Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (10): 3283-3293    DOI: 10.1016/j.jia.2024.02.011
Section 1: Cotton functional genomics Advanced Online Publication | Current Issue | Archive | Adv Search |
Map-based cloning of qLPA01.1, a favorable allele from Gossypium tomentosum chromosome segment line
Wenwen Wang*, Lei Chen*, Yan Wu, Xin Guo, Jinming Yang, Dexin Liu, Xueying Liu, Kai Guo, Dajun Liu, Zhonghua Teng, Yuehua Xiao, Zhengsheng Zhang#

Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400716, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
棉花是世界上重要的天然纤维作物,在我们的日常生活中起着至关重要的作用。提高棉花产量一直是棉花育种的一个重要目标。衣分是决定棉花纤维产量的重要因素之一。在前期研究中,我们利用毛棉染色体片段代换系在A01染色体上初步定位到一个控制衣分的稳定QTL,qLPA01.1。为了精细定位qLPA01.1,本研究通过将毛棉染色体片段代换系HT_390与陆地棉栽培品种CCRI35杂交,建立了一个包含986个单株的F2群体。在QTL区域构建了一张包含47个位点、全长为56.98-cM的高密度遗传图谱,并将qLPA01.1定位到A01染色体上约80kb的区间内,该区间包含6个注释基因。结合转录组和序列分析结果表明, qLPA01.1的目标基因是硫-酰基转移酶蛋白24 (GoPAT24)。这些结果有助于通过标记辅助选择(MAS)提高棉纤维产量,同时也有利于棉花纤维发育机制的解析。


Abstract  

Cotton is an important natural fiber crop worldwide which plays a vital role in our daily life.  High yield is a constant goal of cotton breeding, and lint percentage (LP) is one of the important components of cotton fiber yield.  A stable QTL controlling LP, qLPA01.1, was identified on chromosome A01 from Gossypium hirsutum introgressed lines with Gtomentosum chromosome segments in a previous study.  To fine-map qLPA01.1, an F2 population with 986 individuals was established by crossing Ghirsutum cultivar CCRI35 with the chromosome segment substitution line HT_390.  A high-resolution genetic map including 47 loci and spanning 56.98 cM was constructed in the QTL region, and qLPA01.1 was ultimately mapped into an interval corresponding to an ~80 kb genome region of chromosome A01 in the reference genome, which contained six annotated genes.  Transcriptome data and sequence analysis revealed that S-acyltransferase protein 24 (GoPAT24) might be the target gene of qLPA01.1.  This result provides the basis for cotton fiber yield improvement via marker-assisted selection (MAS) and further studies on the mechanism of cotton fiber development.

Keywords:  cotton       lint percentage       fine-mapping       qLPA01.1       GoPAT24  
Received: 23 October 2023   Accepted: 18 December 2023
Fund: 
This work was supported by the National Natural Science Foundation of China (32172064 and 32201827).
About author:  Wenwen Wang, E-mail: www20216024@swu.edu.cn; #Correspondence Zhengsheng Zhang, Tel: +86-23-68250453, E-mail: zhangzs@swu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Wenwen Wang, Lei Chen, Yan Wu, Xin Guo, Jinming Yang, Dexin Liu, Xueying Liu, Kai Guo, Dajun Liu, Zhonghua Teng, Yuehua Xiao, Zhengsheng Zhang. 2024. Map-based cloning of qLPA01.1, a favorable allele from Gossypium tomentosum chromosome segment line. Journal of Integrative Agriculture, 23(10): 3283-3293.

Cao Z B, Zhu X F, Chen H, Zhang T Z. 2015. Fine mapping of clustered quantitative trait loci for fiber quality on chromosome 7 using a Gossypium barbadense introgressed line. Molecular Breeding35, 215.

Chang X Y, Guo C P, Pan Z Y, Wu Y L, Shen C, Chao L, Shui G L, You C Y, Xu J W, Lin Z X, Nie X H. 2023. QTL mapping for fiber quality based on introgression lines population from Ghirsutum×GtomentosumAgriculture13, 579.

Chen Z J, Scheffler B E, Dennis E, Triplett B A, Zhang T Z, Guo W Z, Chen X Y, Stelly D M, Rabinowicz P D, Town C D, Arioli T, Brubaker C, Cantrell R G, Lacape J M, Ulloa M, Chee P, Gingle A R, Haigler C H, Percy R, Saha S, et al. 2007. Toward sequencing cotton (Gossypium) genomes. Plant Physiology145, 1303–1310.

