Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
The N-mannosyltransferase MoAlg9 plays important roles in the development and pathogenicity of Magnaporthe oryzae
ZHANG Shu-lin1, 2*#, WANG Yu1, 2*, HU Jin-mei1, 2*, CUI Xin-yue1, 2, KANG Xiao-ru1, 2, ZHAO Wei3#, PAN Yue-min1, 2#

1 Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, P.R.China

2 Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, P.R.China 

3 Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230036, P.R.China 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

由稻瘟病菌(Magnaporthe oryzae)侵染引起的水稻稻瘟病可以造成水稻减产,严重威胁水稻安全生产。蛋白质糖基化修饰在植物病原真菌侵染过程中发挥重要作用,已知甘露糖转移酶Alg9参与真核生物N-糖基化过程,但其在稻瘟病菌中的功能仍不清楚。鉴于此,本研究在稻瘟病菌中鉴定到Alg9同源蛋白MoAlg9,并对其功能进行研究。亚细胞定位结果显示MoAlg9定位于内质网,通过基因敲除和表型分析,研究结果表明,MoALG9基因敲除导致稻瘟病菌产孢量下降,分生孢子隔膜异常,对细胞壁胁迫因子和氧化胁迫因子敏感性降低,对盐胁迫因子敏感性增加,附着胞形成异常,致病性下降。此外,MoALG9影响稻瘟病菌附着胞形成阶段对糖原的利用及转移。这些结果表明稻瘟病菌MoALG9在发育、胁迫响应、物质利用和致病过程中均具有重要作用。随后采用qRT-PCR分析发现MoALG9参与调控稻瘟病菌产孢、附着胞形成和细胞壁完整性相关基因的转录。MoAlg9含有1个保守的Glyco_transf_22结构域,结构域缺失结果表明,该保守结构域对MoAlg9的生物学功能及其正确定位发挥功能。进一步采用Western blot分析发现,MoALG9基因敲除导致稻瘟病菌N糖基化蛋白含量显著降低。同时,qRT-PCR分析结果表明,MoALG9基因敲除导致稻瘟病菌N糖基化相关基因的转录水平显著下降。综上所述,本研究揭示了MoALG9介导N-糖基化调控稻瘟病菌发育和致病性,为研发针对蛋白N-糖基化修饰的水稻稻瘟病的防控方法提供了分子靶标。



Abstract  

Magnaporthe oryzae is the causal agent of rice blast. Glycosylation plays key roles in vegetative growth, development, and infection of M. oryzae. However, several glycosylation-related genes have not been characterized. In this study, we identified a Glyco_transf_22 domain-containing protein, MoAlg9, and found that MoAlg9 is localized to the endoplasmic reticulum (ER). Deletion of MoALG9 significantly affected conidial production, normal appressorium formation, responses to stressors, and pathogenicity of M. oryzae. We also found that the ΔMoalg9 mutant was defective in glycogen utilization, appressorial penetration, and invasive growth in host cells. Moreover, we further demonstrated that MoALG9 regulates the transcription of several target genes involved in conidiation, appressorium formation, and cell-wall integrity. In addition, we found that the Glyco_transf_22 domain is essential for normal MoAlg9 function and localization. We also provide evidence that MoAlg9 is involved in N-glycosylation pathway in M. oryzae. Taken together, these results show that MoAlg9 is important for conidiation, appressorium formation, maintenance of cell wall integrity, and the pathogenesis of M. oryzae.

