Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (11): 4370-4378    DOI: 10.1016/j.jia.2024.01.034
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Establishment and analysis of a chicken skeletal muscle satellite cell line using TERT

Yanxing Wang1, Haigang Ji1, Liyang He1, Yufang Niu1, Yushi Zhang1, Yang Liu1,, Yadong Tian1,2, Xiaojun Liu1,2, Hong Li1,2, Xiangtao Kang1,2, Yanling Gao3#, Zhuanjian Li1,2#

1 College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China

2 Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China

3 Henan Vocational College of Agriculture, Zhengzhou 451450, China

 Highlights 
Lentiviral infection of chTERT successfully immortalized chicken skeletal muscle satellite cell lines.
These cell lines retained the primary cells’ proliferative and differentiation capacities without malignant transformation.
These cell lines provided a fundamental framework for developing immortalized poultry cell lines.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
骨骼肌卫星细胞作为肌源性干细胞,具有增殖、分化和自我更新的能力。然而,原代骨骼肌卫星细胞在体外的增殖能力有限、分离步骤繁琐等因素限制了其在骨骼肌发育研究中的应用。细胞永生化能够使原代细胞越过细胞衰老期获得持续增殖的能力,永生化鸡骨骼肌卫星细胞系(ICMS)的建立将为鸡骨骼肌相关基因的功能研究提供可靠的细胞模型。在本研究中,我们利用慢病毒包装鸡端粒酶逆转录酶(chTERT)感染原代细胞,筛选出慢病毒的最适MOI和杀稻瘟菌素的最适浓度;随后,对感染的细胞进行药物筛选,获得阳性细胞后连续传代培养,通过端粒酶活性的重建以实现鸡骨骼肌卫星细胞的永生化。研究结果显示,传代至第10代、第15代、第22代的永生化鸡骨骼肌卫星(P10 ICMS、P15 ICMS、P22 ICMS)细胞形态与鸡原代骨骼肌卫星细胞(CPMSCs)保持一致,均呈纤维样状;与CPMSCs相比,P10 ICMS的生长曲线与CPMSCs相似;P10 ICMS具有正常的细胞增殖周期,且处于S期的细胞数量极显著高于CPMSCs;P10 ICMS复苏后的细胞活性较好;当血清浓度增加到15%时,P10、P22 ICMS可以增殖,说明ICMS具有一定的血清依赖性;软琼脂试验表明,培养14 d后,P10 ICMS依旧为单独的细胞,没有细胞克隆团的形成,可见ICMS没有发生恶性转化;经2%孕马血清的诱导,P22 ICMS的增殖能力较强、分化能力较弱。综上所述,本研究首次建立了鸡永生化骨骼肌卫星细胞系,其保持了与原代细胞相似的生物学特性,无致瘤性转化。鸡永生化骨骼肌卫星细胞系的建立为chTERT构建家禽细胞的永生化提供了参考,为家禽骨骼肌发育的研究提供了理想的体外细胞模型。


Abstract  

Skeletal muscle satellite cells are stem cells characterized by their multipotency and capacity for in vitro proliferation.  However, primary skeletal muscle satellite cells demonstrate limited proliferative capacity in vitro, which impedes their investigation in poultry skeletal muscle research.  Cell immortalization techniques have emerged as valuable tools to address this limitation and facilitate the study of skeletal muscle satellite cell functions.  This study achieved the immortalization of chicken skeletal muscle satellite cells through the transduction of primary cells with TERT (telomerase reverse transcriptase) amplified from chicken (chTERT) using a lentiviral vector via telomerase activity reconstitution.  While the cells successfully overcame replicative senescence, complete immortalization was not achieved.  Initial functional characterization revealed that the proliferative properties and cell cycle characteristics of the immortalized chicken skeletal muscle satellite cell lines (ICMS) closely resembled those of chicken primary muscle satellite cells (CPMSCs).  Serum dependency analysis and soft agar assays confirmed that ICMS did not undergo malignant transformation.  Furthermore, induced differentiation experiments demonstrated preserved differentiation capacity in ICMS.  The established cell lines provide a fundamental framework for developing immortalized poultry cell lines and offer a cellular model for investigating poultry skeletal muscle-related functional genes.

