Virtual Issue

    Not found 农业生态环境-灌溉合辑Agro-ecosystem & Environment—Irrigation

    Default Latest Most Read
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Canopy morphological changes and water use efficiency in winter wheat under different irrigation treatments
    ZHAO Hong-xiang, ZHANG Ping, WANG Yuan-yuan, NING Tang-yuan, XU Cai-long, WANG Pu
    2020, 19 (4): 1105-1116.   DOI: 10.1016/S2095-3119(19)62750-4
    Abstract55)      PDF in ScienceDirect      
    Water is a key limiting factor in agriculture.  Water resource shortages have become a serious threat to global food security.  The development of water-saving irrigation techniques based on crop requirements is an important strategy to resolve water scarcity in arid and semi-arid regions.  In this study, field experiments with winter wheat were performed at Wuqiao Experiment Station, China Agricultural University in two growing seasons in 2013–2015 to help develop such techniques.  Three irrigation treatments were tested: no-irrigation (i.e., no water applied after sowing), limited-irrigation (i.e., 60 mm of water applied at jointing), and sufficient-irrigation (i.e., a total of 180 mm of water applied with 60 mm at turning green, jointing and anthesis stages, respectively).  Leaf area index (LAI), light transmittance (LT), leaf angle (LA), transpiration rate (Tr), specific leaf weight, water use efficiency (WUE), and grain yield of winter wheat were measured.  The highest WUE of wheat in the irrigated treatments was found under limited-irrigation and grain yield was only reduced by a small amount in this treatment compared to the sufficient irrigation treatment.  The LAI and LA of wheat plants was lower under limited irrigation than sufficient irrigation, but canopy LT was greater.  Moreover, the specific leaf weight of winter wheat was significantly lower under sufficient than limited irrigation conditions, while the leaf Tr was significantly higher.  Correlation analysis showed that the increased LAI was associated with an increase in the leaf Tr, but the specific leaf weight had the opposite relationship with transpiration.  Optimum WUE occurred over a reasonable range in leaf Tr.  In conclusion, reduced irrigation can optimize wheat canopies and regulate water consumption, with only small reductions in final yield, ultimately leading to higher wheat WUE and water saving in arid and semi-arid regions.
    Reference | Related Articles | Metrics
    Effects of water application uniformity using a center pivot on winter wheat yield, water and nitrogen use efficiency in the North China Plain
    CAI Dong-yu, YAN Hai-jun, LI Lian-hao
    2020, 19 (9): 2326-2339.   DOI: 10.1016/S2095-3119(19)62877-7
    Abstract46)      PDF in ScienceDirect      
    In recent years, the use of fertigation technology with center pivot irrigation systems has increased rapidly in the North China Plain (NCP).  The combined effects of water and nitrogen application uniformity on the grain yield, water use efficiency (WUE) and nitrogen use efficiency (NUE) have become a research hotspot.  In this study, a two-year field experiment was conducted during the winter wheat growing season in 2016–2018 to evaluate the water application uniformity of a center pivot with two low pressure sprinklers (the R3000 sprinklers were installed in the first span, the corresponding treatment was RS; the D3000 sprinklers were installed in the second span, the corresponding treatment was DS) and a P85A impact sprinkler as the end gun (the corresponding treatment was EG), and to analyze its effects on grain yield, WUE and NUE.  The results showed that the water application uniformity coefficients of R3000, D3000 and P85A along the radial direction of the pivot (CUH) were 87.5, 79.5 and 65%, respectively.  While the uniformity coefficients along the traveling direction of the pivot (CUC) were all higher than 85%.  The effects of water application uniformity of the R3000 and D3000 sprinklers on grain yield were not significant (P>0.05); however, the average grain yield of EG was significantly lower (P<0.05) than those of RS and DS, by 9.4 and 11.1% during two growing seasons, respectively.  The coefficients of variation (CV) of the grain yield had a negative correlation with the uniformity coefficient.  The CV of WUE was more strongly affected by the water application uniformity, compared with the WUE value, among the three treatments.  The NUE of RS was higher than those of DS and EG by about 6.1 and 4.8%, respectively, but there were no significant differences in NUE among the three treatments during the two growing seasons.  Although the CUH of the D3000 sprinklers was lower than that of the R3000, it had only limited effects on the grain yield, WUE and NUE.  However, the cost of D3000 sprinklers is lower than that of R3000 sprinklers.  Therefore, the D3000 sprinklers are recommended for winter wheat irrigation and fertigation in the NCP. 