Keywords:  Glycosylation              N-mannosyltransferase              Alg9              pathogenicity              rice blast              Magnaporthe oryzae  
Online: 23 October 2023  
Fund: This study was supported by the National Natural Science Foundation of China (32202253), the Natural Science Foundation of Anhui Higher Education Institutions (KJ2020A0102) and the Talent Research Project of Anhui Agricultural University (rc342001).
About author:  WANG Yu, E-mail: wangyu2811@163.com, Tel: +86-18792043144; Hu Jin-mei, E-mail: 3093292667@qq.com, Tel: +86-13167685203; #Correspondence ZHANG Shu-lin, Tel: +86-18819265845, E-mail: zhangsl80h@ahau.edu.cn; ZHAO Wei, Tel: +86-17755107511, E-mail: bioplay@sina.com; PAN Yue-min, Tel: +86-13705693817, E-mail: panyuemin2008@163.com * indicates the authors who contributed equally to this study

Cite this article: 

ZHANG Shu-lin, WANG Yu, HU Jin-mei, CUI Xin-yue, KANG Xiao-ru, ZHAO Wei, PAN Yue-min. 2023. The N-mannosyltransferase MoAlg9 plays important roles in the development and pathogenicity of Magnaporthe oryzae. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2023.10.027

Aebi M, Gassenhuber J, Domdey H, Te Heesen S. 1996. Cloning and characterization of the ALG3 gene of Saccharomyces cerevisiae. Glycobiology, 6, 439-444.

Besse W, Chang A R, Luo J Z, Triffo W J, Moore B S, Gulati A, Hartzel D N, Mane S, Regeneron Genetics C, Torres V E, Somlo S, Mirshahi T. 2019. ALG9 Mutation Carriers Develop Kidney and Liver Cysts. J Am Soc Nephrol, 30, 2091-2102.

Bickel T, Lehle L, Schwarz M, Aebi M, Jakob C A. 2005. Biosynthesis of lipid-linked oligosaccharides in Saccharomyces cerevisiae: Alg13p and Alg14p form a complex required for the formation of GlcNAc(2)-PP-dolichol. J Biol Chem, 280, 34500-34506.

Burda P, Jakob C A, Beinhauer J, Hegemann J H, Aebi M. 1999. Ordered assembly of the asymmetrically branched lipid-linked oligosaccharide in the endoplasmic reticulum is ensured by the substrate specificity of the individual glycosyltransferases. Glycobiology, 9, 617-625.

Burda P, Te Heesen S, Brachat A, Wach A, Dusterhoft A, Aebi M. 1996. Stepwise assembly of the lipid-linked oligosaccharide in the endoplasmic reticulum of Saccharomyces cerevisiae: identification of the ALG9 gene encoding a putative mannosyl transferase. Proc Natl Acad Sci U S A, 93, 7160-7165.

Chen D, Hu H, He W, Zhang S, Tang M, Xiang S, Liu C, Cai X, Hendy A, Kamran M, Liu H, Zheng L, Huang J, Chen X, Xing J. 2022. Endocytic protein Pal1 regulates appressorium formation and is required for full virulence of Magnaporthe oryzae. Mol Plant Pathol, 23, 133-147.

Chen X, Liu C, Tang B, Ren Z, Wang G, Liu W. 2020. Quantitative proteomics analysis reveals important roles of N-glycosylation on ER quality control system for development and pathogenesis in Magnaporthe oryzae. PLoS Pathog, 16, e1008355.

Chen X, Shi T, Yang J, Shi W, Gao X, Chen D, Xu X, Xu J, Talbot N J, Peng Y. 2014. N-glycosylation of effector proteins by an alpha-1,3-mannosyltransferase is required for the rice blast fungus to evade host innate immunity. Plant Cell, 26, 1360-1376.

Deng S, Sun W, Dong L, Cui G, Deng Y. 2019. MoGT2 Is Essential for Morphogenesis and Pathogenicity of Magnaporthe oryzae. mSphere, 4,

Diaz-Jimenez D F. 2017. Fungal Mannosyltransferases as Fitness Attributes and their Contribution to Virulence. Curr Protein Pept Sci, 18, 1065-1073.

Ebbole D J. 2007. Magnaporthe as a model for understanding host-pathogen interactions. Annu Rev Phytopathol, 45, 437-456.