Chen Z J, Sreedasyam A, Ando A, Song Q X, De Santiago L M, Hulse-Kemp A M, Ding M Q, Ye W X, Kirkbride R C, Jenkins J, Plott C, Lovell J, Lin Y M, Vaughn R, Liu B, Simpson S, Scheffler B E, Wen L, Saski C A, Grover C E, et al. 2020. Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nature Genetics, 52, 525–533.

Fang X M, Liu X Y, Wang X Q, Wang W W, Liu D X, Zhang J, Liu D J, Teng Z H, Tan Z Y, Liu F, Zhang F J, Jiang M C, Jia X L, Zhong J W, Yang J H, Zhang Z S. 2017. Fine-mapping qFS07.1 controlling fiber strength in upland cotton (Gossypium hirsutum L.). Theoretical and Applied Genetics130, 795–806.

Feng L C, Zhou C H, Su Q, Xu M, Yue H R, Zhang S W, Zhou B L. 2020. Fine-mapping and candidate gene analysis of qFS-Chr. D02, a QTL for fibre strength introgressed from a semi-wild cotton into Gossypium hirsutumPlant Science297, 110524.

Grover C E, Gallagher J P, Jareczek J J, Page J T, Udall J A, Gore M A, Wendel J F. 2015. Re-evaluating the phylogeny of allopolyploid Gossypium L. Molecular Phylogenetics and Evolution92, 45–52.

Guo C P, Pan Z Y, You C Y, Zhou X F, Huang C, Shen C, Zhao R H, Yang Q Y, Zhu L F, Raheel S, Meng F D, Lin Z X, Nie X H. 2021. Association mapping and domestication analysis to dissect genetic improvement process of upland cotton yield-related traits in China. Journal of Cotton Research4, 10.

Haigler C H, Betancur L, Stiff M R, Tuttle J R. 2012. Cotton fiber: A powerful single-cell model for cell wall and cellulose research. Frontiers in Plant Science3, 104.

Hemsley P A, Kemp A C, Grierson C S. 2005. The TIP growth defectivel S-acyl transferase regulates plant cell growth in ArabidopsisPlant Cell17, 2554–2563.

Hu Y, Chen J D, Fang L, Zhang Z Y, Ma W, Niu Y C, Ju L Z, Deng J Q, Zhao T, Lian J M, Baruch K, Fang D, Liu X, Ruan Y L, Rahman M U, Han J L, Wang K, Wang Q, Wu H T, Mei G F, et al. 2019. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature Genetics51, 739–748.

Huang C, Nie X H, Shen C, You C Y, Li W, Zhao W X, Zhang X L, Lin Z X. 2017. Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs. Plant Biotechnology Journal15, 1374–1386.

Islam M S, Zeng L H, Thyssen G N, Delhom C D, Kim H J, Li P, Fang D D. 2016. Mapping by sequencing in cotton (Gossypium hirsutum) line MD52ne identified candidate genes for fiber strength and its related quality attributes. Theoretical and Applied Genetics129, 1071–1086.

Keerio A A, Shen C, Nie Y C, Ahmed M M, Zhang X L, Lin Z X. 2018. QTL mapping for fiber quality and yield traits based on introgression lines derived from Gossypium hirsutum× GtomentosumInternational Journal of Molecular Sciences19, 243.

Kosambi D D. 1943. The estimation of map distances from recombination values. Annals of Eugenics12, 172–175.

Kumar V, Singh B, Singh S K, Rai K M, Singh S P, Sable A, Pant P, Saxena G, Sawant S V. 2018. Role of GhHDA5 in H3K9 deacetylation and fiber initiation in Gossypium hirsutumPlant Journal95, 1069–1083.

Liu D X, Zhang J, Liu X Y, Wang W W, Liu D J, Teng Z H, Fang X M, Tan Z Y, Tang S Y, Yang J H, Zhong J W, Zhang Z S. 2016. Fine mapping and RNA-Seq unravels candidate genes for a major QTL controlling multiple fiber quality traits at the T1 region in upland cotton. BMC Genomics17, 295.

Liu X Y, Hou J, Chen L, Li Q Q, Fang X M, Wang J X, Hao Y S, Yang P, Wang W W, Zhang D S, Liu D X, Guo K, Teng Z H, Liu D J, Zhang Z S. 2022a. Natural variation of GhSI7 increases seed index in cotton. Theoretical and Applied Genetics135, 3661–3672.