Keywords:  chicken       skeletal muscle satellite cell       immortalization       chTERT       proliferation       differentiation  
Received: 10 September 2023   Accepted: 28 November 2023 Online: 24 January 2024  
Fund: This work was supported by the grants from the National Natural Science Foundation of China (32372873, 32441084 and 32172720), the Program for Science & Technology Innovation Talents in Universities of Henan Province, China (22HASTIT038) and the Zhongyuan Youth Talent Support Program of China (ZYYCYU202012156). 
About author:  Yanxing Wang, E-mail: m18700258066@163.com; #Correspondence Zhuanjian Li, E-mail: lizhuanjian@163.com; Yanling Gao, E-mail: hnivdc@163.com

Cite this article: 

Yanxing Wang, Haigang Ji, Liyang He, Yufang Niu, Yushi Zhang, Yang Liu, Yadong Tian, Xiaojun Liu, Hong Li, Xiangtao Kang, Yanling Gao, Zhuanjian Li. 2025. Establishment and analysis of a chicken skeletal muscle satellite cell line using TERT. Journal of Integrative Agriculture, 24(11): 4370-4378.

Agarwal M, Sharma A, Kumar P, Kumar A, Bharadwaj A, Saini M, Kardon G, Mathew S J. 2020. Myosin heavy chain-embryonic regulates skeletal muscle differentiation during mammalian development. Development147, dev184507.

Agrez M V, Kovach J S, Lieber M M. 1982. Cell aggregates in the soft agar “human tumour stem-cell assay”. British Journal of Cancer46, 880–887.

Crandell R A, Hierholzer J C, Krebs Jr J W, Drysdale S S. 1978. Contamination of primary embryonic bovine kidney cell cultures with parainfluenza type 2 simian virus 5 and infectious bovine rhinotracheitis virus. Journal of Clinical Microbiology7, 214–218.

Choi K H, Yoon J W, Kim M, Lee H J, Jeong J, Ryu M, Jo C, Lee C K. 2021. Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Comprehensive Reviews in Food Science and Food Safety20, 429–457.

Dumont N A, Wang Y X, Rudnicki M A. 2015. Intrinsic and extrinsic mechanisms regulating satellite cell function. Development142, 1572–1581.

Guo D, Zhang L, Wang X, Zheng J, Lin S. 2022. Establishment methods and research progress of livestock and poultry immortalized cell lines: A review. Frontiers in Veterinary Science9, 956357.

Guo L, Wang Z, Li J, Li J, Cui L, Dong J, Meng X, Qian C, Wang H. 2022. Immortalization effect of SV40T lentiviral vectors on canine corneal epithelial cells. BMC Veterinary Research18, 181.

Gadalla S M, Savage S A. 2011. Telomere biology in hematopoiesis and stem cell transplantation. Blood Reviews25, 261–269.

Hansen K D, Sabunciyan S, Langmead B, Nagy N, Curley R, Klein G, Klein E, Salamon D, Feinberg A P. 2014. Large-scale hypomethylated blocks associated with Epstein-Barr virus induced B-cell immortalization. Genome Research24, 177–184.

Hathcock K S, Jeffrey Chiang Y, Hodes R J. 2005. In vivo regulation of telomerase activity and telomere length. Immunological Reviews205, 104–113.

Hernández-Hernández J M, García-González E G, Brun C E, Rudnicki M A. 2017. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Seminars in Cell & Developmental Biology72, 10–18.

Kennedy J M, Sweeney L J, Gao L Z. 1989. Ventricular myosin expression in developing and regenerating muscle, cultured myotubes, and nascent myofibers of overloaded muscle in the chicken. Medicine and Science in Sports and Exercise21, S187–S197.

Kim E, Wu F, Wu X, Choo H J. 2020. Generation of craniofacial myogenic progenitor cells from human induced pluripotent stem cells for skeletal muscle tissue regeneration. Biomaterials248, 119995.

Liu T M, Ng W M, Tan H S, Vinitha D, Yang Z, Fan J B, Zou Y, Hui J H, Lee E H, Lim B. 2013. Molecular basis of immortalization of human mesenchymal stem cells by combination of p53 knockdown and human telomerase reverse transcriptase overexpression. Stem Cells and Development22, 268–278.

Lei Q J, Pan Q, Ma J H, Zhou Z, Li G P, Chen S L, Hua J L. 2017. Establishment and characterization of immortalized bovine male germline stem cell line. Journal of Integrative Agriculture16, 2547–2557.

Luan N T, Sharma N, Kim S W, Ha P T H, Hong Y H, Oh S J, Jeong D K. 2014. Characterization and cardiac differentiation of chicken spermatogonial stem cells. Animal Reproduction Science151, 244–255.

