Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (1): 81-91    DOI: 10.1016/j.jia.2024.04.006
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Optimizing nitrogen application and planting density improves yield and resource use efficiency via regulating canopy light and nitrogen distribution in rice

Zichen Liu1, Liyan Shang1, Shuaijun Dai1, Jiayu Ye1, Tian Sheng1, Jun Deng1, Ke Liu1, Shah Fahad2, Xiaohai Tian1, Yunbo Zhang1, Liying Huang1#

1 Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (co-construction by Ministry of Agriculture and Rural Affairs and Hubei Province)/Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou 434025, China

2 Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan  

 Highlights 
Nitrogen extinction coefficient (KN), light extinction coefficient (KL) and the ratio of KN to KL (KN/KL) values were significantly influenced by N rate, planting density, and their interaction.
KL negatively correlated with radiation use efficiency (RUE), while KN and KN/KL positively correlated with N use efficiency for grain production (NUEg).
Optimizing the distribution of light and N within the canopy can jointly enhance yield and resource use efficiency under N2D2.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
协调冠层内光照和氮素分布对提高水稻产量和资源利用效率至关重要。然而,有关种植密度和施氮量对水稻冠层光氮分布特性的影响及其与产量、光能利用效率(RUE)和氮素籽粒生产效率(NUEg)的关系研究较少。本研究以2个杂交稻品种为材料,在0 (N1)、90 (N2)和180 kg N ha-1(N3)3个氮肥及22.2(D1)和33.3 hills m-2 (D2)2个种植密度处理下进行了2年的大田试验。与N3D1处理相比,N2D2处理的产量和NUEg分别提高了3.4%和4.4%。氮肥和密度及其二者互作效应均对冠层光衰减系数(KL)、冠层氮素衰减系数(KN)和冠层光氮匹配指数(KN/KL)影响显著。KN均随着施氮量或种植密度的增加而降低,与N1相比,N2和N3处理的KN分别降低了43.5%和58.8%,而D2处理的KN较D1降低了16.0 %。KL和KN/KL值在低氮处理下较高,但在高氮处理下较低,增加种植密度导致KL和KN/KL值降低。此外,与N3D1相比,N2D2处理具有较高的KL和KN,因此具有可比较的KN/KL。相关分析表明,KL与花前RUE呈显著负相关,而KN和KN/KL与NUEg呈显著正相关。因此,在减氮投入下增加种植密度可以通过调控冠层光照和氮素分布,在保障水稻产量的同时提高资源利用效率。


Abstract  

Coordinating light and nitrogen (N) distribution within a canopy is essential for improving rice yield and resource use efficiency.  However, limited research has examined light and N distribution in response to planting density and N rate, and their relationships with grain yield, radiation use efficiency (RUE), and N use efficiency for grain production (NUEg) in rice.  A two-year field experiment was conducted with two hybrid varieties under three N levels, 0 kg ha–1 (N1), 90 kg ha–1 (N2) and 180 kg ha–1 (N3), and two planting densities, 22.2 hills m–2 (D1) and 33.3 hills m–2 (D2).  Results showed 3.4% higher yield and 4.4% higher NUEg under N2D2 compared with N3D1.  The extinction coefficient for N (KN) and light (KL) and their ratio (KN/KL) at heading stage were significantly influenced by N rate, planting density, and their interaction.  KN decreased with the increase of N input or planting density.  Compared to N1, KN decreased by 43.5 and 58.8% under N2 and N3, respectively, while KN under D2 decreased by 16.0% compared to D1.  Higher KL and KN/KL values occurred under low N rates, with opposite trends under high N rates.  Increased planting density led to decreased KL and KN/KL values.  N2D2 demonstrated higher KL and KN, and thus comparable KN/KL, compared to N3D1.  Correlation analysis revealed KL negatively correlated with RUE, while KN and KN/KL positively correlated with NUEg.  These findings indicate that increasing planting density under reduced N input could maintain rice yield while enhancing resource use efficiency through regulation of canopy light and N distribution.