Liu X Y, Yang L, Wang J X, Wang Y Q, Guo Z N, Li Q Q, Yang J M, Wu Y L, Chen L, Teng Z H, Liu D J, Liu D X, Guo K, Zhang Z S. 2022b. Analyzing quantitative trait loci for fiber quality and yield-related traits from a recombinant inbred line population with Gossypium hirsutum Race palmeri as one parent. Frontiers in Plant Science12, 817748.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods25, 402–408.

Ma Z Y, He S P, Wang X F, Sun J L, Zhang Y, Zhang G Y, Wu L Q, Li Z K, Liu Z H, Sun G F, Yan Y Y, Jia Y H, Yang J, Pan Z E, Gu Q S, Li X Y, Sun Z W, Dai P H, Liu Z W, Gong W F, et al. 2018. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nature Genetics50, 803–813.

Machado A, Wu Y R, Yang Y M, Llewellyn D J, Dennis E S. 2009. The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant Journal59, 52–62.

Pu L, Li Q, Fan X P, Yang W C, Xue Y B. 2008. The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development. Genetics180, 811–820.

Ryan E, Grierson C S, Cavell A, Steer M, Dolan L. 1998. TIP1 is required for both tip growth and non-tip growth in ArabidopsisNew Phytologist138, 49–58.

Said J I, Knapka J A, Song M Z, Zhang J F. 2015a. Cotton QTLdb: A cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and Ghirsutum×Gbarbadense populations. Molecular Genetics and Genomics290, 1615–1625.

Said J I, Song M Z, Wang H T, Lin Z X, Zhang X L, Fang D D, Zhang J F. 2015b. A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific Ghirsutum×Gbarbadense populations. Molecular Genetics and Genomics290, 1003–1025.

Stewart J M. 1975. Fiber initiation on the cotton ovule (Gossypium hirsutum). American Journal of Botany62, 723–730.

Stewart J M C D. 1995. Potential for crop improvement with exotic germplasm and genetic engineering. In: Constable G A, Forrester N W, eds., Challenging the Future: Proceedings of the World Cotton Research Conference. CSIRO Melbourne. pp. 313–327.

Su J J, Fan S L, Li L B, Wei H L, Wang C X, Wang H T, Song M Z, Zhang C, Gu L J, Zhao S Q, Mao G Z, Wang C S, Pang C Y, Yu S X. 2016. Detection of favorable QTL alleles and candidate genes for lint percentage by GWAS in Chinese upland cotton. Frontiers in Plant Science7, 1576.

Voorrips R E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity93, 77–78.

Walford S A, Wu Y R, Llewellyn D J, Dennis E S. 2011. GhMYB25-like: A key factor in early cotton fibre development. Plant Journal65, 785–797.

Wang H T, Jia X Y, Kang M, Li W, Fu X K, Ma L, Lu J H, Wei H L, Yu S X. 2021. QTL mapping and candidate gene identification of lint percentage based on a recombinant inbred line population of upland cotton. Euphytica217, 102.

Wang L, Ai N J, Zhang Z C, Zhou C H, Feng G L, Cai S, Wang N S, Feng L C, Chen Y, Xu M, Wang Y Y, Yue H R, Chen M F, Xing L S, Zhou B L. 2024. Development of Gossypium hirsutum-Gossypium raimondii introgression lines and its usages in QTL mapping of agricultural traits. Journal of Integrative Agriculture, doi: 10.1016/j.jia.2024.01.016

Wang M, Li C Q, Wang Q L. 2014. Quantitative trait loci mapping and genetic dissection for lint percentage in upland cotton (Gossypium hirsutum). Journal of Genetics93, 371–378.

Wang N N, Li Y, Chen Y H, Lu R, Zhou L, Wang Y, Zheng Y, Li X B. 2021. Phosphorylation of WRKY16 by MPK3-1 is essential for its transcriptional activity during fiber initiation and elongation in cotton (Gossypium hirsutum). Plant Cell33, 2736–2752.

Wen X P, Chen Z W, Yang Z R, Wang M J, Jin S X, Wang G D, Zhang L, Wang L J, Li J Y, Saeed S, He S P, Wang Z, Wang K, Kong Z S, Li F G, Zhang X L, Chen X Y, Zhu Y X. 2023. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. Science China (Life Sciences), 66, 2214–2256.

Wu H T, Tian Y, Wan Q, Fang L, Guan X Y, Chen J D, Hu Y, Ye W X, Zhang H, Guo W Z, Chen X Y, Zhang T Z. 2018. Genetics and evolution of MIXTA genes regulating cotton lint fiber development. New Phytologist217, 883–895.

Xia Z, Zhang X, Liu Y Y, Jia Z F, Zhao H H, Li C Q, Wang Q L. 2014. Major gene identification and quantitative trait locus mapping for yield-related traits in upland cotton (Gossypium hirsutum L.). Journal of Integrative Agriculture13, 299–309.

