Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (10): 3343-3357    DOI: 10.1016/j.jia.2024.05.017
Section 1: Cotton functional genomics Advanced Online Publication | Current Issue | Archive | Adv Search |
GhWRKY75 positively regulates GhPR6-5b via binding to a W-box TTGAC (C/T) to orchestrate cotton resistance to Verticillium dahliae 
Qichao Chai1, Meina Zheng1, 2, Yanli Li1, Mingwei Gao1, Yongcui Wang1, Xiuli Wang1, Chao Zhang1, Hui Jiang1, Ying Chen1, Jiabao Wang1, Junsheng Zhao1, 2# 
Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China 
2 College of Life Sciences, Shandong Normal University, Jinan 250014, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
黄萎病是棉花生产中的主要真菌病害,严重影响了棉花产量和品质,因此挖掘棉花黄萎病抗性关键基因具有重要的理论意义和生产应用价值。蛋白酶和蛋白酶抑制剂在植物防卫反应中具有重要的作用,然而蛋白酶抑制剂PR6基因家族的功能和调节机制相关研究少有报道。本研究首先对棉花PR6基因家族进行了全基因组鉴定分析,该基因家族属于马铃薯蛋白酶抑制剂I家族,在亚洲棉、雷蒙德氏棉、海岛棉和陆地棉中共鉴定出39个PR6基因,系统发育分析将PR6基因分为4个组;通过黄萎病诱导表达分析和类病变突变体Ghlmm转录组数据分析,挖掘到了黄萎病抗性关键基因GhPR6-5b,并发现利用病毒诱导的基因沉默技术将PR6-5b沉默后,棉花对黄萎病菌V991更加敏感;进一步研究发现GhWRKY75通过结合GhPR6-5b启动子的W-box  TTGAC(T/C),正向调节基因表达和棉花黄萎病抗性反应。本研究为棉花抗黄萎病分子机制研究和遗传改良提供了基因资源和理论基础。


Abstract  
Verticillium dahliae is an important fungal pathogen affecting cotton yield and quality.  Therefore, the mining of Vdahlia-resistance genes is urgently needed.  Proteases and protease inhibitors play crucial roles in plant defense responses.  However, the functions and regulatory mechanisms of the protease inhibitor PR6 gene family remain largely unknown.  This study provides a comprehensive analysis of the PR6 gene family in the cotton genome. We performed genome-wide identification and functional characterization of the cotton GhPR6 gene family, which belongs to the potato protease inhibitor I family of inhibitors.  Thirty-nine PR6s were identified in Gossypium arboreum, Graimondii, Gbarbadense, and Ghirsutum, and they were clustered into four groups.  Based on the analysis of pathogen-induced and Ghlmm transcriptome data, GhPR6-5b was identified as the key gene for Vdahliae resistance. Virus-induced gene silencing experiments revealed that cotton was more sensitive to Vdahliae V991 after PR6-5b silencing.  The present study established that GhWRKY75 plays an important role in resistance to Verticillium wilt in cotton by positively regulating GhPR6-5b expression by directly binding to the W-box TTGAC(T/C).  Our findings established that GhWRKY75 is a potential candidate for improving cotton resistance to Vdahliae, and provide primary information for further investigations and the development of specific strategies to bolster the defense mechanisms of cotton against Vdahliae.


Keywords:  cotton       proteinase inhibitors       WRKY transcription factor       Verticillium wilt  
Received: 11 February 2024   Accepted: 16 April 2024
Fund: 
This study was supported by the National Key R&D Program of China (2022YFD1200300), the National Nature Science Youth Science Fund Project, China (31801412), the Key R&D Program of Shandong Province, China (2021LZGC026), the Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences, China (CXGC2023G02), and the Shandong Provincial Program, China (WST2020011).
About author:  Qichao Chai, Tel: +86-531-66659004, E-mail: chaiqichao88 @126.com; #Correspondence Junsheng Zhao, Tel: +86-531-66658256, E-mail: zhaojunshengsd@163.com

Cite this article: 

Qichao Chai, Meina Zheng, Yanli Li, Mingwei Gao, Yongcui Wang, Xiuli Wang, Chao Zhang, Hui Jiang, Ying Chen, Jiabao Wang, Junsheng Zhao. 2024. GhWRKY75 positively regulates GhPR6-5b via binding to a W-box TTGAC (C/T) to orchestrate cotton resistance to Verticillium dahliae . Journal of Integrative Agriculture, 23(10): 3343-3357.

