Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (11): 4310-4323    DOI: 10.1016/j.jia.2024.09.033
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Glycosylphosphatidylinositol (GPI) anchoring controls cell wall integrity, immune evasion and surface localization of ChFEM1 for infection of Cochlibolus heterostrophus

Hong Hu1*, Tiangu Liu1*, Xinyun Xie1, Fuyan Li1, Caiyun Liu2, Jintao Jiang1, Zhigang Li3, Xiaolin Chen1#

1 State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

2 Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China

3 Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests of Ministry of Education, College of Plant Protection, Hainan University, Haikou 570000, China

 Highlights 
GPI anchoring is indispensable for cell-wall integrity and full virulence of the maize pathogen Cochliobolus heterostrophus.
Deletion of ChGPI7 or ChFEM1 crippled appressorium formation, exposes chitin, and triggers host immune detection.
124 potential GPI-anchored proteins were predicted, indicating that this pathway may serve as a potential antifungal target.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
GPI(糖基磷脂酰肌醇)锚定修饰在不同物种中发挥着粘附、分子吸收、信号转导和保护、细胞壁组分的合成和重组以及细胞壁蛋白的锚定等作用,且对真菌的生长发育和致病过程发挥着重要作用。目前关于 GPI 锚定修饰在真菌中虽然已有了初步研究,但其生物学功能和致病调控机制尚需深入揭示。本文对玉米小斑病菌 (Cochlibolus heterostrophus) GPI 锚定修饰的生物学功能和致病机制进行研究。首先,探究了 GPI 锚生物合成通路关键蛋白 ChGPI7 在玉米小斑病菌生长发育和致病过程中的功能及其参与致病的调控机制。结果表明,GPI锚定蛋白在玉米小斑菌的菌丝、附着胞和侵染菌丝中广泛表达。玉米小班菌ChGPI7基因的缺失会导致玉米小斑菌生长速度和分生孢子产孢能力显著下降。同时玉米小班菌ChGPI7基因敲除体∆Chgpi7的附着胞形成和侵染过程明显受阻,导致其致病力显著下降。∆Chgpi7敲除体还表现出严重的细胞壁完整性缺陷。ChGPI7基因的缺失和HF pyridine处理都会导致玉米小斑菌的细胞壁蛋白丰度减弱和几丁质的暴露,说明GPI锚定蛋白可以保护几丁质不被宿主免疫识别。在玉米小斑菌中,共有124个蛋白质被预测为GPI锚定修饰蛋白,其中包括一种假定的细胞壁糖蛋白ChFEM1,并发现其功能受 GPI 锚定修饰调控。缺失ChFEM1也会导致玉米小斑菌的致病力显著下降、侵染结构和细胞壁完整性的缺陷。我们的研究进一步发现,在玉米小斑菌中,ChGPI7调控ChFEM1蛋白的细胞壁定位和蛋白丰度。综合以上结果可以表明,GPI锚定修饰调节了玉米小斑菌的细胞壁完整性,免疫逃避和ChFEM1蛋白的细胞壁定位。研究结果为深入研究玉米小斑病菌的致病机制提供了理论基础,同时为开发防治玉米小斑病菌的新型药剂提供了潜在的靶标。


Abstract  

Glycosylphosphatidylinositol (GPI) anchoring represents a fundamental post-translational modification in eukaryotic cells.  In fungi, this modification facilitates diverse biological functions through protein targeting to the cell wall, yet research on its roles in plant pathogenic fungi remains limited.  This study elucidates the function of GPI anchoring in the maize fungal pathogen Cochlibolus heterostrophus.  The research demonstrates widespread accumulation of GPI-anchored proteins in hyphae, appressorium and infection hyphae of Cheterostrophus.  Deletion of ChGPI7, encoding a crucial enzyme in GPI anchor biosynthesis, substantially reduced vegetative growth, conidiation, and virulence through impaired appressorium formation and invasive growth.  The ΔChgpi7 mutants exhibited marked deficiencies in cell wall integrity, leading to decreased stress resistance.  Both ChGPI7 deletion and hydro fluoric acid (HF) pyridine treatment eliminated cell wall GPI-anchored proteins and exposed chitin, indicating that GPI-anchored proteins shield chitin from host immune recognition.  Analysis identified 124 predicted GPI-anchored proteins in Cheterostrophus, including the putative cell wall glycoprotein ChFEM1.  The deletion of ChFEM1 similarly reduced virulence and compromised infection structures and cell wall integrity.  Additionally, ChGPI7 influenced both the cell wall localization and protein abundance of ChFEM1.  These findings demonstrate that GPI anchoring mediates cell wall integrity and immune evasion during Cheterostrophus infection.


