Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (7): 2869-2875    DOI: 10.1016/j.jia.2024.07.017
Short Communication Advanced Online Publication | Current Issue | Archive | Adv Search |
A tomato NBS-LRR gene Mi-9 confers heat-stable resistance to root-knot nematodes

Shudong Chen1, 2, 3*, Yupan Zou1, 3*, Xin Tong1, 2, 3, Cao Xu1, 3#

1 Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China

2 University of Chinese Academy of Sciences, Beijing 100049, China

3 CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China

 Highlights 
Identify a heat-stable and agriculturally applicable resistance gene against root-knot nematodes.
Establish an approach for rapid characterization of complex resistance genes by integrating comparative genomics and genome editing.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

根结线虫(RKNs)是土壤传播最为广泛的植物内寄生虫。它们会感染多作物的根部,造成严重的产量损失。在番茄中,唯一商业化的抗根结线虫基因Mi-1.2在土壤温度超过28°C时失效。我们从秘鲁番茄小种LA2157中克隆了热稳定的抗根结线虫基因Mi-9,该基因存在于一段由七个NBS-LRR抗性基因组成的基因簇中。通过单独和组合敲除多个候选基因,我们发现单个候选基因Mi-9 Candidate-4 (MiC-4)就足以产生热稳定RKN抗性。我们的研究为番茄在极端高温频发的种植环境下获得热稳定根结线虫抗性找到了新的基因资源。我们还绘制了通过结合比较基因组学和基因组编辑手段快速鉴定抗性基因的路线图,或可用于多种作物遗传改良。



Abstract  


Root-knot nematodes (RKNs) are the most widespread soil-borne obligate endoparasites.  They can infect the roots of many crops and cause significant yield losses.  The only commercially available RKN-resistant gene in tomatoes, Mi-1.2, fails at soil temperatures above 28°C.  We cloned the heat-stable RKN-resistant gene, Mi-9, from a gene cluster composed of seven nucleotide-binding sites and leucine-rich repeat (NBS-LRR) type resistant genes in Solanum arcunum accession LA2157.  Screening nematode infections in individual and combinatorial knockouts of five NBS-LRR genes showed that Mi-9 Candidate 4 (MiC-4) alone is sufficient to confer heat-stable RKN resistance.  Our study identifies a new source of heat-stable resistance to RKN in tomatoes for challenging environmental conditions.  We also showcase a roadmap for rapid characterization of resistance genes by combining comparative genomics and genome editing, with the potential to be utilized in other crops.


Keywords:  tomato       nematode        heat-stable resistance        Mi-9        genome editing  
Received: 18 February 2024   Online: 18 July 2024   Accepted: 11 June 2024
Fund: This work was supported by the National Key R&D Program of China (2018YFA0900600 and 2021YFF1000103-5), and the Strategic Priority Research Program of Chinese Academy of Sciences (XDA24030503). 
About author:  #Correspondence Cao Xu, E-mail: caoxu@genetics.ac.cn * These authors contributed equally to this study.

Cite this article: 

Shudong Chen, Yupan Zou, Xin Tong, Cao Xu. 2025. A tomato NBS-LRR gene Mi-9 confers heat-stable resistance to root-knot nematodes. Journal of Integrative Agriculture, 24(7): 2869-2875.

Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S, Sedlazeck F J, Lippman Z B, Schatz M C. 2019. RaGOO: Fast and accurate reference-guided scaffolding of draft genomes. Genome Biology20, 224.

Brooks C, Nekrasov V, Lippman Z B, Van Eck J. 2014. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiology166, 1292–1297.

Cermak T, Curtin S J, Gil-Humanes J, Cegan R, Kono T J Y, Konecna E, Belanto J J, Starker C G, Mathre J W, Greenstein R L, Voytas D F. 2017. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell29, 1196–1217.

Du H, Liang C. 2019. Assembly of chromosome-scale contigs by efficiently resolving repetitive sequences with long reads. Nature Communications10, 5360.