Xing K, Liu Z, Liu L, Zhang J, Qanmber G, Wang Y, Liu L S, Gu Y, Zhang C S, Li S J, Zhang Y, Yang Z R. 2023. N6-Methyladenosine mRNA modification regulates transcripts stability associated with cotton fiber elongation. The Plant Journal115, 967–985.

Yang Z Q, Wang J, Huang Y M, Wang S B, Wei L L, Liu D X, Weng Y L, Xiang J H, Zhu Q, Yang Z, Nie X H, Yu Y, Yang Z R, Yang Q Y. 2022. CottonMD: A multi-omics database for cotton biological study. Nucleic Acids Research51, 1446–1456.

Yu Y J, Wu S J, Nowak J, Wang G D, Han L B, Feng Z D, Mendrinna A, Ma Y P, Wang H, Zhang X X, Tian J, Dong L, Nikoloski Z, Persson S, Kong Z S. 2019. Live-cell imaging of the cytoskeleton in elongating cotton fibres. Nature Plants5, 498–504.

Zeng J Y, Zhang M, Hou L, Bai W Q, Yan X Y, Hou N, Wang H X, Huang J, Zhao J, Pei Y. 2019. Cytokinin inhibits cotton fiber initiation by disrupting PIN3a-mediated asymmetric accumulation of auxin in the ovule epidermis. Journal of Experimental Botany70, 3139–3151.

Zhang M, Zheng X L, Song S Q, Zeng Q W, Hou L, Li D M, Zhao J, Wei Y, Li X B, Luo M, Xiao Y H, Luo X Y, Zhang J F, Xiang C B, Pei Y. 2011. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nature Biotechnology29, 453–458.

Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B L, Liu C X, Wang S, Pan M Q, Wang Y K, Wang D W, Ye W X, Chang L J, et al. 2015. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology33, 531–537.

Zhang X M, Mi Y, Mao H D, Liu S X, Chen L M, Qin F. 2020. Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize. Plant Biotechnology Journal18, 1271–1283.

Zhang Z S, Rong J K, Waghmare V N, Chee P W, May O L, Wright R J, Gannaway J R, Paterson A H. 2011. QTL alleles for improved fiber quality from a wild Hawaiian cotton, Gossypium tomentosumTheoretical and Applied Genetics123, 1075–1088.

Zhang Z S, Xiao Y H, Luo M, Li X B, Luo X Y, Hou L, Li D M, Pei Y. 2005. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica144, 91–99.

Zhao N, Wang W R, Grover C E, Jiang K Y, Pan Z X, Guo B S, Zhu J H, Su Y, Wang M, Nie H S, Xiao L, Guo A H, Yang J, Cheng C, Ning X M, Li B, Xu H J, Adjibolosoo D I, Aierxi A, Li P B, et al. 2022. Genomic and GWAS analyses demonstrate phylogenomic relationships of Gossypium barbadense in China and selection for fibre length, lint percentage and Fusarium wilt resistance. Plant Biotechnology Journal20, 691–710.

Zhu G Z, Gao W W, Song X H, Sun F L, Hou S, Liu N, Huang Y J, Zhang D Y, Ni Z Y, Chen Q J, Guo W Z. 2020. Genome-wide association reveals genetic variation of lint yield components under salty field conditions in cotton (Gossypium hirsutum L.). BMC Plant Biology20, 23.

[1] Congcong Guo, Hongchun Sun, Xiaoyuan Bao, Lingxiao Zhu, Yongjiang Zhang, Ke Zhang, Anchang Li, Zhiying Bai, Liantao Liu, Cundong Li. Increasing root-lower characteristics improves drought tolerance in cotton cultivars at the seedling stage[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2242-2254.
[2] Yuting Liu, Hanjia Li, Yuan Chen, Tambel Leila. I. M., Zhenyu Liu, Shujuan Wu, Siqi Sun, Xiang Zhang, Dehua Chen.

Inhibition of protein degradation increases the Bt protein concentration in Bt cotton [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1897-1909.

[3] Yunze Wen, Peng He, Xiaohan Bai, Huizhi Zhang, Yunfeng Zhang, Jianing Yu.

Strigolactones modulate cotton fiber elongation and secondary cell wall thickening [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1850-1863.

[4] Changqin Yang, Xiaojing Wang, Jianan Li, Guowei Zhang, Hongmei Shu, Wei Hu, Huanyong Han, Ruixian Liu, Zichun Guo.

Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system [J]. >Journal of Integrative Agriculture, 2024, 23(2): 669-679.

[5] Zhili Chong, Yunxiao Wei, Kaili Li, Muhammad Aneeq Ur Rahman, Chengzhen Liang, Zhigang Meng, Yuan Wang, Sandui Guo, Liangrong He, Rui Zhang. GbLMI1 over-expression improves cotton aboveground vegetative growth[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3457-3467.
[6] Nurimanguli Aini, Yuanlong Wu, Zhenyuan Pan, Yizan Ma, Qiushuang An, Guangling Shui, Panxia Shao, Dingyi Yang, Hairong Lin, Binghui Tang, Xin Wei, Chunyuan You, Longfu Zhu, Dawei Zhang, Zhongxu Lin, Xinhui Nie. Cotton ethylene response factor GhERF91 is involved in the defense against Verticillium dahliae[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3328-3342.
[7] Hongge Li, Shurong Tang, Zhen Peng, Guoyong Fu, Yinhua Jia, Shoujun Wei, Baojun Chen, Muhammad Shahid Iqbal, Shoupu He, Xiongming Du. Genetic dissection and origin of pleiotropic loci underlying multi-level fiber quality traits in upland cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3250-3263.
[8] Qingdi Yan, Wei Hu, Chenxu Gao, Lan Yang, Jiaxian Yang, Renju Liu, Masum Billah, Yongjun Lin, Ji Liu, Pengfei Miao, Zhaoen Yang, Fuguang Li, Wenqiang Qin. EPSPS regulates cell elongation by disrupting the balance of lignin and flavonoid biosynthesis in cotton[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3437-3456.
[9] Zhenyu Liu, Shu Dong, Yuting Liu, Hanjia Li, Fuqin Zhou, Junfeng Ding, Zixu Zhao, Yinglong Chen, Xiang Zhang, Yuan Chen, Dehua Chen. Optimizing the Bacillus thuringiensis (Bt) protein concentration in cotton: Coordinated application of exogenous amino acids and EDTA to reduce spatiotemporal variability in boll and leaf toxins[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3419-3436.
[10] Huaxiang Wu, Xiaohui Song, Muhammad Waqas-Amjid, Chuan Chen, Dayong Zhang, Wangzhen Guo. Mining elite loci and candidate genes for root morphology-related traits at the seedling stage by genome-wide association studies in upland cotton (Gossypium hirsutum L.) [J]. >Journal of Integrative Agriculture, 2024, 23(10): 3406-3418.
[11] Lingxiao Zhu, Hongchun Sun, Ranran Wang, Congcong Guo, Liantao Liu, Yongjiang Zhang, Ke Zhang, Zhiying Bai, Anchang Li, Jiehua Zhu, Cundong Li. Exogenous melatonin improves cotton yield under drought stress by enhancing root development and reducing root damage[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3387-3405.
[12] Liang Ma, Tingli Hu, Meng Kang, Xiaokang Fu, Pengyun Chen, Fei Wei, Hongliang Jian, Xiaoyan Lü, Meng Zhang, Yonglin Yang. Identification of candidate genes for early-maturity traits by combining BSA-seq and QTL mapping in upland cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3472-3486.
[13] Qichao Chai, Meina Zheng, Yanli Li, Mingwei Gao, Yongcui Wang, Xiuli Wang, Chao Zhang, Hui Jiang, Ying Chen, Jiabao Wang, Junsheng Zhao. GhWRKY75 positively regulates GhPR6-5b via binding to a W-box TTGAC (C/T) to orchestrate cotton resistance to Verticillium dahliae [J]. >Journal of Integrative Agriculture, 2024, 23(10): 3343-3357.
[14] Jie Liu, Zhicheng Wang, Bin Chen, Guoning Wang, Huifeng Ke, Jin Zhang, Mengjia Jiao, Yan Wang, Meixia Xie, Yanbin Li, Dongmei Zhang, Xingyi Wang, Qishen Gu, Zhengwen Sun, Liqiang Wu, Xingfen Wang, Zhiying Ma, Yan Zhang. Expression analysis of the R2R3-MYB gene family in upland cotton and functional study of GhMYB3D5 in regulating Verticillium wilt resistance[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3294-3310.
[15] Caixiang Wang, Meili Li, Dingguo Zhang, Xueli Zhang, Juanjuan Liu, Junji Su. Knockdown of the atypical protein kinase genes GhABC1K2-A05 and GhABC1K12-A07 make cotton more sensitive to salt and PEG stress[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3370-3386.
No Suggested Reading articles found!