Gossypium hirsutum L.) [J]. >Journal of Integrative Agriculture, 2024, 23(10): 3406-3418.
[9] Liang Ma, Tingli Hu, Meng Kang, Xiaokang Fu, Pengyun Chen, Fei Wei, Hongliang Jian, Xiaoyan Lü, Meng Zhang, Yonglin Yang. Identification of candidate genes for early-maturity traits by combining BSA-seq and QTL mapping in upland cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3472-3486.
[10] Qichao Chai, Meina Zheng, Yanli Li, Mingwei Gao, Yongcui Wang, Xiuli Wang, Chao Zhang, Hui Jiang, Ying Chen, Jiabao Wang, Junsheng Zhao. GhWRKY75 positively regulates GhPR6-5b via binding to a W-box TTGAC (C/T) to orchestrate cotton resistance to Verticillium dahliae [J]. >Journal of Integrative Agriculture, 2024, 23(10): 3343-3357.
[11] Jie Liu, Zhicheng Wang, Bin Chen, Guoning Wang, Huifeng Ke, Jin Zhang, Mengjia Jiao, Yan Wang, Meixia Xie, Yanbin Li, Dongmei Zhang, Xingyi Wang, Qishen Gu, Zhengwen Sun, Liqiang Wu, Xingfen Wang, Zhiying Ma, Yan Zhang. Expression analysis of the R2R3-MYB gene family in upland cotton and functional study of GhMYB3D5 in regulating Verticillium wilt resistance[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3294-3310.
[12] Caixiang Wang, Meili Li, Dingguo Zhang, Xueli Zhang, Juanjuan Liu, Junji Su. Knockdown of the atypical protein kinase genes GhABC1K2-A05 and GhABC1K12-A07 make cotton more sensitive to salt and PEG stress[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3370-3386.
[13] Zhili Chong, Yunxiao Wei, Kaili Li, Muhammad Aneeq Ur Rahman, Chengzhen Liang, Zhigang Meng, Yuan Wang, Sandui Guo, Liangrong He, Rui Zhang. GbLMI1 over-expression improves cotton aboveground vegetative growth[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3457-3467.
[14] Nurimanguli Aini, Yuanlong Wu, Zhenyuan Pan, Yizan Ma, Qiushuang An, Guangling Shui, Panxia Shao, Dingyi Yang, Hairong Lin, Binghui Tang, Xin Wei, Chunyuan You, Longfu Zhu, Dawei Zhang, Zhongxu Lin, Xinhui Nie. Cotton ethylene response factor GhERF91 is involved in the defense against Verticillium dahliae[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3328-3342.
[15] Hongge Li, Shurong Tang, Zhen Peng, Guoyong Fu, Yinhua Jia, Shoujun Wei, Baojun Chen, Muhammad Shahid Iqbal, Shoupu He, Xiongming Du. Genetic dissection and origin of pleiotropic loci underlying multi-level fiber quality traits in upland cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3250-3263.
No Suggested Reading articles found!