Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (7): 2458-2475    DOI: 10.1016/j.jia.2024.03.042
Special Issue: 农业生态环境-灌溉Agro-ecosystem & Environment—Irrigation
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Comparison of CWSI and Ts-Ta-VIs in moisture monitoring of dryland crops (sorghum and maize) based on UAV remote sensing
Hui Chen1, 2, Hongxing Chen1, 2, Song Zhang1, 2, Shengxi Chen1, 2, Fulang Cen1, 3, Quanzhi Zhao1, 3, Xiaoyun Huang1, 2, Tengbing He1, 2#, Zhenran Gao1, 2#
1 College of Agriculture, Guizhou University, Guiyang 550025, China
2 Institute of New Rural Development, Guizhou University, Guiyang 550025, China
3 Institute of Rice Industry Technology Research, College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
农业干旱遥感监测对现代农业精准灌溉至关重要。本研究基于无人机遥感技术,探讨了基于冠层温度的经验作物水分胁迫指数(CWSI)和由地表温度(Ts)、空气温度(Ta)及5种植被指数(VIs)构建的三维干旱指数(TDDI)在监测旱地作物水分状况方面的适用性。研究采用了三种机器学习算法(随机森林回归、支持向量回归和偏最小二乘回归)来比较干旱指数在高粱和玉米植被含水量(VMC)估测中的性能。研究的主要结果如下:(1)各干旱指数比较发现,Ts-Ta-归一化差异植被指数(TDDIn)和Ts-Ta-增强植被指数(TDDIe)较其它指数与作物水分的相关性更高,指数对不同灌溉水平的指数含水量敏感性不同,其中玉米在完全灌溉处理下与TDDIe指数相关性最高(r=−0.93);(2)在时空特征上,TDDIn、TDDIe和CWSI在时间序列上的波动差异不大,变异系数分别为0.25、0.18和0.24,三者均能表征农田作物水分分布特征,但三维指数在降雨/灌溉后的作物水分空间分布上判断更为准确;(3)在预测单一作物的水分含量时,基于TDDIn和TDDIe的RFR模型对VMC的估计最为准确(R2>0.7),而在考虑多作物样本时,基于TDDIn的模型预测VMC的准确度最高,R2和RMSE分别为0.62%和14.26%。与CWSI比较,三维干旱指数在作物水分估算中更加有效。


Abstract  

Monitoring agricultural drought using remote sensing data is crucial for precision irrigation in modern agriculture.  Utilizing unmanned aerial vehicle (UAV) remote sensing, we explored the applicability of an empirical crop water stress index (CWSI) based on canopy temperature and three-dimensional drought indices (TDDI) constructed from surface temperature (Ts), air temperature (Ta) and five vegetation indices (VIs) for monitoring the moisture status of dryland crops.  Three machine learning algorithms (random forest regression (RFR), support vector regression, and partial least squares regression) were used to compare the performance of the drought indices for vegetation moisture content (VMC) estimation in sorghum and maize.  The main results of the study were as follows: (1) Comparative analysis of the drought indices revealed that Ts-Ta-normalized difference vegetation index (TDDIn) and Ts-Ta-enhanced vegetation index (TDDIe) were more strongly correlated with VMC compared with the other indices.  The indices exhibited varying sensitivities to VMC under different irrigation regimes; the strongest correlation observed was for the TDDIe index with maize under the fully irrigated treatment (r=−0.93). (2) Regarding spatial and temporal characteristics, the TDDIn, TDDIe and CWSI indices showed minimal differences.  Over the experimental period, with coefficients of variation were 0.25, 0.18 and 0.24, respectively. All three indices were capable of effectively characterizing the moisture distribution in dryland maize and sorghum crops, but the TDDI indices more accurately monitored the spatial distribution of crop moisture after a rainfall or irrigation event.  (3) For prediction of the moisture content of single crops, RFR models based on TDDIn and TDDIe estimated VMC most accurately (R2>0.7), and the TDDIn-based model predicted VMC with the highest accuracy when considering multiple-crop samples, with R2 and RMSE of 0.62 and 14.26%, respectively. Thus, TDDI proved more effective than the CWSI in estimating crop water content.