Bailey T L, Williams N, Misleh C, Li W W. 2006. MEME: Discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research34, W369–W373.

Beliën T, Van Campenhout S, Van Acker M, Volckaert G. 2005. Cloning and characterization of two endoxylanases from the cereal phytopathogen Fusarium graminearum and their inhibition profile against endoxylanase inhibitors from wheat. Biochemical and Biophysical Research Communications327, 407–414.

Brutus A, Reca I B, Herga S, Mattei B, Puigserver A, Chaix J C, Juge N, Bellincampi D, Giardina T. 2005. A family 11 xylanase from the pathogen Botrytis cinerea is inhibited by plant endoxylanase inhibitors XIP-I and TAXI-I. Biochemical and Biophysical Research Communications337, 160–166.

Chai Q C, Shang X G, Wu S, Zhu G Z, Cheng C Z, Cai C P, Wang X Y, Guo W Z. 2017. 5-Aminolevulinic acid dehydratase gene dosage affects programmed cell death and immunity. Plant Physiology175, 511–528.

Chai Q C, Wang X L, Gao M W, Zhao X C, Chen Y, Zhang C, Jiang H, Wang J B, Wang Y C, Zheng M, Baltaevich A M, Zhao J, Zhao J S. 2023. A glutathione S-transferase GhTT19 determines flower petal pigmentation via regulating anthocyanin accumulation in cotton. Plant Biotechnology Journal21, 433–448.

Chassot C, Nawrath C, Metraux J P. 2007. Cuticular defects lead to full immunity to a major plant pathogen. The Plant Journal49, 972–980.

Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant13, 1194–1202.

Chen L G, Zhang L P, Xiang S Y, Chen Y L, Zhang H Y, Yu D Q. 2021. The transcription factor WRKY75 positively regulates jasmonate-mediated plant defense to necrotrophic fungal pathogens. Journal of Experimental Botany72, 1473–1489.

Chen Z Y, Brown R L, Lax A R, Cleveland T E, Russin J S. 1999. Inhibition of plant–pathogenic fungi by a corn trypsin inhibitor overexpressed in Escherichia coliApplied and Environmental Microbiology65, 1320–1324.

Devaiah B N, Karthikeyan A S, Raghothama K G. 2007. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in ArabidopsisPlant Physiology143, 1789–1801.

Durrant W E, Dong X N. 2004. Systemic acquired resistance. Annual Review of Phytopathology42, 185–209.

Federici L, Di Matteo A, Fernandez-Recio J, Tsernoglou D, Cervone F. 2006. Polygalacturonase inhibiting proteins: Players in plant innate immunity? Trends in Plant Science11, 65–70.

Gao Q M, Venugopal S, Navarre D, Kachroo A. 2011. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiology155, 464–476.

Guo P R, Li Z H, Huang P X, Li B S, Fang S, Chu J F, Guo H W. 2017. A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence. The Plant Cell29, 2854–2870.

Haq S K, Atif S M, Khan R H. 2004. Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: Natural and engineered phytoprotection. Archives of Biochemistry and Biophysics431, 145–159.

Hou S G, Jamieson P, He P. 2018. The cloak, dagger, and shield: Proteases in plant-pathogen interactions. The Biochemical Journal475, 2491–2509.

Hu B, Jin J, Guo A Y, Zhang H, Luo J, Gao G. 2015. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics31, 1296–1297.