Keywords:  canopy light and N distribution        nitrogen input        planting density        high yield and high efficiency        hybrid rice  
Received: 17 January 2024   Accepted: 11 March 2024 Online: 10 April 2024  
Fund: This work was supported by the Hubei Provincial Science and Technology Project, China (2025CSA039) and the National Natural Science Foundation of China (32001467).  
About author:  Zichen Liu, E-mail: 13307185039@163.com; #Correspondence Liying Huang, E-mail: lyhuang8901@126.com

Cite this article: 

Zichen Liu, Liyan Shang, Shuaijun Dai, Jiayu Ye, Tian Sheng, Jun Deng, Ke Liu, Shah Fahad, Xiaohai Tian, Yunbo Zhang, Liying Huang. 2026. Optimizing nitrogen application and planting density improves yield and resource use efficiency via regulating canopy light and nitrogen distribution in rice. Journal of Integrative Agriculture, 25(1): 81-91.

Anten N P R, Schieving F, Werger M J A. 1995. Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono- and dicotyledonous species. Oecologia101, 504–513.

Cheabu S, Panichawong N, Rattanametta P, Wasuri B, Kasemsap P, Arikit S, Vanavichit A, Malumpong C. 2019. Screening for spikelet fertility and validation of heat tolerance in a large rice mutant population. Rice Science, 26, 229–238.

Chen S, Yin M, Zheng X, Liu S W, Chu G, Xu C M, Wang D Y, Zhang X F. 2019. Effect of dense planting of hybrid rice on grain yield and solar radiation use in southeastern China. Agronomy Journal111, 1229–1238.

Chen X P, Cui Z L, Fan M S, Vitousek P, Zhao M, Ma W Q, Wang Z L, Zhang W J, Yan X Y, Yang J Y, Deng X P, Gao Q, Zhang Q, Guo S W, Ren J, Li S Q, Ye Y L, Wang Z H, Huang J L, Tang Q Y, et al. 2014. Producing more grain with lower environmental costs. Nature514, 486–489.

Chong H T, Jiang Z Y, Shang L Y, Shang C, Deng J, Zhang Y B, Huang L Y. 2023. Dense Planting with reduced nitrogen input improves grain yield, protein quality, and resource use efficiency in hybrid rice. Journal of Plant Growth Regulation42, 960–972.

Dreccer M F, Van O M, Schapendonk A, Pot C S, Rabbinge R. 2000. Dynamics of vertical leaf nitrogen distribution in a vegetative wheat canopy impact on canopy photosynthesis. Annals of Botany86, 821–831.

Fu Y Q, Zhong X H, Zeng J H, Liang K M, Pan J F, Xin Y F, Liu Y Z, Hu X Y, Peng B L, Chen R B, Hu R, Huang N R. 2021. Improving grain yield, nitrogen use efficiency and radiation use efficiency by dense planting, with delayed and reduced nitrogen application, in double cropping rice in South China. Journal of Integrative Agriculture20, 565–580.

Gallagher J N, Biscoe R V. 1978. Radiation absorption, growth and yield of cereals. The Journal of Agricultural Science91, 47–60.

Gastal F, Lemaire G. 2002. N uptake and distribution in crops: An agronomical and ecophysiological perspective. Journal of Experimental Botany53, 789–799.

Gu J F, Chen Y, Zhang H, Li Z K, Zhou Q, Yu C, Kong X S, Liu L J, Wang Z Q, Yang J C. 2017. Canopy light and nitrogen distributions are related to grain yield and nitrogen use efficiency in rice. Field Crops Research206, 74–85.

Gu J F, Yin X Y, Stomph T J, Struik P C. 2014. Can exploiting natural genetic variation in leaf photosynthesis contribute to increasing rice productivity? A simulation analysis. PlantCell & Environment37, 22–34.

Guan X J, Chen J, Chen X M, Xie J, Deng G Q, Hu L Z, L Y, Qian Y F, Qiu C F, Peng C R. 2022. Root characteristics and yield of rice as affected by the cultivation pattern of strong seedlings with increased planting density and reduced nitrogen application. Journal of Integrative Agriculture21, 1278–1289.