Li W Y, Ma H X, Wang Y X, Zhang Y S, Liu Y, Han R L, Li H, Cai H F, Liu X J, Kang X T, Jiang R R, Li Z J. 2023. The VGLL2 gene participates in muscle development in Gushi chickens. Journal of Integrative Agriculture24, 246–260

Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M. 2005. Direct isolation of satellite cells for skeletal muscle regeneration. Science309, 2064–2067.

Nicholls C, Li H, Wang J Q, Liu J P. 2011. Molecular regulation of telomerase activity in aging. Protein & Cell2, 726–738.

Numa F, Hirabayashi K, Tsunaga N, Kato H, O’rourke K, Shao H, Stechmann Lebakken C, Varani J, Rapraeger A, Dixit V M. 1995. Elevated levels of syndecan-1 expression confer potent serum-dependent growth in human 293T cells. Cancer Research55, 4676–4680.

Petkov S, Kahland T, Shomroni O, Lingner T, Salinas G, Fuchs S, Debowski K, Behr R. 2018. Immortalization of common marmoset monkey fibroblasts by piggyBac transposition of hTERT. PLoS ONE13, e0204580.

Püttmann S, Senner V, Braune S, Hillmann B, Exeler R, Rickert C H, Paulus W. 2005. Establishment of a benign meningioma cell line by hTERT-mediated immortalization. Laboratory Investigation85, 1163–1171.

Piette J, Huchet M, Duclert A, Fujisawa-Sehara A, Changeux J P. 1992. Localization of mRNAs coding for CMD1, myogenin and the alpha-subunit of the acetylcholine receptor during skeletal muscle development in the chicken. Mechanisms of Development37, 95–106.

Ramboer E, De Craene B, De Kock J, Vanhaecke T, Berx G, Rogiers V, Vinken M. 2014. Strategies for immortalization of primary hepatocytes. Journal of Hepatology61, 925–943.

Sousa-Victor P, García-Prat L, Muñoz-Cánoves P. 2022. Control of satellite cell function in muscle regeneration and its disruption in ageing. Nature Reviews Molecular Cell Biology23, 204–226.

Schütze D M, Kooter J M, Wilting S M, Meijer C J L M, Quint W, Snijders P J F, Steenbergen R D M. 2015. Longitudinal assessment of DNA methylation changes during HPVE6E7-induced immortalization of primary keratinocytes. Epigenetics10, 73–81.

Sun S, Zhao K, Lu H, Liu X, Li Y, Li Q, Song D, Lan Y, He W, Gao F, Li Z, Guan J. 2022. Establishment of a sheep immortalization cell line for generating and amplifying Orf virus recombinants. Frontiers in Veterinary Science9, 1062908.

Sosa P, Alcalde-Estévez E, Asenjo-Bueno A, Plaza P, Carrillo-López N, Olmos G, López-Ongil S, Ruiz-Torres M P. 2021. Aging-related hyperphosphatemia impairs myogenic differentiation and enhances fibrosis in skeletal muscle. Journal of CachexiaSarcopenia and Muscle12, 1266–1279.

San Francisco I F, Dewolf W C, Peehl D M, Olumi A F. 2004. Expression of transforming growth factor-beta 1 and growth in soft agar differentiate prostate carcinoma-associated fibroblasts from normal prostate fibroblasts. International Journal of Cancer112, 213–218.

Smith S L, Shioda T. 2009. Advantages of COS-1 monkey kidney epithelial cells as packaging host for small-volume production of high-quality recombinant lentiviruses. Journal of Virological Methods157, 47–54.

Shi R, Bai Y, Li S, Wei H, Zhang X, Li L, Tian X C, Jiang Q, Wang C, Qin L, Cai J, Zhang S. 2015. Characteristics of spermatogonial stem cells derived from neonatal porcine testis. Andrologia47, 765–778.

Svoradova A, Zmrhal V, Venusova E, Slama P. 2021. Chicken mesenchymal stem cells and their applications: A Mini Review. Animals11, 1883.

Schiaffino S. 2018. Muscle fiber type diversity revealed by anti-myosin heavy chain antibodies. The FEBS Journal285, 3688–3694.

Takenouchi T, Masujin K, Miyazaki A, Suzuki S, Takagi M, Kokuho T, Uenishi H. 2022. Isolation and immortalization of macrophages derived from fetal porcine small intestine and their susceptibility to porcine viral pathogen infections. Frontiers in Veterinary Science9, 919077.

