Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (11): 4379-4394    DOI: 10.1016/j.jia.2024.06.005
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Streptococcus suis serotype 2 collagenase-like protease promotes meningitis by increasing blood–brain barrier permeability

Jikun Mei1*, Xuan Jiang1*, Fengyang Li1, Zengshuai Wu1, Tong Wu1, Junhui Zhu1, Hexiang Jiang1, Ziheng Li1, Na Li1#, Liancheng Lei1, 2#

1 State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130062, China

2 College of Animal Science, Yangtze University, Jingzhou 434023, China

 Highlights 
Clp enhances the toxic effect of SS2.
Clp increases the permeability of the blood–brain barrier by disrupting tight junctions and inducing apoptosis of brain endothelial cells.
Clp triggers brain endothelial cell apoptosis through cell receptor ligand apoptosis and mitochondrial apoptosis pathways, partially dependent on its enzyme activity.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

猪链球菌2型(Streptococcus suis serotype 2SS2)是一种新兴的人兽共患病原体,可引起人和猪的脑膜炎,不仅给养猪业带来巨大经济损失,还严重威胁公共卫生安全。然而,SS2进入大脑并诱发脑膜炎的机制尚不完全清楚。在这里,我们研究了SS2胶原酶样蛋白酶(collagenase-like proteaseClp破坏血脑屏障(Blood-Brain BarrierBBB促进脑膜炎发生的作用和机制。我们以纯化的SS2 rClp重组蛋白及clp基因缺失菌株为工具,通过小鼠及体外hCMEC/D3单层BBB模型进行相关实验。发现Clp可增强SS2的毒力作用及其组织定植能力,并可促进SS2对小鼠BBB的破坏作用。与野生型SS2相比,Δclp突变体穿过人脑微血管内皮hCMEC/D3)单层屏障的能力降低,而重组蛋白rClp添加增加了通透性。rClp还显著促进SS2对hCMEC/D3的粘附,抑制细胞间紧密连接蛋白ZO-1OccludinClaudin-5的表达独立于其酶活性,并通过细胞受体配体凋亡和线粒体凋亡途径诱导hCMEC/D3凋亡,导致BBB破坏和通透性增加。此外,Clp增加了SS2诱导巨噬细胞(F4/80+)、单核细胞(F4/80-Ly6C+)和中性粒细胞(Ly6G+)浸润到大脑诱导脑膜炎生。综上,本研究结果表明Clp是一个新的候选毒力蛋白,通过促进细菌的附,抑制细胞间紧密连接的表达,诱导脑微血管内皮细胞凋亡,从而破坏BBB增加其通透性。因此,SS2 Clp是细菌通过BBB所必需的,其结果为预防和治疗SS2诱导的脑膜炎补充理论依据。



Abstract  

Streptococcus suis serotype 2 (SS2) is an emerging zoonotic pathogen that causes meningitis in humans and pigs. It not only brings huge economic losses to the pig industry but also seriously threatens public health security. However, the mechanisms by which SS2 enters the brain and induces meningitis is not fully understood. Here, we investigated the role and mechanism of the SS2 collagenase-like protease (Clp) in promoting the passage of the bacterium across the blood-brain barrier (BBB). We found that SS2 Clp enhanced virulence and tissue colonization, and promoted the destruction of the BBB in mice. Compared with wild-type SS2, the ability of a Δclp mutant to cross human brain microvascular endothelial (hCMEC/D3) cell monolayers decreased, whereas the addition of recombinant protein rClp increased permeability. rClp also significantly promoted the adhesion of SS2 to hCMEC/D3, inhibited the expression of intercellular tight junction proteins ZO-1, Occludin, and Claudin-5 independent of its enzyme activity, and induced hCMEC/D3 apoptosis through the cell receptor ligand apoptosis and mitochondrial apoptosis pathways partly dependent on its enzyme activity, resulting in BBB destruction and increased permeability. Moreover, Clp increased macrophage (F4/80+), monocytes (F4/80-Ly6C+), and neutrophils (Ly6G+) infiltration into the brain after SS2 infection. Thus, SS2 Clp is required for the passage of the bacterium across the BBB, and the results, provide a theoretical basis for better prevention and treatment of SS2-induced meningitis.

Keywords:  Streptococcus suis serotype 2       collagenase-like protease        Meningitis        blood brain barrier        permeability  
Received: 17 October 2023   Accepted: 22 April 2024 Online: 27 June 2024  
Fund: This study was supported by the National Key Research and Development Program of China (2021FYD1800405) and the National Natural Science Foundation of China (32072823).
About author:  Jikun Mei, E-mail: mjk20@163.com; Xuan Jiang, E-mail: 18522075540@163.com; #Correspondence Na Li, E-mails: vetlina2013@126.com; Liancheng Lei, E-mails: leiliancheng@163.com *These authors contributed equally to this study.

