Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (11): 4294-4309    DOI: 10.1016/j.jia.2024.03.002
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
The glycoside hydrolase 7 member VdGH7a regulates Verticillium dahliae pathogenicity and induces host defenses by interacting with GhOLP1

Junyuan Lü1, 2, 4*, Shichao Liu2, 3*, Jinglong Zhou1, 2, Zili Feng1, 2, Feng Wei1, 2, Lihong Zhao1, 2, Haiqiang Li5, Heqin Zhu2, Yalin Zhang1, 2#, Hongjie Feng1, 2#

1 National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China

2 National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China

3 Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China

4 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

5 Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumuqi 830091, China

 Highlights 
Activation of the plant immune system by VdGH7a.
V. dahliae's pathogenicity toward cotton has been positively regulated by VdGH7a.
VdGH7a interacted with GhOLP1 in vitro and in vivo tests.
Cotton's resistance to V. dahliae has been positively manipulated by GhOLP1.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
病原菌可以分泌多种可以降解细胞壁的酶,从而削弱宿主的细胞壁,便于病原菌侵入植物内部。本研究中,我们鉴定了大丽轮枝菌(Verticillium dahliae)中的一种糖苷酶家族7(GH7)纤维素水解酶VdGH7a,对1,4-β-葡聚糖显示出水解活性。有趣的是,我们发现VdGH7a在存在信号肽的情况下可以诱导烟草(Nicotiana benthamiana)叶片的细胞死亡,在缺失信号肽的情况下丧失这种活性,但是诱导细胞坏死这一现象可以被碳水化合物结合型-1(CBM1)蛋白结构域有效阻止。此外,我们观察到在大丽轮枝菌中敲除VdGH7a基因显著降低了对棉花的致病力,这可以在敲除突变体菌株不能够穿透玻璃纸膜中得到证明。此外,这些敲除突变体菌株利用碳源的能力下降,使其更容易受到渗透胁迫和细胞壁应激的影响。此外,我们通过酵母双杂交技术筛选发现VdGH7a与棉花中的类渗调素蛋白蛋白(GhOLP1)相互作用,并通过双分子荧光互补(BiFC)和荧光素互补成像(LCI)试验进一步确定其存在互作关系。此外,通过利用病毒诱导基因沉默技术在棉花中沉默GhOLP1基因的表达,结果发现沉默GhOLP1的棉花株系中水杨酸(SA)含量和对大丽轮枝菌的抗性都降低了,而在拟南芥中异源过表达GhOLP1则增加了对大丽轮枝菌的抵抗性和水杨酸信号通路相关基因的表达。总的来说,这些发现表明大丽轮枝菌中的分泌蛋白VdGH7a与棉花中GhOLP1相互作用,激活寄主免疫反应,在棉花对大丽轮枝菌的抵抗中发挥重要作用。


Abstract  

Plant pathogens secrete various cell wall-degrading enzymes that compromise host cell wall integrity and facilitate pathogen invasion.  This study identified VdGH7a, a glycoside hydrolase family 7 (GH7) cellobiohydrolase from Verticillium dahliae, which demonstrated hydrolytic activity against 1,4-β-glucan.  Notably, VdGH7a induced cell death in Nicotiana benthamiana when signal peptides were present, though this effect was inhibited by the carbohydrate-binding type-1 (CBM1) protein domain.  The deletion of VdGH7a substantially reduced Vdahliae pathogenicity in cotton plants, as demonstrated by the mutants’ inability to penetrate cellophane membrane.  These knockout mutants also exhibited reduced carbon source utilization capacity and increased sensitivity to osmotic and cell wall stresses.  Through yeast two-hybrid screening, bi-molecular fluorescence complementation (BiFC), and luciferase complementation imaging (LCI), we identified that VdGH7a interacts with an osmotin-like protein (GhOLP1) in cotton.  Virus-induced gene silencing of GhOLP1 resulted in decreased salicylic acid (SA) content and reduced resistance to Vdahliae in cotton, while heterologous overexpression of GhOLP1 in Arabidopsis enhanced both resistance and SA signaling pathway gene expression.  These results reveal a virulence mechanism wherein the secreted protein VdGH7a from Vdahliae interacts with GhOLP1 to activate host immunity and contribute significantly to plant resistance against Vdahliae.