Eckert V, Blank M, Mazhari-Tabrizi R, Mumberg D, Funk M, Schwarz R T. 1998. Cloning and functional expression of the human GlcNAc-1-P transferase, the enzyme for the committed step of the dolichol cycle, by heterologous complementation in Saccharomyces cerevisiae. Glycobiology, 8, 77-85.

Fernandez-Alvarez A, Elias-Villalobos A, Jimenez-Martin A, Marin-Menguiano M, Ibeas J I. 2013. Endoplasmic reticulum glucosidases and protein quality control factors cooperate to establish biotrophy in Ustilago maydis. Plant Cell, 25, 4676-4690.

Foster A J, Ryder L S, Kershaw M J, Talbot N J. 2017. The role of glycerol in the pathogenic lifestyle of the rice blast fungus Magnaporthe oryzae. Environ Microbiol, 19, 1008-1016.

Frank C G, Aebi M. 2005. ALG9 mannosyltransferase is involved in two different steps of lipid-linked oligosaccharide biosynthesis. Glycobiology, 15, 1156-1163.

Gao X, Moriyama S, Miura N, Dean N, Nishimura S. 2008. Interaction between the C termini of Alg13 and Alg14 mediates formation of the active UDP-N-acetylglucosamine transferase complex. J Biol Chem, 283, 32534-32541.

Gao X, Nishikawa A, Dean N. 2004. Physical interactions between the Alg1, Alg2, and Alg11 mannosyltransferases of the endoplasmic reticulum. Glycobiology, 14, 559-570.

Gao X, Tachikawa H, Sato T, Jigami Y, Dean N. 2005. Alg14 recruits Alg13 to the cytoplasmic face of the endoplasmic reticulum to form a novel bipartite UDP-N-acetylglucosamine transferase required for the second step of N-linked glycosylation. J Biol Chem, 280, 36254-36262.

Garcia-Rodriguez L J, Valle R, Duran A, Roncero C. 2005. Cell integrity signaling activation in response to hyperosmotic shock in yeast. FEBS Lett, 579, 6186-6190.

Gruszewska E, Grytczuk A, Chrostek L. 2021. Glycosylation in viral hepatitis. Biochim Biophys Acta Gen Subj, 1865, 129997.

Helenius A, Aebi M. 2001. Intracellular functions of N-linked glycans. Science, 291, 2364-2369.

Helenius A, Aebi M. 2004. Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem, 73, 1019-1049.

Helenius J, Ng D T, Marolda C L, Walter P, Valvano M A, Aebi M. 2002. Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein. Nature, 415, 447-450.

Hirata T, Kizuka Y. 2021. N-Glycosylation. Adv Exp Med Biol, 1325, 3-24.

Hohmann S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev, 66, 300-372.

Hohmann S. 2009. Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett, 583, 4025-4029.

Kong S, Park S Y, Lee Y H. 2015. Systematic characterization of the bZIP transcription factor gene family in the rice blast fungus, Magnaporthe oryzae. Environ Microbiol, 17, 1425-1443.

Kukuruzinska M A, Lennon-Hopkins K. 1999. ALG gene expression and cell cycle progression. Biochim Biophys Acta, 1426, 359-372.

Lecointe K, Cornu M, Leroy J, Coulon P, Sendid B. 2019. Polysaccharides Cell Wall Architecture of Mucorales. Front Microbiol, 10, 469.

Levin D E. 2005. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 69, 262-291.

Li C L, Chen G, Webb A N, Shaulsky G. 2015. Altered N-glycosylation modulates TgrB1- and TgrC1-mediated development but not allorecognition in Dictyostelium. J Cell Sci, 128, 3990-3996.

Li M, Liu X, Liu Z, Sun Y, Liu M, Wang X, Zhang H, Zheng X, Zhang Z. 2016. Glycoside Hydrolase MoGls2 Controls Asexual/Sexual Development, Cell Wall Integrity and Infectious Growth in the Rice Blast Fungus. PLoS One, 11, e0162243.