Hikosaka K. 2005. Leaf canopy as a dynamic system: Ecophysiology and optimality in leaf turnover. Annals of Botany95, 521–533.

Hikosaka K. 2014. Optimal nitrogen distribution within a leaf canopy under direct and diffuse light. PlantCell & Environment37, 2077–2085.

Hirose T, Werger M J A. 1987. Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia72, 520–526.

Hirose T, Werger M J A, Pons T L, Van Rheenen J W A. 1988. Canopy structure and leaf nitrogen distribution in a stand of Lysimachia vulgaris L. as influenced by stand density. Oecologia77, 145–150.

Hou W F, Khan M R, Zhang J L, Lu J W, Ren T, Cong R H, Li X K. 2019. Nitrogen rate and plant density interaction enhances radiation interception, yield and nitrogen use efficiency of mechanically transplanted rice. Agriculture Ecosystems & Environment269, 183–192.

Huang L Y, Li X X, Zhang Y B, Fahad S, Wang F. 2022. dep1 improves rice grain yield and nitrogen use efficiency simultaneously by enhancing nitrogen and dry matter translocation. Journal of Integrative Agriculture21, 3185–3198.

Huang L Y, Sun F, Yuan S, Peng S B, Wang F. 2018. Different mechanisms underlying the yield advantage of ordinary hybrid and super hybrid rice over inbred rice under low and moderate N input conditions. Field Crops Research216, 150–157.

Huang L Y, Yang D S, Li X X, Peng S B, Wang F. 2019. Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice. Field Crops Research233, 49–58.

Huang M, Jiang L G, Xia B, Zou Y B, Ao H J. 2013. Yield gap analysis of super hybrid rice between two subtropical environments. Australian Journal of Crop Science7, 600–608.

Kull O. 2002. Acclimation of photosynthesis in canopies: Models and limitations. Oecologia133, 267–279.

Lafarge T A, Broad L J, Hammer G L. 2002. Tillering in grain sorghum over a wide range of population densities: Identification of a common hierarchy for tiller emergence, leaf area development and fertility. Annals of Botany90, 87–98.

Li H, Zhu Y M, Wang G F, Liu R R, Huang D, Song M M, Zhang Y H, Wang H, Wang Y C, Shao R X, Guo J M. 2024. Maize yield increased by matching canopy light and nitrogen distribution via controlled-release urea/urea adjustment. Field Crops Research308, 109284.

Li Y, Gao Y X, Xu X M, Shen Q R, Guo S W. 2009. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. Journal of Experimental Botany60, 2351–2360.

Liu K, Yang R, Deng J, Huang L Y, Wei Z W, Ma G H, Tian X H, Zhang Y B. 2020. High radiation use efficiency improves yield in the recently developed elite hybrid rice Y-liangyou 900. Field Crops Research253, 107804.

Liu T, Pan Y H, Lu Z F, Ren T, Lu J W. 2020. Canopy light and nitrogen distribution are closely related to nitrogen allocation within leaves in Brassica napus L. Field Crops Research258, 107958.

Long S P, Zhu X G, Naidu S L, Ort D R. 2006. Can improvement in photosynthesis increase crop yields. PlantCell & Environment29, 315–330.

Lou G M, Bhat M A, Tan X, Wang Y Y, He Y Q. 2023. Research progress on the relationship between rice protein content and cooking and eating quality and its influencing factors. Seed Biology216.

Monsi M, Saeki T. 2005. On the factor light in plant communities and its importance for matter production. Annals of Botany95, 549–567.

Moreau D, Allard V, Gaju O, Le Gouis J, Foulkes M J, Martre P. 2012. Acclimation of leaf nitrogen to vertical light gradient at anthesis in wheat is a whole-plant process that scales with the size of the canopy. Plant Physiology160, 1479–1490.