Keywords:  Verticillium dahliae       glycoside hydrolase       pathogenicity       interacting protein       host immunity  
Received: 21 July 2023   Accepted: 08 January 2024 Online: 21 March 2024  
Fund: This work was supported by the Project of Sanya Yazhou Bay Science and Technology City, China (SCKJ-JYRC-2022-75), and the Natural Science Foundation of Hainan Province, China (322QN398).
About author:  Junyuan Lü, E-mail: ljyuan0426@163.com; Shichao Liu, E-mail: liushichao29@163.com; #Correspondence Hongjie Feng, Tel: +86-371-55912725, E-mail: fenghongjie@caas.cn; Yalin Zhang, E-mail: zhangyalin@caas.cn * These authors contributed equally to this study.

Cite this article: 

Junyuan Lü, Shichao Liu, Jinglong Zhou, Zili Feng, Feng Wei, Lihong Zhao, Haiqiang Li, Heqin Zhu, Yalin Zhang, Hongjie Feng. 2025. The glycoside hydrolase 7 member VdGH7a regulates Verticillium dahliae pathogenicity and induces host defenses by interacting with GhOLP1. Journal of Integrative Agriculture, 24(11): 4294-4309.

Akira S, Uematsu S, Takeuchi O. 2006. Pathogen recognition and innate immunity. Cell, 124, 783–801.

Bi K, Scalschi L, Jaiswal N, Mengiste T, Fried R, Sanz A B, Arroyo J, Zhu W, Masrati G, Sharon A. 2021. The Botrytis cinerea Crh1 transglycosylase is a cytoplasmic effector triggering plant cell death and defense response. Nature Communications, 12, 1–15.

Boller T, Felix G. 2009. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition. Annual Review of Plant Biology, 60, 379–406.

Brito N, Espino J J, González C. 2006. The endo-β-1, 4-xylanase Xyn11A is required for virulence in Botrytis cinereaMolecular Plant–Microbe Interactions, 19, 25–32.

Bu B, Qiu D, Zeng H, Guo L, Yuan J, Yang X. 2014. A fungal protein elicitor PevD1 induces Verticillium wilt resistance in cotton. Plant Cell Reports, 33, 461–470.

Clough S J, Bent A F. 1998. Floral dip: A simplified method for Agrobacteriummediated transformation of Arabidopsis thalianaThe Plant Journal, 16, 735–743.

Delaney T P, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E. 1994. A central role of salicylic acid in plant disease resistance. Science, 266, 1247–1250.

Dong C H, Rivarola M, Resnick J S, Maggin B D, Chang C. 2008. Subcellular colocalization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling. The Plant Journal, 53, 275–286.

Eshel D, Miyara I, Ailing T, Dinoor A, Prusky D. 2002. pH regulates endoglucanase expression and virulence of Alternaria alternata in persimmon fruit. Molecular Plant–Microbe Interactions, 15, 774–779.

Fiorin G L, Sanchéz Vallet A, de Toledo Thomazella D P, do Prado P F V, do Nascimento L C, de Oliveira Figueira A V, Thomma B P, Pereira G A G, Teixeira P J P L. 2018. Suppression of plant immunity by fungal chitinase-like effectors. Current Biology, 28, 3023–3030. e3025.

Fradin E F, Thomma B P. 2006. Physiology and molecular aspects of Verticillium wilt diseases caused by Vdahliae and ValboatrumMolecular Plant Pathology, 7, 71–86.

Gui Y J, Chen J Y, Zhang D D, Li N Y, Li T G, Zhang W Q, Wang X Y, Short D P, Li L, Guo W. 2017. Verticillium dahliae manipulates plant immunity by glycoside hydrolase 12 proteins in conjunction with carbohydratebinding module 1. Environmental Microbiology, 19, 1914–1932.