    Reference | Related Articles | Metrics
    Optimization of water and nitrogen management for surge-root irrigated apple trees in the Loess Plateau of China
    DAI Zhi-guang, FEI Liang-jun, ZENG Jian, HUANG De-liang, LIU Teng
    2021, 20 (1): 260-273.   DOI: 10.1016/S2095-3119(20)63283-X
    Abstract42)      PDF in ScienceDirect      
    The Loess Plateau is one of the main regions for growing apple trees in China, but a shortage of water resources and low utilization of nitrogen have restricted its agricultural development.  A 2-year field experiment was conducted which included three levels of soil water content (SWC), 90–75%, 75–60%, and 60–45% of field capacity, and five levels of nitrogen application (Napp), 0.7, 0.6, 0.5, 0.4 and 0.3 kg/plant.  The treatments were arranged in a strip-plot design with complete randomized blocks with three replications.  For both years, the water and Napp had significant (P<0.05) effects on leaf area index (LAI), yield, water use efficiency (WUE) and nitrogen partial factor productivity (NPFP) while the interaction effect of water and Napp on yield, WUE and NPFP was significant (P<0.05) in 2018, and not in 2017.  For the same SWC level, WUE first increased, then decreased as Napp increased, while NPFP tended to decrease, but the trend of LAI with different Napp was closely related to SWC.  At the same Napp, the LAI increased as SWC increased, while the WUE and NPFP first increased, then decreased, but the yield showed different trends as the SWC increased.  The dualistic and quadric regression equations of water and Napp indicate that the yield, WUE and NPFP cannot reach the maximum at the same time.  Considering the coupling effects of water and Napp on yield, WUE and NPFP in 2017 and 2018, the SWC level shall be controlled in 75–60% of field capacity and the Napp is 0.45 kg/plant, which can be as the suitable strategy of water and Napp management for the maximum comprehensive benefits of yield, WUE and NPFP for apple trees in the Loess Plateau and other regions with similar environments. 
    Reference | Related Articles | Metrics
    The water-saving potential of using micro-sprinkling irrigation for winter wheat production on the North China Plain
    ZHAI Li-chao, Lü Li-hua, DONG Zhi-qiang, ZHANG Li-hua, ZHANG Jing-ting, JIA Xiu-ling, ZHANG Zheng-bin
    2021, 20 (6): 1687-1700.   DOI: 10.1016/S2095-3119(20)63326-3
    Abstract52)      PDF in ScienceDirect      
    The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.  Water-saving technologies and procedures are thus urgently required.  To determine the water-saving potential of using micro-sprinkling irrigation (MSI) for winter wheat production, field experiments were conducted from 2012 to 2015.  Compared to traditional flooding irrigation (TFI), micro-sprinkling thrice with 90 mm water (MSI1) and micro-sprinkling four times with 120 mm water (MSI2) increased the water use efficiency by 22.5 and 16.2%, respectively, while reducing evapotranspiration by 17.6 and 10.8%.  Regardless of the rainfall pattern, MSI (i.e., MSI1 or MSI2) either stabilized or significantly increased the grain yield, while reducing irrigation water volumes by 20–40%, compared to TFI.  Applying the same volumes of irrigation water, MSI (i.e., MSI3, micro-sprinkling five times with 150 mm water) increased the grain yield and water use efficiency of winter wheat by 4.6 and 11.7%, respectively, compared to TFI.  Because MSI could supply irrigation water more frequently in smaller amounts each time, it reduced soil layer compaction, and may have also resulted in a soil water deficit that promoted the spread of roots into the deep soil layer, which is beneficial to photosynthetic production in the critical period.  In conclusion, MSI1 or MSI2 either stabilized or significantly increased grain yield while reducing irrigation water volumes by 20–40% compared to TFI, and should provide water-saving technological support in winter wheat production for smallholders on the North China Plain.
    Reference | Related Articles | Metrics