Cite this article: 

Jikun Mei, Xuan Jiang, Fengyang Li, Zengshuai Wu, Tong Wu, Junhui Zhu, Hexiang Jiang, Ziheng Li, Na Li, Liancheng Lei. 2025. Streptococcus suis serotype 2 collagenase-like protease promotes meningitis by increasing blood–brain barrier permeability. Journal of Integrative Agriculture, 24(11): 4379-4394.

Al-Obaidi M M J, Desa M N M. 2018. Mechanisms of blood brain barrier disruption by different types of bacteria, and bacterial-host interactions facilitate the bacterial pathogen invading the brain. Cellular and Molecular Neurobiology38, 1349–1368.

Auger J P, Christodoulides M, Segura M, Xu J, Gottschalk M. 2015. Interactions of Streptococcus suis serotype 2 with human meningeal cells and astrocytes. BMC Research Notes8, 607.

Berthelot-Hérault F, Gottschalk M, Morvan H, Kobisch M. 2005. Dilemma of virulence of Streptococcus suis: Canadian isolate 89–1591 characterized as a virulent strain using a standardized experimental model in pigs. Canadian Journal of Veterinary Research69, 236–240.

Bleuzé M, Auger J P, Lavagna A, Gisch N, Gottschalk M, Segura M. 2020. In vitro characterization of granulocyte-colony stimulating factor (G-CSF) production by dendritic cells and macrophages during Streptococcus suis infection. Immunobiology225, 151979.

Carlson S A, McCuddin Z P, Wu M T. 2005. SlyA regulates the collagenase-mediated cytopathic phenotype in multiresistant SalmonellaMicrobial Pathogenesis38, 181–187.

Chen K W, Demarco B, Heilig R, Shkarina K, Boettcher A, Farady C J, Pelczar P, Broz P. 2019. Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly. EMBO Journal38, e101638.

Chioma O, Aruni A W, Milford T A, Fletcher H M. 2017. Filifactor alocis collagenase can modulate apoptosis of normal oral keratinocytes. Molecular Oral Microbiology32, 166–177.

Coureuil M, Lécuyer H, Bourdoulous S, Nassif X. 2017. A journey into the brain: Insight into how bacterial pathogens cross blood–brain barriers. Nature Reviews (Microbiology), 15, 149–159.

Dominguez-Punaro M C, Segura M, Plante M M, Lacouture S, Rivest S, Gottschalk M. 2007. Streptococcus suis serotype 2, an important swine and human pathogen, induces strong systemic and cerebral inflammatory responses in a mouse model of infection. Journal of Immunology179, 1842–1854.

Dou B B, Yang X, Yang F M, Yan K, Peng W, Tang J, Peng M Z, He Q Y, Chen H C, Yuan F Y, Bei W C. 2022. The VraSR two-component signal transduction system contributes to the damage of blood–brain barrier during Streptococcus suis meningitis. Microbial Pathogenesis172, 105766.

Duarte A S, Correia A, Esteves A C. 2016. Bacterial collagenases - A review. Critical Reviews in Microbiology42, 106–126.

Feng Y, Zhang H, Ma Y, Gao G F. 2010. Uncovering newly emerging variants of Streptococcus suis, an important zoonotic agent. Trends in Microbiology18, 124–131.

Gadamski R, Barskow I W, Szumańska G, Wojda R. 2001. Blood–brain barrier disturbances and morphological changes in rat brain after photochemically induced focal ischaemia. Folia Neuropathologica39, 155–161.

Gottschalk M, Segura M, Xu J. 2007. Streptococcus suis infections in humans: The Chinese experience and the situation in North America. Animal Health Research Reviews8, 29–45.

Graveline R, Segura M, Radzioch D, Gottschalk M. 2007. TLR2-dependent recognition of Streptococcus suis is modulated by the presence of capsular polysaccharide which modifies macrophage responsiveness. International Immunology19, 375–389.

Le Guennec L, Coureuil M, Nassif X, Bourdoulous S. 2020. Strategies used by bacterial pathogens to cross the blood-brain barrier. Cellular Microbiology22, e13132.

Han H J, Taki T, Kondo H, Hirono I, Aoki T. 2008. Pathogenic potential of a collagenase gene from Aeromonas veroniiCanadian Journal of Microbiology54, 1–10.

Harati R, Hammad S, Tlili A, Mahfood M, Mabondzo A, Hamoudi R. 2022. miR-27a-3p regulates expression of intercellular junctions at the brain endothelium and controls the endothelial barrier permeability. Public Library of Science One17, e0262152.

Heinemann U, Schuetz A. 2019. Structural features of tight-junction proteins. International Journal of Molecular Sciences20, 6020.

Hlebowicz M, Jakubowski P, Smiatacz T. 2019. Streptococcus suis meningitis: Epidemiology, clinical presentation and treatment. Vector-borne and Zoonotic Diseases19, 557–562.