Gui Y J, Zhang W Q, Zhang D D, Zhou L, Short D P, Wang J, Ma X F, Li T G, Kong Z Q, Wang B L. 2018. A Verticillium dahliae extracellular cutinase modulates plant immune responses. Molecular Plant–Microbe Interactions, 31, 260–273.

Han L B, Li Y B, Wang F X, Wang W Y, Liu J, Wu J H, Zhong N Q, Wu S J, Jiao G L, Wang H Y. 2019. The cotton apoplastic protein CRR1 stabilizes chitinase 28 to facilitate defense against the fungal pathogen Verticillium dahliaeThe Plant Cell, 31, 520–536.

Houterman P M, Cornelissen B J, Rep M. 2008. Suppression of plant resistance gene-based immunity by a fungal effector. PLoS Pathogens, 4, e1000061.

Jayasekara S, Ratnayake R. 2019. Microbial cellulases: An overview and applications. Cellulose, 22, 130.

De Jonge R, Peter van Esse H, Kombrink A, Shinya T, Desaki Y, Bours R, Van Der Krol S, Shibuya N, Joosten M H, Thomma B P. 2010. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science, 329, 953–955.

Kofli N T, Nagahisa K, Shioya S, Shimizu H. 2006. Responses of different strains of Saccharomyces cerevisiae to osmotic stress. Sains Malaysiana, 35, 9–15.

Kubicek C P, Starr T L, Glass N L. 2014. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annual Review of Plant Biology, 52, 427–451.

Lai M W, Liou R F. 2018. Two genes encoding GH10 xylanases are essential for the virulence of the oomycete plant pathogen Phytophthora parasiticaCurrent Genetics, 64, 931–943.

Liu L, Wang Z, Li J, Wang Y, Yuan J, Zhan J, Wang P, Lin Y, Li F, Ge X. 2021a. Verticillium dahliae secreted protein Vd424Y is required for full virulence, targets the nucleus of plant cells, and induces cell death. Molecular Plant Pathology, 22, 1109–1120.

Liu L, Zhang Y D, Zhang D D, Zhang Y Y, Wang D, Song J, Zhang J, Li R, Kong Z Q, Klosterman S J. 2021b. Biological characteristics of Verticillium dahliae MAT1-1 and MAT1-2 strains. International Journal of Molecular Sciences, 22, 7148.

Ma A, Zhang D, Wang G, Wang K, Li Z, Gao Y, Li H, Bian C, Cheng J, Han Y. 2021. Verticillium dahliae effector VDAL protects MYB6 from degradation by interacting with PUB25 and PUB26 E3 ligases to enhance Verticillium wilt resistance. The Plant Cell, 33, 3675–3699.

Ma Z, Song T, Zhu L, Ye W, Wang Y, Shao Y, Dong S, Zhang Z, Dou D, Zheng X. 2015. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. The Plant Cell, 27, 2057–2072.

Ma Z, Zhu L, Song T, Wang Y, Zhang Q, Xia Y, Qiu M, Lin Y, Li H, Kong L. 2017. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science, 355, 710–714.

McNeil M, Darvill A G, Fry S C, Albersheim P. 1984. Structure and function of the primary cell walls of plants. Annual Review of Biochemistry, 53, 625–663.

Medzhitov R, Janeway C A. 1997. Innate immunity: The virtues of a nonclonal system of recognition. Cell, 91, 295–298.

Mo H, Wang X, Zhang Y, Zhang G, Zhang J, Ma Z. 2015. Cotton polyamine oxidase is required for spermine and camalexin signalling in the defence response to Verticillium dahliaeThe Plant Journal, 83, 962–975.

Nie J, Zhou W, Liu J, Tan N, Zhou J M, Huang L. 2021. A receptorlike protein from Nicotiana benthamiana mediates VmE02 PAMPtriggered immunity. New Phytologist, 229, 2260–2272.

Noda J, Brito N, González C. 2010. The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biology, 10, 1–15.