Huang H, Qi S D, Qi F, Wu C A, Yang G D, Zheng C C. 2010. NtKTI1, a Kunitz trypsin inhibitor with antifungal activity from Nicotiana tabacum, plays an important role in tobacco’s defense response. The FEBS Journal277, 4076–4088.

Jiang H, Gao M W, Chen Y, Zhang C, Wang J B, Chai Q C, Wang Y C, Zheng J X, Wang X L, Zhao J S. 2023. Effect of the L-D1 alleles on leaf morphology, canopy structure and photosynthetic productivity in upland cotton (Gossypium hirsutum L.) Journal of Integrative Agriculture22, 108–119.

Jones J D, Dangl J L. 2006. The plant immune system. Nature444, 323–329.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology Evolution33, 1870–1874.

Li J, Brader G, Palva E T. 2004. The WRKY70 transcription factor: A node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. The Plant Cell16, 319–331.

Li J, Brader G, Palva E T. 2008. Kunitz trypsin inhibitor: An antagonist of cell death triggered by phytopathogens and fumonisin b1 in ArabidopsisMolecular Plant1, 482–495.

Lu K K, Song R F, Guo J X, Zhang Y, Zuo J X, Chen H H, Liao C Y, Hu X Y, Ren F, Lu Y T, Liu W C. 2023. CycC1;1-WRKY75 complex-mediated transcriptional regulation of SOS1 controls salt stress tolerance in ArabidopsisThe Plant Cell35, 2570–2591.

Ma Z C, Zhu L, Song T Q, Wang Y, Zhang Q, Xia Y Q, Qiu M, Lin Y C, Li H Y, Kong L, Fang Y F, Ye W W, Wang Y, Dong S M, Zheng X B, Tyler B M, Wang Y C. 2017. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. The Plant Cell355, 710–714.

Mao P, Duan M R, Wei C H, Li Y. 2007. WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression. Plant and Cell Physiology48, 833–842.

Misas-Villamil J C, Van Der Hoorn R A. 2008. Enzyme-inhibitor interactions at the plant–pathogen interface. Current Opinion in Plant Biology11, 380–388.

Pandey S P, Somssich I E. 2009. The role of WRKY transcription factors in plant immunity. Plant Physiology150, 1648–1655.

Pieterse C M, Van Der Does D, Zamioudis C, Leon-Reyes A, Van Wees S C. 2012. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology28, 489–521.

Rishmawi L, Pesch M, Juengst C, Schauss A C, Schrader A, Hülskamp M. 2014. Non-cell-autonomous regulation of root hair patterning genes by WRKY75 in ArabidopsisPlant Physiology165, 186–195.

Rodriguez-Sifuentes L, Marszalek J E, Chuck-Hernandez C, Serna-Saldivar S O. 2020. Legumes protease inhibitors as biopesticides and their defense mechanisms against biotic factors. International Journal of Molecular Sciences21, 3322

Ryan C A. 1990. Protease inhibitors in plants: Genes for improving defenses against insects and pathogens. Annual Review of Phytopathology28, 425–449.

Sels J, Mathys J, De Coninck B M, Cammue B P, De Bolle M F. 2008. Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiology and Biochemistry46, 941–950.

Shang X G, Yu Y J, Zhu L J, Liu H Q, Chai Q C, Guo W Z. 2020. A cotton NAC transcription factor GhirNAC2 plays positive roles in drought tolerance via regulating ABA biosynthesis. Plant Science296, 110498.

Shang X G, Zhu L J, Duan Y J, He Q F, Zhao M Y, Yu Y J, Guo W Z. 2022. An easy and rapid transformation protocol for transient expression in cotton fiber. Frontiers in Plant Science13, 837994.

Stael S, Kmiecik P, Willems P, Van Der Kelen K, Coll N S, Teige M, Van Breusegem F. 2015. Plant innate immunity–sunny side up? Trends in Plant Science20, 3–11.