Fuller V L, Lilley C J, Urwin P E. 2008. Nematode resistance. New Phytologist180, 27–44.

Jablonska B, Ammiraju J S, Bhattarai K K, Mantelin S, Martinez de Ilarduya O, Roberts P A, Kaloshian I. 2007. The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1Plant Physiology143, 1044–1054.

Jiang L, Ling J, Zhao J, Yang Y, Yang Y, Li Y, Jiao Y, Mao Z, Wang Y, Xie B. 2023. Chromosome-scale genome assembly-assisted identification of Mi-9 gene in Solanum arcanum accession LA2157, conferring heat-stable resistance to Meloidogyne incognitaPlant Biotechnology Journal21, 1496–1509

Koren S, Walenz B P, Berlin K, Miller J R, Bergman N H, Phillippy A M. 2017. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research27, 722–736.

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A. 2009. Circos: An information aesthetic for comparative genomics. Genome Research19, 1639–1645.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution33, 1870–1874.

Li N, He Q, Wang J, Wang B, Zhao J, Huang S, Yang T, Tang Y, Yang S, Aisimutuola P, Xu R, Hu J, Jia C, Ma K, Li Z, Jiang F, Gao J, Lan H, Zhou Y, Zhang X, et al. 2023. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nature Genetics55, 852–860.

Lilley C J, Maqbool A, Wu D, Yusup H B, Jones L M, Birch P R J, Banfield M J, Urwin P E, Eves-van den Akker S. 2018. Effector gene birth in plant parasitic nematodes: Neofunctionalization of a housekeeping glutathione synthetase gene. PLOS Genetics14, e1007310.

Marcais G, Delcher A L, Phillippy A M, Coston R, Salzberg S L, Zimin A. 2018. MUMmer4: A fast and versatile genome alignment system. PLOS Computational Biology14, e1005944.

McGinnis S, Madden T L. 2004. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research32, W20–W25.

van Ooijen G, Mayr G, Albrecht M, Cornelissen B J, Takken F L. 2008. Transcomplementation, but not physical association of the CC-NB-ARC and LRR domains of tomato R protein Mi-1.2 is altered by mutations in the ARC2 subdomain. Molecular Plant1, 401–410.

Veremis J C, Roberts P A. 1996. Identification of resistance to Meloidogyne javanica in the Lycopersicon peruvianum complex. Theoretical and Applied Genetics93, 894–901.

Waszczak C, Carmody M, Kangasjarvi J. 2018. Reactive oxygen species in plant signaling. The Annual Review of Plant Biology69, 209–236.

[1] Jiaying Ma, Jian Liu, Yue Wen, Zhanli Ma, Jinzhu Zhang, Feihu Yin, Tehseen Javed, Jihong Zhang, Zhenhua Wang. Enhancing the yield and water use efficiency of processing tomatoes (Lycopersicon esculentum Miller) through optimal irrigation and salinity management under mulched drip irrigation[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2410-2424.
[2] Xuemei Hou, Meimei Shi, Zhuohui Zhang, Yandong Yao, Yihua Li, Changxia Li, Wenjin Yu, Chunlei Wang, Weibiao Liao. DNA demethylation is involved in nitric oxide-induced flowering in tomato[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1769-1785.
[3] Ru Bao, Tianli Guo, Zehua Yang, Chengyu Feng, Junyao Wu, Xiaomin Fu, Liu Hu, Changhai Liu, Fengwang Ma. Overexpression of the apple m6A demethylase gene MdALKBH1A regulates resistance to heat stress and fixed-carbon starvation[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1489-1502.
[4] Long Cui, Fangyan Zheng, Chenhui Zhang, Sunan Gao, Jie Ye, Yuyang Zhang, Taotao Wang, Zonglie Hong, Zhibiao Ye, Junhong Zhang. The CONSTANS-LIKE SlCOL1 in tomato regulates the fruit chlorophyll content by stabilizing the GOLDEN2-LIKE protein[J]. >Journal of Integrative Agriculture, 2025, 24(2): 536-545.
[5] Peiyu Zhang, Guoning Zhu, Chunjiao Zhang, Hongliang Zhu. Functional analysis of tomato MAP65 gene family, highlighting SlMAP65-1’s role in fruit morphogenesis[J]. >Journal of Integrative Agriculture, 2025, 24(2): 564-574.
[6] Sihua Yang, Junyi Li, Shuai Yang, Shiqiao Tang, Huizhong Wang, Chunling Xu, Hui Xie.