Nühse T S. 2012. Cell wall integrity signaling and innate immunity in plants. Frontiers in Plant Science, 3, 280.

Nürnberger T, Brunner F. 2002. Innate immunity in plants and animals: Emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Current Opinion in Plant Biology, 5, 318–324.

Oh S K, Young C, Lee M, Oliva R, Bozkurt T O, Cano L M, Win J, Bos J I, Liu H, van Damme M. 2009. In planta expression screens of Phytophthora infestans RXLR effectors reveal diverse phenotypes, including activation of the Solanum bulbocastanum disease resistance protein Rpi-blb2. The Plant Cell, 21, 2928–2947.

Qi X, Zhang C, Zhu J, Liu C, Huang C, Li X, Xie C. 2020. Genome editing enables next-generation hybrid seed production technology. Molecular Plant, 13, 1262–1269.

Qiao Y, Shi J, Zhai Y, Hou Y, Ma W. 2015. Phytophthora effector targets a novel component of small RNA pathway in plants to promote infection. Proceedings of the National Academy of Sciences of the United States of America, 112, 5850–5855.

Qin J X, Li B H, Zhou S Y. 2020. A novel glycoside hydrolase 74 xyloglucanase CvGH74A is a virulence factor in Coniella vitisJournal of Integrative Agriculture, 19, 2725–2735.

Qiu M, Li Y, Ye W, Zheng X, Wang Y. 2021. A CRISPR/Cas9mediated in situ complementation method for Phytophthora sojae mutants. Molecular Plant Pathology, 22, 373–381.

Quoc N B, Chau N N B. 2017. The role of cell wall degrading enzymes in pathogenesis of Magnaporthe oryzaeCurrent Protein and Peptide Science, 18, 1019–1034.

Rafiei V, Vélëz H, Tzelepis G. 2021. The role of glycoside hydrolases in phytopathogenic fungi and oomycetes virulence. International Journal of Molecular Sciences, 22, 9359.

Rehman L, Su X, Guo H, Qi X, Cheng H. 2016. Protoplast transformation as a potential platform for exploring gene function in Verticillium dahliaeBMC Biotechnology, 16, 1–9.

Shaban M, Miao Y, Ullah A, Khan A Q, Menghwar H, Khan A H, Ahmed M M, Tabassum M A, Zhu L. 2018. Physiological and molecular mechanism of defense in cotton against Verticillium dahliaePlant Physiology and Biochemistry, 125, 193–204.

Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T. 2004. Toward a systems approach to understanding plant cell walls. Science, 306, 2206–2211.

Su X, Rehman L, Guo H, Li X, Zhang R, Cheng H. 2017. AAC as a potential target gene to control Verticillium dahliaeGenes, 8, 25.

Tan X, Hu Y, Jia Y, Hou X, Xu Q, Han C, Wang Q. 2020. A conserved glycoside hydrolase family 7 cellobiohydrolase PsGH7a of Phytophthora sojae is required for full virulence on soybean. Frontiers in Microbiology, 11, 1285.

Tang Y, Zhang Z, Lei Y, Hu G, Liu J, Hao M, Chen A, Peng Q, Wu J. 2019. Cotton WATs modulate SA biosynthesis and local lignin deposition participating in plant resistance against Verticillium dahliaeFrontiers in Plant Science, 10, 526.

Thomma B P, Nürnberger T, Joosten M H. 2011. Of PAMPs and effectors: The blurred PTI-ETI dichotomy. The Plant Cell, 23, 4–15.

Van Vu B, Itoh K, Nguyen Q B, Tosa Y, Nakayashiki H. 2012. Cellulases belonging to glycoside hydrolase families 6 and 7 contribute to the virulence of Magnaporthe oryzaeMolecular Plant–Microbe Interactions, 25, 1135–1141.

Vorwerk S, Somerville S, Somerville C. 2004. The role of plant cell wall polysaccharide composition in disease resistance. Trends in Plant Science, 9, 203–209.