Keywords:  maize       sorghum        Ts-Ta-VIs        CWSI        UAV        machine learning        crop moisture monitoring  
Received: 05 December 2023   Accepted: 06 February 2024
Fund: 
This work was supported by the National Key Research and Development Program of China (2022YFD1901 500/2022YFD1901505), the Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, China (Qiankehezhongyindi (2023) 008), and the Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, China (Qianjiaoji (2023) 007). 
About author:  Hui Chen, Mobile: +86-15186961838, E-mail: gs.huichen21@ gzu.edu.cn; # Correspondence Tengbing He, E-mail: tbhe@gzu. edu.cn; Zhenran Gao, E-mail: zrgao@gzu.edu.cn

Cite this article: 

Hui Chen, Hongxing Chen, Song Zhang, Shengxi Chen, Fulang Cen, Quanzhi Zhao, Xiaoyun Huang, Tengbing He, Zhenran Gao. 2024. Comparison of CWSI and Ts-Ta-VIs in moisture monitoring of dryland crops (sorghum and maize) based on UAV remote sensing. Journal of Integrative Agriculture, 23(7): 2458-2475.

Ahmad U, Alvino A, Marino S. 2021. A review of crop water stress assessment using remote sensing. Remote Sensing, 13, 4155.

Ballester C, Brinkhoff J, Quayle W C, Hornbuckle J. 2019. Monitoring the effects of water stress in cotton using the green red vegetation index and red edge ratio. Remote Sensing, 11, 873.

Bian Z, Roujean J L, Fan T, Dong Y, Hu T, Cao B, Li H, Du Y, Xiao Q, Liu Q. 2023. An angular normalization method for temperature vegetation dryness index (TVDI) in monitoring agricultural drought. Remote Sensing of Environment, 284, 113330.

Böhler J E, Schaepman M E, Kneubühler M. 2018. Crop classification in a heterogeneous arable landscape using uncalibrated UAV data. Remote Sensing, 10, 1282.

Caruso G, Palai G, Tozzini L, Gucci R. 2022. Using visible and thermal images by an unmanned aerial vehicle to monitor the plant water status, canopy growth and yield of olive trees (cvs. Frantoio and Leccino) under different irrigation regimes. Agronomy, 12, 1904.

Chen S, Chen Y, Chen J, Zhang Z, Fu Q, Bian J, Cui T, Ma Y. 2020. Retrieval of cotton plant water content by UAV-based vegetation supply water index (VSWI). International Journal of Remote Sensing, 41, 4389–4407.

Cheng M, Sun C, Nie C, Liu S, Yu X, Bai Y, Liu Y, Meng L, Jia X, Liu Y, Zhou L, Nan F, Cui T, Jin X. 2023. Evaluation of UAV-based drought indices for crop water conditions monitoring: A case study of summer maize. Agricultural Water Management, 287, 108442.

Cortes C, Vapnik V. 1995. Support-vector networks. Machine Learning, 20, 273–297.

DeJonge K C, Taghvaeian S, Trout T J, Comas L H. 2015. Comparison of canopy temperature-based water stress indices for maize. Agricultural Water Management, 156, 51–62.

Gago J, Douthe C, Coopman R E, Gallego P P, Ribas-Carbo M, Flexas J, Escalona J, Medrano H. 2015. UAVs challenge to assess water stress for sustainable agriculture. Agricultural Water Management, 153, 9–19.

Genc L, Inalpulat M, Kizil U, Mirik M, Smith S E, Mendes M. 2013. Determination of water stress with spectral reflectance on sweet corn (Zea mays L.) using classification tree (CT) analysis. Zemdirbyste-Agriculture, 100, 81–90.

Gitelson A A, Merzlyak M N. 1997. Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, 18, 2691–2697.

Gu S, Liao Q, Gao S, Kang S, Du T, Ding R. 2021. Crop water stress index as a proxy of phenotyping maize performance under combined water and salt stress. Remote Sensing, 13, 4710.

Han M, Zhang H, DeJonge K C, Comas L H, Trout T J. 2016. Estimating maize water stress by standard deviation of canopy temperature in thermal imagery. Agricultural Water Management, 177, 400–409.

Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213.

Huete A R. 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295–309.

Idso S B, Jackson R D, Pinter P J, Reginato R J, Hatfield J L. 1981. Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology, 24, 45–55.

Jackson R D, Idso S B, Reginato R J, Pinter Jr P J. 1981. Canopy temperature as a crop water stress indicator. Water Resources Research, 17, 1133–1138.

Jackson R D, Kustas W P, Choudhury B J. 1988. A reexamination of the crop water stress index. Irrigation Science, 9, 309–317.

Jackson R D, Reginato R J, Idso S B. 1977. Wheat canopy temperature: A practical tool for evaluating water requirements. Water Resources Research, 13, 651–656.

Jorge J, Vallbé M, Soler J A. 2019. Detection of irrigation inhomogeneities in an olive grove using the NDRE vegetation index obtained from UAV images. European Journal of Remote Sensing, 52, 169–177.

Krishnan S, Indu J. 2023. Assessing the potential of temperature/vegetation index space to infer soil moisture over Ganga Basin. Journal of Hydrology, 621, 129611.

Lee S J, Kim N, Lee Y. 2021. Development of integrated crop drought index by combining rainfall, land surface temperature, evapotranspiration, soil moisture, and vegetation index for agricultural drought monitoring. Remote Sensing, 13, 1778.

Liu X, Zhu X, Pan Y, Li S, Liu Y, Ma Y. 2016. Agricultural drought monitoring: Progress, challenges, and prospects. Journal of Geographical Sciences, 26, 750–767.

Liu Y, Qian J, Yue H. 2021. Comparison and evaluation of different dryness indices based on vegetation indices-land surface temperature/albedo feature space. Advances in Space Research, 68, 2791–2803.

Maes W H, Steppe K. 2012. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: A review. Journal of Experimental Botany, 63, 4671–4712.

Maes W H, Steppe K. 2019. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends in Plant Science, 24, 152–164.

Mangus D L, Sharda A, Zhang N. 2016. Development and evaluation of thermal infrared imaging system for high spatial and temporal resolution crop water stress monitoring of corn within a greenhouse. Computers and Electronics in Agriculture, 121, 149–159.

Matese A, Di Gennaro S F. 2018. Practical applications of a multisensor UAV platform based on multispectral, thermal and RGB high resolution images in precision viticulture. Agriculture, 8, 116.

Mwinuka P R, Mbilinyi B P, Mbungu W B, Mourice S K, Mahoo H F, Schmitter P. 2021. The feasibility of hand-held thermal and UAV-based multispectral imaging for canopy water status assessment and yield prediction of irrigated African eggplant (Solanum aethopicum L.). Agricultural Water Management, 245, 106584.

Ndlovu H S, Odindi J, Sibanda M, Mutanga O, Clulow A, Chimonyo V G P, Mabhaudhi T. 2021. A comparative estimation of maize leaf water content using machine learning techniques and unmanned aerial vehicle (UAV)-based proximal and remotely sensed data. Remote Sensing, 13, 4091.

Park S, Ryu D, Fuentes S, Chung H, Hernández-Montes E, O’Connell M. 2017. Adaptive estimation of crop water stress in nectarine and peach orchards using high-resolution imagery from an unmanned aerial vehicle (UAV). Remote Sensing, 9, 828.

Payero J O, Irmak S. 2006. Variable upper and lower crop water stress index baselines for corn and soybean. Irrigation Science, 25, 21–32.

Prior A, Apolo-Apolo O E, Castro-Valdecantos P, Pérez-Ruiz M, Egea G. 2021. Long-term assessment of reference baselines for the determination of the crop water stress index in maize under mediterranean conditions. Water, 13, 3119.

Prudnikova E, Savin I, Vindeker G, Grubina P, Shishkonakova E, Sharychev D. 2019. Influence of soil background on spectral reflectance of winter wheat crop canopy. Remote Sensing, 11, 1932.

Roujean J L, Breon F M. 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51, 375–384.

Rouse J W, Haas R H, Schell J A, Deering D W. 1974. Monitoring vegetation systems in the Great Plains with ERTS. NASA Special Publication, 351, 309–317.