Ouyang W J, Yin, X Y, Yang J C, Struik P C. 2021. Roles of canopy architecture and nitrogen distribution in the better performance of an aerobic than a lowland rice cultivar under water deficit. Field Crops Research271, 108257.

Peng S B, Tang Q Y, Zou Y B. 2009. Current status and challenges of rice production in China. Plant Production Science12, 3–8.

Sánchez B, Rasmussen A, Porter J R. 2014. Temperatures and the growth and development of maize and rice: A review. Global Chang Biology20, 408–417.

Tian P Y, Liu J M, Zhao Y N, Huang Y F, Lian Y H, Wang Y, Ye Y L. 2022. Nitrogen rates and plant density interactions enhance radiation interception, yield, and nitrogen use efficiencies of maize. Frontiers in Plant Science13, 974714.

Tian X Y, Engel B A, Qian H Y, Hua E, Sun S K, Wang Y B. 2021. Will reaching the maximum achievable yield potential meet future global food demand? Journal of Cleaner Production294, 126285.

Wang F, Peng S B. 2017. Yield potential and nitrogen use efficiency of China’s super rice. Journal of Integrative Agriculture16, 1000–1008.

Wang M, Zhou G Y, Gao J L, Yu X F, Sun J Y, Hu S B, Qing G E, Qu J W, Ma D L, Wang Z G. 2022. Distribution and matching characteristics of light and nitrogen in maize canopy of high-density tolerance varieties. Acta Agronomica Sinica48, 3179–3191. (in Chinese)

Wei J G, Chai Q, Yin W, Fan H, Guo Y, Hu F L, Fan Z L, Wang Q M. 2024. Grain yield and N uptake of maize in response to increase plant density under reduced water and nitrogen supply conditions. Journal of Integrative Agriculture23, 122–140.

Wu C, Cui K H, Wang W C, Li Q, Fahad S, Hu Q Q, Huang J L, Nie LX, Peng S B. 2016. Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice. Scientific Reports6, 34978.

Xu R, Chen S, Xu C M, Liu Y H, Zhang X F, Wang D Y, Chu G. 2023. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases. Acta Agronomica Sinica49, 1630–1642. (in Chinese)

Yang J C. 2015. Approaches to achieve high grain yield and high resource use efficiency in rice. Frontiers of Agricultural Science and Engineering2, 115–123.

Yin X Y, Laar H H. 2005. Crop Systems Dynamics: An Ecophysiological Simulation Model for Genotype-by-Environment Interactions. Wagningen Academic Publishers, Wageningen, The Netherlands.

Zhao C, Huang H, Qian Z H, Jiang H X, Liu G M, Xu K, Hu Y J, Dai Q G, Huo Z Y. 2021. Effect of side deep placement of nitrogen on yield and nitrogen use efficiency of single season late japonica rice. Journal of Integrative Agriculture20, 1487–1502.

Zhou C C, Huang Y C, Jia B Y, Wang S, Dou F G, Samonte S O P B, Chen K, Wang Y. 2019. Optimization of nitrogen rate and planting density for improving the grain yield of different rice genotypes in Northeast China. Agronomy9, 555.

Zhou Q, Yuan R, Zhang W Y, Gu J F, Liu L J, Zhang H, Wang Z Q, Yang J C. 2023. Grain yield, nitrogen use efficiency and physiological performance of indica/japonica hybrid rice in response to various nitrogen rates. Journal of Integrative Agriculture22, 63–79.

Zhu H J, Wen T, Sun M W, Ali L, Sheteiwy M S, Wahab A, Tan W J, Wen C, He X E, Wang X H. 2023. Enhancing rice yield and nitrogen utilization efficiency through optimal planting density and reduced nitrogen rates. Agronomy13, 1387.

Zhu K Y, Yan J Q, Shen Y, Zhang W Y, Xu Y J, Wang Z Q, Yang J C. 2022. Deciphering the morpho–physiological traits for high yield potential in nitrogen efficient varieties (NEVs): A japonica rice case study. Journal of Integrative Agriculture21, 947–963.

No related articles found!
No Suggested Reading articles found!