Tian X M, Han P, Wang J, Shao P X, An Q S, Nurimanguli A, Yang Q Y, You C Y, Lin H R, Zhu L F, Pan Z Y, Nie X H. 2023. Association mapping of lignin response to Verticillium wilt through an eight-way MAGIC population in Upland cotton. Journal of Integrative Agriculture22, 1324–1337.

Wang G L, Xu J, Li L C, Guo Z, Si Q X, Zhu G Z, Wang X Y, Guo W Z. 2019. GbCYP86A1-1 from Gossypium barbadense positively regulates defence against Verticillium dahliae by cell wall modification and activation of immune pathways. Plant Biotechnology Journal18, 222–238.

Wang H P, Chen W Q, Xu Z Y, Chen M F, Yu D Q. 2023. Functions of WRKYs in plant growth and development. Trends in Plant Science28, 630–645.

Wang Y Q, Liang C Z, Wu S J, Jian G L, Zhang X Y, Zhang H Y, Tang J Y, Li J, Jiao G L, Li F G, Chu C C. 2020. Vascular-specific expression of Gastrodia antifungal protein gene significantly enhanced cotton Verticillium wilt resistance. Plant Biotechnology Journal18, 1498–1500.

Yang M M, Wang Y X, Chen C, Xin X, Dai S S, Meng C, Ma N N. 2024. Transcription factor WRKY75 maintains auxin homeostasis to promote tomato defense against Pseudomonas syringaePlant Physiology00, 1–16.

Ye X Y, Ng T B, Rao P F. 2001. A Bowman-Birk-type trypsin-chymotrypsin inhibitor from broad beans. Biochemical and Biophysical Research Communications289, 91–96.

Zhang C Y, Fang H, Shi X T, He F, Wang R Y, Fan J B, Bai P F, Wang J Y, Park C H, Bellizzi M, Zhou X P. 2020. A fungal effector and a rice NLR protein have antagonistic effects on a Bowman-Birk trypsin inhibitor. Plant Biotechnology Journal18, 2354–2363.

Zhang G L, Zhao Z Q, Ma P P, Qu Y Y, Sun G Q, Chen Q J. 2021. Integrative transcriptomic and gene co-expression network analysis of host responses upon Verticillium dahliae infection in Gossypium hirsutumScientific Reports11, 20586.

Zhang L P, Chen L G, Yu D Q. 2018. Transcription factor WRKY75 interacts with DELLA proteins to affect flowering. Plant Physiology176, 790–803.

[1] Congcong Guo, Hongchun Sun, Xiaoyuan Bao, Lingxiao Zhu, Yongjiang Zhang, Ke Zhang, Anchang Li, Zhiying Bai, Liantao Liu, Cundong Li. Increasing root-lower characteristics improves drought tolerance in cotton cultivars at the seedling stage[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2242-2254.
[2] Yuting Liu, Hanjia Li, Yuan Chen, Tambel Leila. I. M., Zhenyu Liu, Shujuan Wu, Siqi Sun, Xiang Zhang, Dehua Chen.

Inhibition of protein degradation increases the Bt protein concentration in Bt cotton [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1897-1909.

[3] Yunze Wen, Peng He, Xiaohan Bai, Huizhi Zhang, Yunfeng Zhang, Jianing Yu.

Strigolactones modulate cotton fiber elongation and secondary cell wall thickening [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1850-1863.

[4] Changqin Yang, Xiaojing Wang, Jianan Li, Guowei Zhang, Hongmei Shu, Wei Hu, Huanyong Han, Ruixian Liu, Zichun Guo.

Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system [J]. >Journal of Integrative Agriculture, 2024, 23(2): 669-679.