Liu C, Shen N, Zhang Q, Qin M, Cao T, Zhu S, Tang D, Han L. 2022a. Magnaporthe oryzae Transcription Factor MoBZIP3 Regulates Appressorium Turgor Pressure Formation during Pathogenesis. Int J Mol Sci, 23,

Liu N, Qi L, Huang M, Chen D, Yin C, Zhang Y, Wang X, Yuan G, Wang R, Yang J, Peng Y, Lu X. 2022b. Comparative Secretome Analysis of Magnaporthe oryzae Identified Proteins Involved in Virulence and Cell Wall Integrity. Genomics Proteomics Bioinformatics, 20, 728-746.

Liu W, Xie S, Zhao X, Chen X, Zheng W, Lu G, Xu J, Wang Z. 2010. A homeobox gene is essential for conidiogenesis of the rice blast fungus Magnaporthe oryzae. Mol Plant Microbe Interact, 23, 366-375.

Loibl M, Strahl S. 2013. Protein O-mannosylation: what we have learned from baker's yeast. Biochim Biophys Acta, 1833, 2438-2446.

Lopez-Moya F, Martin-Urdiroz M, Oses-Ruiz M, Were V M, Fricker M D, Littlejohn G, Lopez-Llorca L V, Talbot N J. 2021. Chitosan inhibits septin-mediated plant infection by the rice blast fungus Magnaporthe oryzae in a protein kinase C and Nox1 NADPH oxidase-dependent manner. New Phytol, 230, 1578-1593.

Mikolajczyk K, Kaczmarek R, Czerwinski M. 2020. How glycosylation affects glycosylation: the role of N-glycans in glycosyltransferase activity. Glycobiology, 30, 941-969.

Motteram J, Lovegrove A, Pirie E, Marsh J, Devonshire J, Van De Meene A, Hammond-Kosack K, Rudd J J. 2011. Aberrant protein N-glycosylation impacts upon infection-related growth transitions of the haploid plant-pathogenic fungus Mycosphaerella graminicola. Mol Microbiol, 81, 415-433.

Pan Y, Pan R, Tan L, Zhang Z, Guo M. 2019. Pleiotropic roles of O-mannosyltransferase MoPmt4 in development and pathogenicity of Magnaporthe oryzae. Curr Genet, 65, 223-239.

Rodriguez-Pena J M, Garcia R, Nombela C, Arroyo J. 2010. The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay: a yeast dialogue between MAPK routes. Yeast, 27, 495-502.

Ryder L S, Dagdas Y F, Kershaw M J, Venkataraman C, Madzvamuse A, Yan X, Cruz-Mireles N, Soanes D M, Oses-Ruiz M, Styles V, Sklenar J, Menke F L H, Talbot N J. 2019. A sensor kinase controls turgor-driven plant infection by the rice blast fungus. Nature, 574, 423-427.

Sharma C B, Knauer R, Lehle L. 2001. Biosynthesis of lipid-linked oligosaccharides in yeast: the ALG3 gene encodes the Dol-P-Man: Man5GlcNAc2-PP-Dol mannosyltransferase. Biol Chem, 382, 321-328.

Shi Z, Christian D, Leung H. 1998. Interactions between spore morphogenetic mutations affect cell types, sporulation, and pathogenesis in Magnaporthe grisea. Mol Plant Microbe Interact, 11, 199-207.

Song J, Yin Y, Cheng W, Liu J, Hu S, Qiu L, Wang J. 2021. The N-mannosyltransferase gene BbAlg9 contributes to cell wall integrity, fungal development and the pathogenicity of Beauveria bassiana. Fungal Biol, 125, 776-784.