Wang B, Yang X, Zeng H, Liu H, Zhou T, Tan B, Yuan J, Guo L, Qiu D. 2012. The purification and characterization of a novel hypersensitive-like response-inducing elicitor from Verticillium dahliae that induces resistance responses in tobacco. Applied Microbiology and Biotechnology, 93, 191–201.

Wang D, Akhberdi O, Hao X, Yu X, Chen L, Liu Y, Zhu X. 2017. Amino acid sensor kinase Gcn2 is required for conidiation, secondary metabolism, and cell wall integrity in the Taxol-producer Pestalotiopsis microsporaFrontiers in Microbiology, 8, 1879.

Wang J Y, Cai Y, Gou J Y, Mao Y B, Xu Y H, Jiang W H, Chen X Y. 2004. VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting. Applied and Environmental Microbiology, 70, 4989–4995.

Wang Y, Tyler B M, Wang Y. 2019. Defense and counterdefense during plant-pathogenic oomycete infection. Annual Review of Microbiology, 73, 667–696.

Wu Y, Zhang L, Zhou J, Zhang X, Feng Z, Wei F, Zhao L, Zhang Y, Feng H, Zhu H. 2021. Calcium-dependent protein kinase GhCDPK28 was dentified and involved in verticillium wilt resistance in cotton. Frontiers in Plant Science12, 2898.

Xie C, Li Q, Yang X. 2017. Characterization of VdASP F2 secretory factor from Verticillium dahliae by a fast and easy gene knockout system. Molecular Plant–Microbe Interactions, 30, 444–454.

Yalpani N, Raskin I. 1993. Salicylic acid: A systemic signal in induced plant disease resistance. Trends in Microbiology, 1, 88–92.

Yang B, Wang Y, Tian M, Dai K, Zheng W, Liu Z, Yang S, Liu X, Shi D, Zhang H. 2021. Fg12 ribonuclease secretion contributes to Fusarium graminearum virulence and induces plant cell death. Journal of Integrative Plant Biology, 63, 365–377.

Yang G, Tang L, Gong Y, Xie J, Fu Y, Jiang D, Li G, Collinge D B, Chen W, Cheng J. 2018. A ceratoplatanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorumNew Phytologist, 217, 739–755.

Yang Y, Zhang Y, Li B, Yang X, Dong Y, Qiu D. 2018. A Verticillium dahliae pectate lyase induces plant immune responses and contributes to virulence. Frontiers in Plant Science, 9, 1271.

Yin W, Wang Y, Chen T, Lin Y, Luo C. 2018. Functional evaluation of the signal peptides of secreted proteins. Bio-Protocol, 8, e2839.

Yu J, Li T, Tian L, Tang C, Klosterman S J, Tian C, Wang Y. 2019. Two Verticillium dahliae MAPKKKs, VdSsk2 and VdSte11, have distinct roles in pathogenicity, microsclerotial formation, and stress adaptation. Msphere, 4, e00426–19.

Yu X, Li L, Li L, Guo M, Chory J, Yin Y. 2008. Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in ArabidopsisProceedings of the National Academy of Sciences of the United States of America, 105, 7618–7623.

Yu Y, Xiao J, Zhu W, Yang Y, Mei J, Bi C, Qian W, Qing L, Tan W. 2017. SsRhs1, a secretory Rhs repeatcontaining protein, is required for the virulence of Sclerotinia sclerotiorumMolecular Plant Pathology, 18, 1052–1061.

Zhang C, Meng X, Gu H, Ma Z, Lu L. 2018. Predicted glycerol 3-phosphate dehydrogenase homologs and the glycerol kinase GlcA coordinately adapt to various carbon sources and osmotic stress in Aspergillus fumigatusG3GenesGenomesGenetics, 8, 2291–2299.

Zhang L, Yan J P, Fu Z C, Shi W J, Ninkuu V, Li G Y, Yang X F, Zeng H M. 2021. FoEG1, a secreted glycoside hydrolase family 12 protein from Fusarium oxysporum, triggers cell death and modulates plant immunity. Molecular Plant Pathology, 22, 522–538.