Keywords:  Cochlibolus heterostrophus        GPI anchor        immune evasion        cell wall integrity        cell wall protein        fungal infection  
Received: 04 July 2024   Accepted: 30 August 2024 Online: 26 September 2024  
Fund: 
This work was supported by the Fundamental Research Funds for the Central Universities, China (2021ZKPY007).
About author:  #Correspondence Xiaolin Chen, E-mail: chenxiaolin@mail.hzau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Hong Hu, Tiangu Liu, Xinyun Xie, Fuyan Li, Caiyun Liu, Jintao Jiang, Zhigang Li, Xiaolin Chen. 2025. Glycosylphosphatidylinositol (GPI) anchoring controls cell wall integrity, immune evasion and surface localization of ChFEM1 for infection of Cochlibolus heterostrophus. Journal of Integrative Agriculture, 24(11): 4310-4323.

Ahn N, Kim S, Choi W, Im K H, Lee Y H. 2004. Extracellular matrix protein gene, EMP1, is required for appressorium formation and pathogenicity of the rice blast fungus, Magnaporthe griseaMolecules and Cells17, 166–173.

Altenbach D, Robatzek S. 2007. Pattern recognition receptors: From the cell surface to intracellular dynamics. Molecular Plant–Microbe Interactions20, 1031–1039.

Bowman S M, Free S J. 2006. The structure and synthesis of the fungal cell wall. BioEssays: News and reviews in molecular. Cellular and Developmental Biology28, 799–808.

Brodsky R A, Mukhina G L, Li S, Nelson K L, Chiurazzi P L, Buckley J T, Borowitz M J. 2000. Improved detection and characterization of paroxysmal nocturnal hemoglobinuria using fluorescent aerolysin. American Journal of Clinical Pathology114, 459–466.

Chen X L, Shi T, Yang J, Shi W, Gao X, Chen D, Xu X, Xu J R, Talbot N J, Peng Y L. 2014. N-glycosylation of effector proteins by an α-1,3-mannosyltransferase is required for the rice blast fungus to evade host innate immunity. The Plant Cell26, 1360–1376.

Chisholm S T, Coaker G, Day B, Staskawicz B J. 2006. Host–microbe interactions: Shaping the evolution of the plant immune response. Cell124, 803–814.

Doyle R J, Birdsell D C. 1972. Interaction of concanavalin A with the cell wall of Bacillus subtilis. Journal of Bacteriology109, 652–658.

Eisenhaber B, Schneider G, Wildpaner M, Eisenhaber F. 2004. A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulansCandida albicansNeurospora crassaSaccharomyces cerevisiae and Schizosaccharomyces pombeJournal of Molecular Biology337, 243–253.

Feiz L, Irshad M, Pont-Lezica R F, Canut H, Jamet E. 2006. Evaluation of cell wall preparations for proteomics: A new procedure for purifying cell walls from Arabidopsis hypocotylsPlant Methods2, 10.

Felix G, Regenass M, Boller T. 1993. Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: Induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. The Plant Journal4, 307–316.

Goswami R S. 2012. Targeted gene replacement in fungi using a split-marker approach. Methods in Molecular Biology835, 255–269.

De Groot P W, Bader O, de Boer A D, Weig M, Chauhan N. 2013. Adhesins in human fungal pathogens: Glue with plenty of stick. Eukaryotic Cell12, 470–481.

De Groot P W, Ram A F, Klis F M. 2005. Features and functions of covalently linked proteins in fungal cell walls. Fungal Genetics and Biology42, 657–675.

Hong Y, Ohishi K, Inoue N, Kang J Y, Shime H, Horiguchi Y, van der Goot F G, Sugimoto N, Kinoshita T. 2002. Requirement of N-glycan on GPI-anchored proteins for efficient binding of aerolysin but not Clostridium septicum alpha-toxin. The EMBO Journal21, 5047–5056.

Imhof I, Flury I, Vionnet C, Roubaty C, Egger D, Conzelmann A. 2004. Glycosylphosphatidylinositol (GPI) proteins of Saccharomyces cerevisiae contain ethanolamine phosphate groups on the alpha1,4-linked mannose of the GPI anchor. The Journal of Biological Chemistry279, 19614–19627.

Jones J D, Dangl J L. 2006. The plant immune system. Nature444, 323–329.

Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceedings of the National Academy of Sciences of the United States of America103, 11086–11091.

Kinoshita T. 2020. Biosynthesis and biology of mammalian GPI-anchored proteins. Open Biology10, 190290.

Klis F M, Boorsma A, De Groot P W. 2006. Cell wall construction in Saccharomyces cerevisiaeYeast23, 185–202.