A chorismate mutase from Radopholus similis plays an essential role in pathogenicity [J]. >Journal of Integrative Agriculture, 2024, 23(3): 923-937.

[7] Ping’an Zhang, Mo Li, Qiang Fu, Vijay P. Singh, Changzheng Du, Dong Liu, Tianxiao Li, Aizheng Yang.

Dynamic regulation of the irrigation–nitrogen–biochar nexus for the synergy of yield, quality, carbon emission and resource use efficiency in tomato [J]. >Journal of Integrative Agriculture, 2024, 23(2): 680-697.

[8] Min Xu, Zhao Gao, Dalong Li, Chen Zhang, Yuqi Zhang, Qian He, Yingbin Qi, He Zhang, Jingbin Jiang, Xiangyang Xu, Tingting Zhao.

Functional prediction of tomato PLATZ family members and functional verification of SlPLATZ17 [J]. >Journal of Integrative Agriculture, 2024, 23(1): 141-154.

[9] DU Dan, HU Xin, SONG Xiao-mei, XIA Xiao-jiao, SUN Zhen-yu, LANG Min, PAN Yang-lu, ZHENG Yu, PAN Yu. SlTPP4 participates in ABA-mediated salt tolerance by enhancing root architecture in tomato[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2384-2396.
[10] Roberta SPANÒ, Mariarosaria MASTROCHIRICO, Francesco LONGOBARDI, Salvatore CERVELLIERI, Vincenzo LIPPOLIS, Tiziana MASCIA. Characterization of volatile organic compounds in grafted tomato plants upon potyvirus necrotic infection[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2426-2440.
[11] TU Ke-ling, YIN Yu-lin, YANG Li-ming, WANG Jian-hua, SUN Qun. Discrimination of individual seed viability by using the oxygen consumption technique and headspace-gas chromatography-ion mobility spectrometry[J]. >Journal of Integrative Agriculture, 2023, 22(3): 727-737.
[12] ZHANG Yu-hong, LI Zhi-xin, DU Ya-jie, LI Shi-fang, ZHANG Zhi-xiang. A universal probe for simultaneous detection of six pospiviroids and natural infection of potato spindle tuber viroid (PSTVd) in tomato in China[J]. >Journal of Integrative Agriculture, 2023, 22(3): 790-798.
[13] FENG Xu-yu, PU Jing-xuan, LIU Hai-jun, WANG Dan, LIU Yu-hang, QIAO Shu-ting, LEI Tao, LIU Rong-hao. Effect of fertigation frequency on soil nitrogen distribution and tomato yield under alternate partial root-zone drip irrigation[J]. >Journal of Integrative Agriculture, 2023, 22(3): 897-907.
[14] LIN Hao-wei, WU Zhen, ZHOU Rong, CHEN Bin, ZHONG Zhao-jiang, JIANG Fang-ling.

SlGH9-15 regulates tomato fruit cracking with hormonal and abiotic stress responsiveness cis-elements [J]. >Journal of Integrative Agriculture, 2023, 22(2): 447-463.

[15] Jelli VENKATESH, Sung Jin KIM, Muhammad Irfan SIDDIQUE, Ju Hyeon KIM, Si Hyeock LEE, Byoung-Cheorl KANG. CopE and TLR6 RNAi-mediated tomato resistance to western flower thrips[J]. >Journal of Integrative Agriculture, 2023, 22(2): 471-480.
No Suggested Reading articles found!