Bourdenx B, Bernard A, Domergue F, Pascal S, Léger A, Roby D, Pervent M, Vile D, Haslam R P, Napier J A, Lessire R, Joubès J. 2011. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiology, 156, 29–45.
Bukowski R, Guo X S, Lu Y L, Zou C, He B, Rong Z Q, Wang B, Xu D W, Yang B C, Xie C X, Fan L J, Gao S B, Xu X, Zhang G Y, Li Y R, Jiao Y P, Doebley J F, Ross-Ibarra J, Lorant A, Buffalo V, et al. 2018. Construction of the third-generation Zea mays haplotype map. Gigascience, 7, 1–12.
Chakraborty P, Biswas A, Dey S, Bhattacharjee T, Chakrabarty S. 2023. Cytochrome P450 gene families: Role in plant secondary metabolites production and plant defense. Journal of Xenobiotics, 13, 402–423.
Chaumont F, Barrieu F, Wojcik E, Chrispeels M J, Jung R. 2001. Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiology, 125, 1206–1215.
Du Q L, Fang Y P, Jiang J M, Chen M Q, Li X Y, Xie X. 2022. Genome-wide identification and characterization of the JAZ gene family and its expression patterns under various abiotic stresses in Sorghum bicolor. Journal of Integrative Agriculture, 21, 3540–3555.
Fu J J, Cheng Y B, Linghu J J, Yang X H, Kang L, Zhang Z X, Zhang J, He C, Du X M, Peng Z Y, Wang B, Zhai L H, Dai C M, Xu J B, Wang W D, Li X R, Zheng J, Chen L, Luo L H, Liu J J, et al. 2013. RNA sequencing reveals the complex regulatory network in the maize kernel. Nature Communications, 4, 2832.
Gao Y, Ren H J, Wang R Y, Cheng D Y, Song Y L, Wen X, Zhang Z, Chang J Z. 2024. Genome-wide identification of height-related genes using three maize dwarfs and RNA-seq. Agronomy, 14, 1598.
Hagen G, Guilfoyle T. 2002. Auxin-responsive gene expression: Genes, promoters and regulatory factors. Plant Molecular Biology, 49, 373–385.
Huang H D, Wang Y, Yang P F, Zhao H Y, Jenks M A, Lü S Y, Yang X P. 2024. The Arabidopsis cytochrome P450 enzyme CYP96A4 is involved in the wound-induced biosynthesis of cuticular wax and cutin monomers. The Plant Journal, 118, 1619–1634.
Hufford M B, Seetharam A S, Woodhouse M R, Chougule K M, Ou S J, Liu J N, Ricci W A, Guo T T, Olson A, Qiu Y J, Della Coletta R, Tittes S, Hudson A I, Marand A P, Wei S, Lu Z Y, Wang B, Tello-Ruiz M K, Piri R D, Wang N, et al. 2021. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science, 373, 655–662.
Huot B, Yao J, Montgomery B L, He S Y. 2014. Growth-defense tradeoffs in plants: A balancing act to optimize fitness. Molecular Plant, 7, 1267–1287.
Jiang Y, Su S Z, Chen H, Li S P, Shan X H, Li H, Liu H K, Dong H X, Yuan Y P. 2023. Transcriptome analysis of drought-responsive and drought-tolerant mechanisms in maize leaves under drought stress. Physiologia Plantarum, 175, e13875.
Li H, Peng Z Y, Yang X H, Wang W D, Fu J J, Wang J H, Han Y J, Chai Y C, Guo T T, Yang N, Liu J, Warburton M L, Cheng Y B, Hao X M, Zhang P, Zhao J Y, Liu Y J, Wang G Y, Li J S, Yan J B. 2013. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 45, 43–50.
Li H F, Liu H, Hao C Y, Li T, Liu Y C, Wang X L, Yang Y X, Zheng J, Zhang X Y. 2023. The auxin response factor TaARF15-A1 negatively regulates senescence in common wheat (Triticum aestivum L.). Plant Physiology, 191, 1254–1271.
Ma C R, Li R Y, Sun Y, Zhang M, Li S, Xu Y X, Song J, Li J, Qi J F, Wang L, Wu J Q. 2023. ZmMYC2s play important roles in maize responses to simulated herbivory and jasmonate. Journal of Integrative Plant Biology, 65, 1041–1058.
Major I T, Guo Q, Zhai J, Kapali G, Kramer D M, Howe G A. 2020. A phytochrome B-independent pathway restricts growth at high levels of jasmonate defense. Plant Physiology, 183, 733–749.
Salmon J, Ramos J, Callis J. 2008. Degradation of the auxin response factor ARF1. The Plant Journal, 54, 118–128.
Sun C R, Liu Y, Li G F, Chen Y L, Li M Y, Yang R H, Qin Y T, Chen Y Q, Cheng J P, Tang J H, Fu Z Y. 2024. ZmCYP90D1 regulates maize internode development by modulating brassinosteroid-mediated cell division and growth. The Crop Journal, 12, 58–67.
Tian J G, Wang C L, Xia J L, Wu L S, Xu G H, Wu W H, Li D, Qin W C, Han X, Chen Q Y, Jin W W, Tian F. 2019. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science, 365, 658–664.
Wang B B, Lin Z C, Li X, Zhao Y P, Zhao B B, Wu G X, Ma X J, Wang H, Xie Y R, Li Q Q, Song G S, Kong D X, Zheng Z G, Wei H B, Shen R X, Wu H, Chen C X, Meng Z D, Wang T Y, Li Y, et al. 2020. Genome-wide selection and genetic improvement during modern maize breeding. Nature Genetics, 52, 565–571.
Zhang Q, Liu H, Wu X, Wang W. 2020. Identification of drought tolerant mechanisms in a drought-tolerant maize mutant based on physiological, biochemical and transcriptomic analyses. BMC Plant Biology, 20, 315.
Zhang X B, Lei L, Lai J S, Zhao H M, Song W B. 2018. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biology, 18, 68.
Zhao Y, Liu Q Z, Wang X R, Zhang W X, Xu W, Zhang Y Z, Liu B S. 2024. ZmCER1, a putative ECERIFERUM 1 protein in maize, functions in cuticular wax biosynthesis and bulliform cell development. The Crop Journal, 12, 743–752.
Zhu J M, Li S Z, Jiang H Y, Lv D, Ma S, Wang B B, Lu X Y, Yang W Z, Chen R M, Zhou X J. 2023. Protoplast transient expression-based RNA-sequencing: A simple method to screen transcriptional regulation in plants. Plant Physiology, 194, 408–411.
|