Klis F M, de Groot P, Hellingwerf K. 2001. Molecular organization of the cell wall of Candida albicansMedical Mycology39, 1–8.

Kombrink A, Sánchez-Vallet A, Thomma B P. 2011. The role of chitin detection in plant--pathogen interactions. Microbes and Infection13, 1168–1176.

Latgé J P. 2010. Tasting the fungal cell wall. Cellular Microbiology12, 863–872.

Latgé J P, Beauvais A. 2014. Functional duality of the cell wall. Current Opinion in Microbiology20, 111–117.

Leidich S D, Kostova Z, Latek R R, Costello L C, Drapp D A, Gray W, Fassler J S, Orlean P. 1995. Temperature-sensitive yeast GPI anchoring mutants gpi2 and gpi3 are defective in the synthesis of N-acetylglucosaminyl phosphatidylinositol. Cloning of the GPI2 gene. The Journal of Biological Chemistry270, 13029–13035.

Li H, Zhou H, Luo Y, Ouyang H, Hu H, Jin C. 2007. Glycosylphosphatidylinositol (GPI) anchor is required in Aspergillus fumigatus for morphogenesis and virulence. Molecular Microbiology64, 1014–1027.

Liu C, Xing J, Cai X, Hendy A, He W, Yang J, Huang J, Peng Y L, Ryder L, Chen X L. 2020. GPI7-mediated glycosylphosphatidylinositol anchoring regulates appressorial penetration and immune evasion during infection of Magnaporthe oryzaeEnvironmental Microbiology22, 2581–2595.

Mei J, Ning N, Wu H, Chen X, Li Z, Liu W. 2022. Glycosylphosphatidylinositol anchor biosynthesis pathway-related protein GPI7 is required for the vegetative growth and pathogenicity of Colletotrichum graminicolaInternational Journal of Molecular Sciences23, 2985.

Nozaki M, Ohishi K, Yamada N, Kinoshita T, Nagy A, Takeda J. 1999. Developmental abnormalities of glycosylphosphatidylinositol-anchor-deficient embryos revealed by Cre/loxP system. Laboratory Investigation79, 293–299.

Park S, Lee C, Sabharwal P, Zhang M, Meyers C L, Sockanathan S. 2013. GDE2 promotes neurogenesis by glycosylphosphatidylinositol-anchor cleavage of RECK. Science339, 324–328.

Pittet M, Conzelmann A. 2007. Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiaeBiochimica et Biophysica Acta1771, 405–420.

Richard M L, de Groot P W J, Courtin O, Poulain D, Klis F, Gaillardin C. 2002. GPI7 affects cell-wall protein anchorage in Saccharomyces cerevisiae and Candida albicansMicrobiology7, 2125–2133.

Ride J P, Barber M S. 1990. Purification and characterization of multiple forms of endochitinase from wheat leaves. Plant Science71, 185–197.

Rittenour W R, Harris S D. 2013. Glycosylphosphatidylinositol-anchored proteins in Fusarium graminearum: Inventory, variability, and virulence. PLoS ONE8, e81603.

Samalova M, Mélida H, Vilaplana F, Bulone V, Soanes D M, Talbot N J, Gurr S J. 2017. The β-1,3-glucanosyltransferases (Gels) affect the structure of the rice blast fungal cell wall during appressorium-mediated plant infection. Cellular Microbiology19, e12659.

Sánchez-Vallet A, Mesters J R, Thomma B P. 2015. The battle for chitin recognition in plant-microbe interactions. FEMS Microbiology Reviews39, 171–183.

Schoffelmeer E A, Vossen J H, van Doorn A A, Cornelissen B J, Haring M A. 2001. FEM1, a Fusarium oxysporum glycoprotein that is covalently linked to the cell wall matrix and is conserved in filamentous fungi. Molecular Genetics and Genomics265, 143–152.

Shen H, Chen S M, Liu W, Zhu F, He L J, Zhang J D, Zhang S Q, Yan L, Xu Z, Xu G T, An M M, Jiang Y Y. 2015. Abolishing cell wall glycosylphosphatidylinositol-anchored proteins in Candida albicans enhances recognition by Host Dectin-1. Infect Immun83, 2694–2704.

Thomma B P, Nürnberger T, Joosten M H. 2011. Of PAMPs and effectors: The blurred PTI-ETI dichotomy. The Plant Cell, 23, 4–15.

De Wit P J. 2007. How plants recognize pathogens and defend themselves. Cellular and Molecular Life Sciences64, 2726–2732.

Yin Q Y, de Groot P W, Dekker H L, de Jong L, Klis F M, de Koster C G. 2005. Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls: Identification of proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages. The Journal of Biological Chemistry280, 20894–20901.

No related articles found!
No Suggested Reading articles found!