Tiscornia G, Singer O, Verma I M. 2017. Production and purification of lentiviral vectors. Nature Protocols1, 241–245.

Ten Broek R W, Grefte S, Von Den Hoff J W. 2010. Regulatory factors and cell populations involved in skeletal muscle regeneration. Journal of Cellular Physiology224, 7–16.

Velleman S G, Coy C S, Abasht B. 2022. Effect of expression of PPARG, DNM2L, RRAD, and LINGO1 on broiler chicken breast muscle satellite cell function. Comparative Biochemistry and Physiology268, 111186.

Wang Y X, Rudnicki M A. 2011. Satellite cells, the engines of muscle repair. Nature Reviews Molecular Cell Biology13, 127–133.

Wang W, Zhang T, Wu C, Wang S, Wang Y, Li H, Wang N. 2017. Immortalization of chicken preadipocytes by retroviral transduction of chicken TERT and TR. PLoS ONE12, e0177348.

Wakitani S, Saito T, Caplan A I. 1955. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle & Nerve18, 1417–1426.

Wagers A J, Conboy I M. 2005. Cellular and molecular signatures of muscle regeneration: Current concepts and controversies in adult myogenesis. Cell122, 659–667.

Xie X, Hao F, Wang H Y, Pang M D, Gan Y, Liu B B, Zhang L, Wei Y N, Chen R, Zhang Z Z, Bao W B, Bai Y, Shao G Q, Xiong Q Y, Feng Z X. 2022. Construction of a telomerase-immortalized porcine tracheal epithelial cell model for swine-origin mycoplasma infection. Journal of Integrative Agriculture21, 504–520.

Yin H, Zhao J, He H, Chen Y, Wang Y, Li D, Zhu Q. 2020. Gga-miR-3525 targets pdlim3 through the mapk signaling pathway to regulate the proliferation and differentiation of skeletal muscle satellite cells. International Journal of Molecular Sciences21, 5573.

Zhang Z, Han Z, Guo Y, Liu X, Gao Y, Zhang Y. 2021. Establishment of an efficient immortalization strategy using HMEJ-based bTERT insertion for bovine cells. International Journal of Molecular Sciences22, 12540.

Zhang Z, Lin S, Luo W, Ren T, Huang X, Li W, Zhang X. 2022. Sox6 Differentially regulates inherited myogenic abilities and muscle fiber types of satellite cells derived from fast- and slow-type muscles. International Journal of Molecular Sciences23, 11327.

Zander L, Bemark M. 2008. Identification of genes deregulated during serum-free medium adaptation of a Burkitt’s lymphoma cell line. Cell Proliferation41, 136–155.

Zammit P S, Golding J P, Nagata Y, Hudon V, Partridge T A, Beauchamp J R. 2004. Muscle satellite cells adopt divergent fates: A mechanism for self-renewal? The Journal of Cell Biology166, 347–357.

Zammit P S. 2017. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Seminars in Cell & Developmental Biology72, 19–32.

Zhu H, Wu Z, Ding X, Post M J, Guo R, Wang J, Wu J, Tang W, Ding S, Zhou G. 2022. Production of cultured meat from pig muscle stem cells. Biomaterials287, 121650.