Zhang X, Zhao L, Liu S, Zhou J, Wu Y, Feng Z, Zhang Y, Zhu H, Wei F, Feng H. 2022. Identification and functional analysis of a novel hydrophobic protein VdHP1 from Verticillium dahliaeMicrobiology Spectrum, 10, e0247821.

Zhang Y, Gao Y, Liang Y, Dong Y, Yang X, Yuan J, Qiu D. 2017. The Verticillium dahliae SnodProt1-like protein VdCP1 contributes to virulence and triggers the plant immune system. Frontiers in Plant Science, 8, 1880.

Zhang Y, Shih D S. 2007. Isolation of an osmotin-like protein gene from strawberry and analysis of the response of this gene to abiotic stresses. Journal of Plant Physiology, 164, 68–77.

Zhang Y, Wang W, Chen J, Liu J, Xia M, Shen F. 2015. Identification of miRNAs and their targets in cotton inoculated with Verticillium dahliae by high-throughput sequencing and degradome analysis. International Journal of Molecular Sciences, 16, 14749–14768.

Zhao P, Zhao Y L, Jin Y, Zhang T, Guo H S. 2014. Colonization process of Arabidopsis thaliana roots by a green fluorescent protein-tagged isolate of Verticillium dahliaeProtein & Cell, 5, 94–98.

Zhou J, Feng Z, Liu S, Wei F, Shi Y, Zhao L, Huang W, Zhou Y, Feng H, Zhu H. 2021. CGTase, a novel antimicrobial protein from Bacillus cereus YUPP10, suppresses Verticillium dahliae and mediates plant defence responses. Molecular Plant Pathology, 22, 130–144.

Zhu B, Chen T H, Li P H. 1995. Expression of three osmotin-like protein genes in response to osmotic stress and fungal infection in potato. Plant Molecular Biology, 28, 17–26.

Zhu H Q, Feng Z L, Li Z F, Shi Y Q, Zhao L H, Yang J R. 2013. Characterization of two fungal isolates from cotton and evaluation of their potential for biocontrol of Verticillium wilt of cotton. Journal of Phytopathology, 161, 70–77.

Zhu X, Sayari M, Islam M R, Daayf F. 2021. NOXA is important for Verticillium dahliae’s penetration ability and virulence. Journal of Fungi, 7, 814.

[1] Lifang Yuan, Hang Jiang, Qibao Liu, Xilong Jiang, Yanfeng Wei, Xiangtian Yin, Tinggang Li. Acidic environment favors the development and pathogenicity of the grape white rot fungus Coniella vitis[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2686-2703.
[2] Shulin Zhang, Yu Wang, Jinmei Hu, Xinyue Cui, Xiaoru Kang, Wei Zhao, Yuemin Pan. The N-mannosyltransferase MoAlg9 plays important roles in the development and pathogenicity of Magnaporthe oryzae[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2266-2284.
[3] Zhizhou Xu, Guichun Wu, Bo Wang, Baodian Guo, Cong Sheng, Yangyang Zhao, Bao Tang, Yancun Zhao, Fengquan Liu. Sigma factor 70 RpoD contributes to virulence by regulating cell motility, oxidative stress tolerance, and manipulating the expression of hrpG and hrpX in Xanthomonas oryzae pv. oryzae[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1844-1859.
[4] Wenrui Fan, Yuntong Chen, Mengmeng Yu, Yongzhen Liu, Yulong Gao. Advances on ALV-J in China over the past two decades[J]. >Journal of Integrative Agriculture, 2025, 24(2): 429-440.
[5] Gaosong Liu, Xuelian Lü, Qiufeng Tian, Wanjiang Zhang, Fei Yi, Yueling Zhang, Shenye Yu. Deletion of Salmonella pathogenicity islands SPI-1, 2 and 3 induces substantial morphological and metabolic alternation and protective immune potential[J]. >Journal of Integrative Agriculture, 2025, 24(1): 272-289.
[6] Haiyang Li, Yuan Zhang, Cancan Qin, Zhifang Wang, Lingjun Hao, Panpan Zhang, Yongqiang Yuan, Chaopu Ding, Mengxuan Wang, Feifei Zan, Jiaxing Meng, Xunyu Zhuang, Zheran Liu, Limin Wang, Haifeng Zhou, Linlin Chen, Min Wang, Xiaoping Xing, Hongxia Yuan, Honglian Li, Shengli Ding. Identification and characterization of FpRco1 in regulating vegetative growth and pathogenicity based on T-DNA insertion in Fusarium pseudograminearum[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3055-3065.
[7] Libin Liang, Yaning Bai, Wenyan Huang, Pengfei Ren, Xing Li, Dou Wang, Yuhan Yang, Zhen Gao, Jiao Tang, Xingchen Wu, Shimin Gao, Yanna Guo, Mingming Hu, Zhiwei Wang, Zhongbing Wang, Haili Ma, Junping Li. Genetic and biological properties of H9N2 avian influenza viruses isolated in central China from 2020 to 2022[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2778-2791.
[8] Yuhan Yang, Dou Wang, Yaning Bai, Wenyan Huang, Shimin Gao, Xingchen Wu, Ying Wang, Jianle Ren, Jinxin He, Lin Jin, Mingming Hu, Zhiwei Wang, Zhongbing Wang, Haili Ma, Junping Li, Libin Liang. Genetic and pathogenic characterization of new infectious bronchitis virus strains in the GVI-1 and GI-19 lineages isolated in central China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2407-2420.
[9] Yue Jiang, Rong Wang, Lili Du, Xueyu Wang, Xi Zhang, Pengfei Qi, Qianfei Wu, Baoyi Peng, Zonghua Wang, Mo Wang, Ya Li.

