|
|
|
A tomato NBS-LRR gene Mi-9 confers heat-stable resistance to root-knot nematodes |
Shudong Chen1, 2, 3*, Yupan Zou1, 3*, Xin Tong1, 2, 3, Cao Xu1, 3#
|
1 Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
|
Highlights
● Identify a heat-stable and agriculturally applicable resistance gene against root-knot nematodes.
● Establish an approach for rapid characterization of complex resistance genes by integrating comparative genomics and genome editing.
|
|
|
|
摘要
根结线虫(RKNs)是土壤传播最为广泛的植物内寄生虫。它们会感染众多作物的根部,造成严重的产量损失。在番茄中,唯一商业化的抗根结线虫基因Mi-1.2在土壤温度超过28°C时失效。我们从秘鲁番茄小种LA2157中克隆了热稳定的抗根结线虫基因Mi-9,该基因存在于一段由七个NBS-LRR抗性基因组成的基因簇中。通过单独和组合敲除多个候选基因,我们发现单个候选基因Mi-9 Candidate-4 (MiC-4)就足以产生热稳定RKN抗性。我们的研究为番茄在极端高温频发的种植环境下获得热稳定根结线虫抗性找到了新的基因资源。我们还绘制了通过结合比较基因组学和基因组编辑手段快速鉴定抗性基因的路线图,或可用于多种作物遗传改良。
Abstract
Root-knot nematodes (RKNs) are the most widespread soil-borne obligate endoparasites. They can infect the roots of many crops and cause significant yield losses. The only commercially available RKN-resistant gene in tomatoes, Mi-1.2, fails at soil temperatures above 28°C. We cloned the heat-stable RKN-resistant gene, Mi-9, from a gene cluster composed of seven nucleotide-binding sites and leucine-rich repeat (NBS-LRR) type resistant genes in Solanum arcunum accession LA2157. Screening nematode infections in individual and combinatorial knockouts of five NBS-LRR genes showed that Mi-9 Candidate 4 (MiC-4) alone is sufficient to confer heat-stable RKN resistance. Our study identifies a new source of heat-stable resistance to RKN in tomatoes for challenging environmental conditions. We also showcase a roadmap for rapid characterization of resistance genes by combining comparative genomics and genome editing, with the potential to be utilized in other crops.
|
Received: 18 February 2024
Online: 18 July 2024
Accepted: 11 June 2024
|
Fund: This work was supported by the National Key R&D Program of China (2018YFA0900600 and 2021YFF1000103-5), and the Strategic Priority Research Program of Chinese Academy of Sciences (XDA24030503). |
About author: #Correspondence Cao Xu, E-mail: caoxu@genetics.ac.cn
* These authors contributed equally to this study. |
Cite this article:
Shudong Chen, Yupan Zou, Xin Tong, Cao Xu.
2025.
A tomato NBS-LRR gene Mi-9 confers heat-stable resistance to root-knot nematodes. Journal of Integrative Agriculture, 24(7): 2869-2875.
|
Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S, Sedlazeck F J, Lippman Z B, Schatz M C. 2019. RaGOO: Fast and accurate reference-guided scaffolding of draft genomes. Genome Biology, 20, 224.
Brooks C, Nekrasov V, Lippman Z B, Van Eck J. 2014. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiology, 166, 1292–1297.
Cermak T, Curtin S J, Gil-Humanes J, Cegan R, Kono T J Y, Konecna E, Belanto J J, Starker C G, Mathre J W, Greenstein R L, Voytas D F. 2017. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell, 29, 1196–1217.
Du H, Liang C. 2019. Assembly of chromosome-scale contigs by efficiently resolving repetitive sequences with long reads. Nature Communications, 10, 5360.
Fuller V L, Lilley C J, Urwin P E. 2008. Nematode resistance. New Phytologist, 180, 27–44.
Jablonska B, Ammiraju J S, Bhattarai K K, Mantelin S, Martinez de Ilarduya O, Roberts P A, Kaloshian I. 2007. The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1. Plant Physiology, 143, 1044–1054.
Jiang L, Ling J, Zhao J, Yang Y, Yang Y, Li Y, Jiao Y, Mao Z, Wang Y, Xie B. 2023. Chromosome-scale genome assembly-assisted identification of Mi-9 gene in Solanum arcanum accession LA2157, conferring heat-stable resistance to Meloidogyne incognita. Plant Biotechnology Journal, 21, 1496–1509
Koren S, Walenz B P, Berlin K, Miller J R, Bergman N H, Phillippy A M. 2017. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research, 27, 722–736.
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A. 2009. Circos: An information aesthetic for comparative genomics. Genome Research, 19, 1639–1645.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.
Li N, He Q, Wang J, Wang B, Zhao J, Huang S, Yang T, Tang Y, Yang S, Aisimutuola P, Xu R, Hu J, Jia C, Ma K, Li Z, Jiang F, Gao J, Lan H, Zhou Y, Zhang X, et al. 2023. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nature Genetics, 55, 852–860.
Lilley C J, Maqbool A, Wu D, Yusup H B, Jones L M, Birch P R J, Banfield M J, Urwin P E, Eves-van den Akker S. 2018. Effector gene birth in plant parasitic nematodes: Neofunctionalization of a housekeeping glutathione synthetase gene. PLOS Genetics, 14, e1007310.
Marcais G, Delcher A L, Phillippy A M, Coston R, Salzberg S L, Zimin A. 2018. MUMmer4: A fast and versatile genome alignment system. PLOS Computational Biology, 14, e1005944.
McGinnis S, Madden T L. 2004. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research, 32, W20–W25.
van Ooijen G, Mayr G, Albrecht M, Cornelissen B J, Takken F L. 2008. Transcomplementation, but not physical association of the CC-NB-ARC and LRR domains of tomato R protein Mi-1.2 is altered by mutations in the ARC2 subdomain. Molecular Plant, 1, 401–410.
Veremis J C, Roberts P A. 1996. Identification of resistance to Meloidogyne javanica in the Lycopersicon peruvianum complex. Theoretical and Applied Genetics, 93, 894–901.
Waszczak C, Carmody M, Kangasjarvi J. 2018. Reactive oxygen species in plant signaling. The Annual Review of Plant Biology, 69, 209–236.
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|