[5] Zhili Chong, Yunxiao Wei, Kaili Li, Muhammad Aneeq Ur Rahman, Chengzhen Liang, Zhigang Meng, Yuan Wang, Sandui Guo, Liangrong He, Rui Zhang. GbLMI1 over-expression improves cotton aboveground vegetative growth[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3457-3467.
[6] Nurimanguli Aini, Yuanlong Wu, Zhenyuan Pan, Yizan Ma, Qiushuang An, Guangling Shui, Panxia Shao, Dingyi Yang, Hairong Lin, Binghui Tang, Xin Wei, Chunyuan You, Longfu Zhu, Dawei Zhang, Zhongxu Lin, Xinhui Nie. Cotton ethylene response factor GhERF91 is involved in the defense against Verticillium dahliae[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3328-3342.
[7] Hongge Li, Shurong Tang, Zhen Peng, Guoyong Fu, Yinhua Jia, Shoujun Wei, Baojun Chen, Muhammad Shahid Iqbal, Shoupu He, Xiongming Du. Genetic dissection and origin of pleiotropic loci underlying multi-level fiber quality traits in upland cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3250-3263.
[8] Qingdi Yan, Wei Hu, Chenxu Gao, Lan Yang, Jiaxian Yang, Renju Liu, Masum Billah, Yongjun Lin, Ji Liu, Pengfei Miao, Zhaoen Yang, Fuguang Li, Wenqiang Qin. EPSPS regulates cell elongation by disrupting the balance of lignin and flavonoid biosynthesis in cotton[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3437-3456.
[9] Wenwen Wang, Lei Chen, Yan Wu, Xin Guo, Jinming Yang, Dexin Liu, Xueying Liu, Kai Guo, Dajun Liu, Zhonghua Teng, Yuehua Xiao, Zhengsheng Zhang. Map-based cloning of qLPA01.1, a favorable allele from Gossypium tomentosum chromosome segment line[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3283-3293.
[10] Zhenyu Liu, Shu Dong, Yuting Liu, Hanjia Li, Fuqin Zhou, Junfeng Ding, Zixu Zhao, Yinglong Chen, Xiang Zhang, Yuan Chen, Dehua Chen. Optimizing the Bacillus thuringiensis (Bt) protein concentration in cotton: Coordinated application of exogenous amino acids and EDTA to reduce spatiotemporal variability in boll and leaf toxins[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3419-3436.
[11] Huaxiang Wu, Xiaohui Song, Muhammad Waqas-Amjid, Chuan Chen, Dayong Zhang, Wangzhen Guo. Mining elite loci and candidate genes for root morphology-related traits at the seedling stage by genome-wide association studies in upland cotton (Gossypium hirsutum L.) [J]. >Journal of Integrative Agriculture, 2024, 23(10): 3406-3418.
[12] Lingxiao Zhu, Hongchun Sun, Ranran Wang, Congcong Guo, Liantao Liu, Yongjiang Zhang, Ke Zhang, Zhiying Bai, Anchang Li, Jiehua Zhu, Cundong Li. Exogenous melatonin improves cotton yield under drought stress by enhancing root development and reducing root damage[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3387-3405.
[13] Liang Ma, Tingli Hu, Meng Kang, Xiaokang Fu, Pengyun Chen, Fei Wei, Hongliang Jian, Xiaoyan Lü, Meng Zhang, Yonglin Yang. Identification of candidate genes for early-maturity traits by combining BSA-seq and QTL mapping in upland cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3472-3486.
[14] Jie Liu, Zhicheng Wang, Bin Chen, Guoning Wang, Huifeng Ke, Jin Zhang, Mengjia Jiao, Yan Wang, Meixia Xie, Yanbin Li, Dongmei Zhang, Xingyi Wang, Qishen Gu, Zhengwen Sun, Liqiang Wu, Xingfen Wang, Zhiying Ma, Yan Zhang. Expression analysis of the R2R3-MYB gene family in upland cotton and functional study of GhMYB3D5 in regulating Verticillium wilt resistance[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3294-3310.
[15] Caixiang Wang, Meili Li, Dingguo Zhang, Xueli Zhang, Juanjuan Liu, Junji Su. Knockdown of the atypical protein kinase genes GhABC1K2-A05 and GhABC1K12-A07 make cotton more sensitive to salt and PEG stress[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3370-3386.
No Suggested Reading articles found!