Sandholt I, Rasmussen K, Andersen J. 2002. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79, 213–224.

Santesteban L G, Di Gennaro S F, Herrero-Langreo A, Miranda C, Royo J B, Matese A. 2017. High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard. Agricultural Water Management, 183, 49–59.

Shu M, Dong Q, Fei S, Yang X, Zhu J, Meng L, Li B, Ma Y. 2022. Improved estimation of canopy water status in maize using UAV-based digital and hyperspectral images. Computers and Electronics in Agriculture, 197, 106982.

Sun L, Sun R, Li X, Liang S, Zhang R. 2012. Monitoring surface soil moisture status based on remotely sensed surface temperature and vegetation index information. Agricultural and Forest Meteorology, 166–167, 175–187.

Tunca E, Köksal E S, Öztürk E, Akay H, Taner S C. 2023. Accurate estimation of sorghum crop water content under different water stress levels using machine learning and hyperspectral data. Environmental Monitoring and Assessment, 195, 877.

Veysi S, Naseri A A, Hamzeh S, Bartholomeus H. 2017. A satellite based crop water stress index for irrigation scheduling in sugarcane fields. Agricultural Water Management, 189, 70–86.

Virnodkar S S, Pachghare V K, Patil V C, Jha S K. 2020. Remote sensing and machine learning for crop water stress determination in various crops: A critical review. Precision Agriculture, 21, 1121–1155.

Wigmore O, Mark B, McKenzie J, Baraer M, Lautz L. 2019. Sub-metre mapping of surface soil moisture in proglacial valleys of the tropical Andes using a multispectral unmanned aerial vehicle. Remote Sensing of Environment, 222, 104–118.

Yang N, Zhang Z, Zhang J, Guo Y, Yang X, Yu G, Bai X, Chen J, Chen Y, Shi L, Li X. 2023. Improving estimation of maize leaf area index by combining of UAV-based multispectral and thermal infrared data: The potential of new texture index. Computers and Electronics in Agriculture, 214, 108294.

Zhang L, Han W, Niu Y, Chávez JL, Shao G, Zhang H. 2021. Evaluating the sensitivity of water stressed maize chlorophyll and structure based on UAV derived vegetation indices. Computers and Electronics in Agriculture,185, 106174.

Zhang L, Jiao W, Zhang H, Huang C, Tong Q. 2017. Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices. Remote Sensing of Environment, 190, 96–106.

Zhang L, Niu Y, Zhang H, Han W, Li G, Tang J, Peng X. 2019a. Maize canopy temperature extracted from UAV thermal and RGB imagery and its application in water stress monitoring. Frontiers in Plant Science, 10, 1270.

Zhang L, Zhang H, Niu Y, Han W. 2019b. Mapping maize water stress based on UAV multispectral remote sensing. Remote Sensing, 11, 605.

Zhang Y, Han W, Zhang H, Niu X, Shao G. 2023. Evaluating soil moisture content under maize coverage using UAV multimodal data by machine learning algorithms. Journal of Hydrology, 617, 129086.

Zhang Z, Zhu L. 2023. A Review on unmanned aerial vehicle remote sensing: Platforms, sensors, data processing methods, and applications. Drones, 7, 398.

Zhu W, Rezaei E E, Nouri H, Sun Z, Li J, Yu D, Siebert S. 2022. UAV-based indicators of crop growth are robust for distinct water and nutrient management but vary between crop development phases. Field Crops Research, 284, 108582.