[1] Niu Wang, Weidong Zhang, Zhenyu Zhong, Xiongbo Zhou, Xinran Shi, Xin Wang. FGF7 secreted from dermal papillae cell regulates the proliferation and differentiation of hair follicle stem cell[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3583-3597.
[2] Tengfei Wang, Changyong Fan, Yufei Xiao, Shan Lü, Guangyang Jiang, Mengyun Zou, Yingjie Wang, Qiao Guo, Zhenghao Che, Xiuli Peng. Protection of chickens from Mycoplasma gallisepticum through the MAPK/ERK/JNK pathway by a compound of ten Chinese medicine formulas[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2356-2370.
[3] Guangzheng Liu, Wenjie Ren, Kai Jin, Dan Zheng, Qisheng Zuo, Yani Zhang, Guohong Chen, Bichun Li, Yingjie Niu. PGC-mediated conservation strategies for germplasm resources of Rugao Yellow chicken and Shouguang chicken in China[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2327-2341.
[4] Jie Zhao, Sa Xiao, Wei Yao, Xudong Chang, Xinglong Wang, Zengqi Yang, Wenbin Wang. Velogenic Newcastle disease virus invades chicken brain by infecting brain microvascular endothelial cells to increase blood-brain barrier permeability[J]. >Journal of Integrative Agriculture, 2025, 24(2): 712-723.
[5] Yuanmei Wang, Jingwei Yuan, Yanyan Sun, Aixin Ni, Jinmeng Zhao, Yunlei Li, Panlin Wang, Lei Shi, Yunhe Zong, Pingzhuang Ge, Shixiong Bian, Hui Ma, Jilan Chen. Genome-wide circular RNAs signatures involved in sexual maturation and its heterosis in chicken[J]. >Journal of Integrative Agriculture, 2025, 24(2): 697-711.
[6] Wenya Li, Haoxiang Ma, Yanxing Wang, Yushi Zhang, Yang Liu, Ruili Han, Hong Li, Hanfang Cai, Xiaojun Liu, Xiangtao Kang, Ruirui Jiang, Zhuanjian Li. The VGLL2 gene participates in muscle development in Gushi chickens[J]. >Journal of Integrative Agriculture, 2025, 24(1): 246-260.
[7] Xiaoxu Shen, Yongtong Tian, Wentao He, Can He, Shunshun Han, Yao Han, Lu Xia, Bo Tan, Menggen Ma, Houyang Kang, Jie Yu, Qing Zhu, Huadong Yin. Gga-miRNA-181-5p family facilitates chicken myogenesis via targeting TGFBR1 to block TGF-β signaling[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2764-2777.
[8] Jing Chen, Baizhao Ren, Bin Zhao, Peng Liu, Jiwang Zhang. The environment, especially the minimum temperature, affects summer maize grain yield by regulating ear differentiation and grain development[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2227-2241.
[9] Lei Shi, Yanyan Sun, Yunlei Li, Hao Bai, Jingwei Yuan, Hui Ma, Yuanmei Wang, Panlin Wang, Aixin Ni, Linlin Jiang, Pingzhuang Ge, Shixiong Bian, Yunhe Zong, Jinmeng Zhao, Adamu M. Isa, Hailai H. Tesfay, Jilan Chen. Asymmetric expression of CA2 and CA13 linked to calcification in the bilateral mandibular condyles cause crossed beaks in chickens[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2379-2390.
[10] Lingzhai Meng, Mengmeng Yu, Suyan Wang, Yuntong Chen, Yuanling Bao, Peng Liu, Xiaoyan Feng, Tana He, Ru Guo, Tao Zhang, Mingxue Hu, Changjun Liu, Xiaole Qi, Kai Li, Li Gao, Yanping Zhang, Hongyu Cui, Yulong Gao.

A novel live attenuated vaccine candidate protects chickens against subtype B avian metapneumovirus [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1658-1670.

[11] Ying Ding, Qiong Zhi, Qisheng Zuo, Kai Jin, Wei Han, Bichun Li.

Transcriptome-based analysis of key signaling pathways affecting the formation of primordial germ cell in chickens [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1644-1657.

[12] Shengjie Shi, Lutong Zhang, Liguang Wang, Huan Yuan, Haowei Sun, Mielie Madaniyati, Chuanjiang Cai, Weijun Pang, Lei Gao, Guiyan Chu.

miR-24-3p promotes proliferation and inhibits apoptosis of porcine granulosa cells by targeting P27 [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1315-1328.

[13] Xiaorui Liu, Jiuzeng Cui, Mengyao Wei, Xiaofei Wang, Yuexia Liu, Zhongshi Zhu, Min Zhou, Gui Ba, Langda Suo, Yuxuan Song, Lei Zhang.

circRNA3669 promotes goat endometrial epithelial cells proliferation via miR-26a/RCN2 to activate PI3K/AKT-mTOR and MAPK pathways [J]. >Journal of Integrative Agriculture, 2024, 23(3): 960-974.

[14] Dan Chu, Bin Chen, Bo Weng, Saina Yan, Yanfei Yin, Xiangwei Tang, Maoliang Ran. Long non-coding RNA FPFSC promotes immature porcine Sertoli cell growth through modulating the miR-326/EHMT2 axis[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3830-3842.
[15] Youli Wang, Huajin Zhou, Jing Chen, Yuqin Wu, Yuming Guo, Bo Wang, Jianmin Yuan. Retinol is involved in the intestinal regeneration and strengthens the intestinal barrier during refeeding in broiler chickens[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3843-3859.
No Suggested Reading articles found!