Sun L, Qian H, Wu M, Zhao W, Liu M, Wei Y, Zhu X, Li L, Lu J, Lin F, Liu X. 2022. A Subunit of ESCRT-III, MoIst1, Is Involved in Fungal Development, Pathogenicity, and Autophagy in Magnaporthe oryzae. Front Plant Sci, 13, 845139.

Tang W, Ru Y, Hong L, Zhu Q, Zuo R, Guo X, Wang J, Zhang H, Zheng X, Wang P, Zhang Z. 2015. System-wide characterization of bZIP transcription factor proteins involved in infection-related morphogenesis of Magnaporthe oryzae. Environ Microbiol, 17, 1377-1396.

Thak E J, Lee S B, Xu-Vanpala S, Lee D J, Chung S Y, Bahn Y S, Oh D B, Shinohara M L, Kang H A. 2020. Core N-Glycan Structures Are Critical for the Pathogenicity of Cryptococcus neoformans by Modulating Host Cell Death. mBio, 11,

Tham E, Eklund E A, Hammarsjo A, Bengtson P, Geiberger S, Lagerstedt-Robinson K, Malmgren H, Nilsson D, Grigelionis G, Conner P, Lindgren P, Lindstrand A, Wedell A, Albage M, Zielinska K, Nordgren A, Papadogiannakis N, Nishimura G, Grigelioniene G. 2016. A novel phenotype in N-glycosylation disorders: Gillessen-Kaesbach-Nishimura skeletal dysplasia due to pathogenic variants in ALG9. Eur J Hum Genet, 24, 198-207.

Varki A. 2017. Biological roles of glycans. Glycobiology, 27, 3-49.

Wang J, Wang Q, Huang P, Qu Y, Huang Z, Wang H, Liu X, Lin F, Lu J. 2022. An appressorium membrane protein, Pams1, controls infection structure maturation and virulence via maintaining endosomal stability in the rice blast fungus. Front Plant Sci, 13, 955254.

Wang Z, Zhang H, Liu C, Xing J, Chen X. 2018. A Deubiquitinating Enzyme Ubp14 Is Required for Development, Stress Response, Nutrient Utilization, and Pathogenesis of Magnaporthe oryzae. Front Microbiol, 9, 769.

Wu M, Yu Q, Tao T, Sun L, Qian H, Zhu X, Li L, Liang S, Lu J, Lin F, Liu X. 2022. Genome-Wide Analysis of AGC Kinases Reveals that MoFpk1 Is Required for Development, Lipid Metabolism, and Autophagy in Hyperosmotic Stress of the Rice Blast Fungus Magnaporthe oryzae. mBio, 13, e0227922.

Yi M, Chi M H, Khang C H, Park S Y, Kang S, Valent B, Lee Y H. 2009. The ER chaperone LHS1 is involved in asexual development and rice infection by the blast fungus Magnaporthe oryzae. Plant Cell, 21, 681-695.

Zacchi L F, Schulz B L. 2016. SWATH-MS Glycoproteomics Reveals Consequences of Defects in the Glycosylation Machinery. Mol Cell Proteomics, 15, 2435-2447.

Zhang H, Zhao Q, Guo X, Guo M, Qi Z, Tang W, Dong Y, Ye W, Zheng X, Wang P, Zhang Z. 2014. Pleiotropic function of the putative zinc-finger protein MoMsn2 in Magnaporthe oryzae. Mol Plant Microbe Interact, 27, 446-460.

Zhang S, Lin C, Zhou T, Zhang L H, Deng Y Z. 2020. Karyopherin MoKap119-mediated nuclear import of cyclin-dependent kinase regulator MoCks1 is essential for Magnaporthe oryzae pathogenicity. Cell Microbiol, 22, e13114.

Zhou Z, Li G, Lin C, He C. 2009. Conidiophore stalk-less1 encodes a putative zinc-finger protein involved in the early stage of conidiation and mycelial infection in Magnaporthe oryzae. Mol Plant Microbe Interact, 22, 402-410.

No related articles found!
No Suggested Reading articles found!