[1] Dan Lü, Jianxin Li, Xuehai Zhang, Ran Zheng, Aoni Zhang, Jingyun Luo, Bo Tong, Hongbing Luo, Jianbing Yan, Min Deng. Genetic analysis of maize crude fat content by multi-locus genome-wide association study[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2475-2491.
[2] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
[3] Lihua Xie, Lingling Li, Junhong Xie, Jinbin Wang, Zechariah Effah, Setor Kwami Fudjoe, Muhammad Zahid Mumtaz. A suitable organic fertilizer substitution ratio stabilizes rainfed maize yields and reduces gaseous nitrogen loss in the Loess Plateau, China[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2138-2154.
[4] Huairen Zhang, Tauseef Taj Kiani, Huabang Chen, Juan Liu, Xunji Chen. Genome wide association analysis reveals multiple QTLs controlling root development in maize [J]. >Journal of Integrative Agriculture, 2025, 24(5): 1656-1670.
[5] Lanjie Zheng, Qianlong Zhang, Huiying Liu, Xiaoqing Wang, Xiangge Zhang, Zhiwei Hu, Shi Li, Li Ji, Manchun Ji, Yong Gu, Jiaheng Yang, Yong Shi, Yubi Huang, Xu Zheng. Fine mapping and discovery of MIR172e, a candidate gene required for inflorescence development and lower floret abortion in maize ear[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1372-1389.
[6] Tao Liu, Jianliang Wang, Jiayi Wang, Yuanyuan Zhao, Hui Wang, Weijun Zhang, Zhaosheng Yao, Shengping Liu, Xiaochun Zhong, Chengming Sun. Research on the estimation of wheat AGB at the entire growth stage based on improved convolutional features[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1403-1423.
[7] Xiaoxia Guo, Wanmao Liu, Yunshan Yang, Guangzhou Liu, Bo Ming, Ruizhi Xie, Keru Wang, Shaokun Li, Peng Hou. Matching the light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1424-1435.
[8] Yang Wang, Chunhua Mu, Xiangdong Li, Canxing Duan, Jianjun Wang, Xin Lu, Wangshu Li, Zhennan Xu, Shufeng Sun, Ao Zhang, Zhiqiang Zhou, Shenghui Wen, Zhuanfang Hao, Jienan Han, Jianzhou Qu, Wanli Du, Fenghai Li, Jianfeng Weng. A genome-wide association study and transcriptome analysis reveal the genetic basis for the Southern corn rust resistance in maize[J]. >Journal of Integrative Agriculture, 2025, 24(2): 453-466.
[9] Xi Tang, Lei Xie, Min Yan, Longyun Li, Tianxiong Yao, Siyi Liu, Wenwu Xu, Shijun Xiao, Nengshui Ding, Zhiyan Zhang, Lusheng Huang . Genomic selection for meat quality traits based on VIS/NIR spectral information[J]. >Journal of Integrative Agriculture, 2025, 24(1): 235-245.
[10] Xin Dong, Baole Li, Zhenzhen Yan, Ling Guan, Shoubing Huang , Shujun Li, Zhiyun Qi, Ling Tang, Honglin Tian, Zhongjun Fu, Hua Yang. Impacts of high temperature, relative air humidity, and vapor pressure deficit on the seed set of contrasting maize genotypes during flowering[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2955-2969.
[11] Xianglin Zhang, Jie Xue, Songchao Chen, Zhiqing Zhuo, Zheng Wang, Xueyao Chen, Yi Xiao, Zhou Shi. Improving model performance in mapping cropland soil organic matter using time-series remote sensing data[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2820-2841.
[12] Jiang Liu, Wenyu Yang. Soybean maize strip intercropping: A solution for maintaining food security in China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2503-2506.
[13] Hui Fang, Xiuyi Fu, Hanqiu Ge, Mengxue Jia, Jie Ji, Yizhou Zhao, Zijian Qu, Ziqian Cui, Aixia Zhang, Yuandong Wang, Ping Li, Baohua Wang. Genetic analysis and candidate gene identification of salt tolerancerelated traits in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2196-2210.
[14] Peng Liu, Langlang Ma, Siyi Jian, Yao He, Guangsheng Yuan, Fei Ge, Zhong Chen, Chaoying Zou, Guangtang Pan, Thomas Lübberstedt, Yaou Shen. Population genomic analysis reveals key genetic variations and the driving force for embryonic callus induction capability in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2178-2195.
[15] Jiangkuan Cui, Haohao Ren, Bo Wang, Fujie Chang, Xuehai Zhang, Haoguang Meng, Shijun Jiang, Jihua Tang.

Hatching and development of maize cyst nematode Heterodera zeae infecting different plant hosts [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1593-1603.

No Suggested Reading articles found!