The DNA damage repair complex MoMMS21–MoSMC5 is required for infection-related development and pathogenicity of Magnaporthe oryzae [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1956-1966.

[10] Yina Xu, Hailing Li, Haoyu Leng, Chaofan Su, Siqi Tang, Yongtao Wang, Shiwei Zhang, Yali Feng, Yanan Wu, Daxin Wang, Ying Zhang. Genetic and biological properties of H10Nx influenza viruses in China[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3860-3869.
[11] Chengdong Yang, Manfei Luo, Xue Zhang, Linlin Ye, Ge Yu, Yi Lü, Yi Chen, Taixu Chen, Xuejian Wang, Wanzhen Feng, Qinghe Chen. Autophagy-related protein PlAtg3 participates in vegetative growth, sporangial cleavage, autophagy and pathogenicity of Peronophythora litchii[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3788-3800.
[12] Dong Deng, Wenqi Wu, Canxing Duan, Suli Sun, Zhendong Zhu.

A novel pathogen Fusarium cuneirostrum causing common bean (Phaseolus vulgaris) root rot in China [J]. >Journal of Integrative Agriculture, 2024, 23(1): 166-176.

[13] ZHANG Hao-yang, YANG Yan-fang, GUO Feng, SHEN Xiao-rui, LU Shan, CHEN Bao-sha. SsRSS1 mediates salicylic acid tolerance and contributes to virulence in sugarcane smut fungus[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2126-2137.
[14] ZHOU Jing-jing, ZHANG Xiao-ping, LIU Rui, LING Jian, LI Yan, YANG Yu-hong, XIE Bing-yan, ZHAO Jian-long, MAO Zhen-chuan. A Meloidogyne incognita effector Minc03329 suppresses plant immunity and promotes parasitism[J]. >Journal of Integrative Agriculture, 2023, 22(3): 799-811.
[15] ZHAO Yi-ran, ZHAO Yu-zhong, LIU Si-dang, XIAO Yi-hong, LI Ning, LIU Kui-hao, MENG Fan-liang, ZHAO Jun, LIU Meng-da, LI Bao-quan.

Phylogenetic and epidemiological characteristics of H9N2 avian influenza viruses in Shandong Province, China from 2019 to 2021 [J]. >Journal of Integrative Agriculture, 2023, 22(3): 881-896.

No Suggested Reading articles found!