Hung C L, Chang H H, Lee S W, Chiang Y W. 2021. Stepwise activation of the pro-apoptotic protein Bid at mitochondrial membranes. Cell Death and Differentiation28, 1910–1925.

Huong V T, Ha N, Huy N T, Horby P, Nghia H D, Thiem V D, Zhu X, Hoa N T, Hien T T, Zamora J, Schultsz C, Wertheim H F, Hirayama K. 2014. Epidemiology, clinical manifestations, and outcomes of Streptococcus suis infection in humans. Emerging Infectious Diseases20, 1105–1114.

Idosa B A, Kelly A, Jacobsson S, Demirel I, Fredlund H, Särndahl E, Persson A. 2019. Neisseria meningitidis-Induced caspase-1 activation in human innate immune cells is LOS-Dependent. Journal of Immunology Research2019, 6193186.

Kato T, Takahashi N, Kuramitsu H K. 1992. Sequence analysis and characterization of the Porphyromonas gingivalis prtC gene, which expresses a novel collagenase activity. Journal of Bacteriology174, 3889–3895.

Kawasaki T, Kawai T. 2014. Toll-like receptor signaling pathways. Frontiers in Immunology5, 461.

Khoshnoodi J, Cartailler J P, Alvares K, Veis A, Hudson B G. 2006. Molecular recognition in the assembly of collagens: Terminal noncollagenous domains are key recognition modules in the formation of triple helical protomers. Journal of Biological Chemistry281, 38117–38121.

Kim K S. 2008. Mechanisms of microbial traversal of the blood-brain barrier. Nature Reviews (Microbiology), 6, 625–634.

Klemm P, Vejborg R M, Hancock V. 2010. Prevention of bacterial adhesion. Applied Microbiology and Biotechnology88, 451–459.

Kong D, Chen Z, Wang J, Lv Q, Jiang H, Zheng Y, Xu M, Zhou X, Hao H, Jiang Y. 2017. Interaction of factor H-binding protein of Streptococcus suis with globotriaosylceramide promotes the development of meningitis. Virulence8, 1290–1302.

Lecours M P, Gottschalk M, Houde M, Lemire P, Fittipaldi N, Segura M. 2011. Critical role for Streptococcus suis cell wall modifications and suilysin in resistance to complement-dependent killing by dendritic cells. Journal of Infectious Diseases204, 919–929.

Liu H, Lei S, Jia L, Xia X, Sun Y, Jiang H, Zhu R, Li S, Qu G, Gu J, Sun C, Feng X, Han W, Langford P R, Lei L. 2021. Streptococcus suis serotype 2 enolase interaction with host brain microvascular endothelial cells and RPSA-induced apoptosis lead to loss of BBB integrity. Veterinary Research52, 30.

Liu H, Zhu S, Sun Y, Li N, Gu J, Sun C, Feng X, Han W, Jiang J X, Lei L. 2017. Selection of potential virulence factors contributing to streptococcus suis serotype 2 penetration into the blood–brain barrier in an in vitro co-culture model. Journal of Microbiology and Biotechnology27, 161–170.

Ma Z, Peng J, Yu D, Park J S, Lin H, Xu B, Lu C, Fan H, Waldor M K. 2019. A streptococcal Fic domain-containing protein disrupts blood–brain barrier integrity by activating moesin in endothelial cells. Public Library of Science Pathogens15, e1007737.

Mai N T, Hoa N T, Nga T V, Linh le D, Chau T T, Sinh D X, Phu N H, Chuong L V, Diep T S, Campbell J, Nghia H D, Minh T N, Chau N V, de Jong M D, Chinh N T, Hien T T, Farrar J, Schultsz C. 2008. Streptococcus suis meningitis in adults in Vietnam. Clinical Infectious Diseases46, 659–667.

Pian Y, Wang P, Liu P, Zheng Y, Zhu L, Wang H, Xu B, Yuan Y, Jiang Y. 2015. Proteomics identification of novel fibrinogen-binding proteins of Streptococcus suis contributing to antiphagocytosis. Frontiers in Cellular and Infection Microbiology5, 19.

Ricard-Blum S. 2011. The collagen family. Cold Spring Harbor Perspectives in Biology3, a004978.

Ring A, Weiser J N, Tuomanen E I. 1998. Pneumococcal trafficking across the blood–brain barrier. Molecular analysis of a novel bidirectional pathway. Journal of Clinical Investigation102, 347–360.

Segura M. 2020. Streptococcus suis research: Progress and challenges. Pathogens9, 707.

Segura M, Fittipaldi N, Calzas C, Gottschalk M. 2017. Critical Streptococcus suis virulence factors: Are they all really critical? Trends in Microbiology25, 585–599.

Sun Y, Li N, Zhang J, Liu H, Liu J, Xia X, Sun C, Feng X, Gu J, Du C, Han W, Lei L. 2016. Enolase of Streptococcus suis serotype 2 enhances blood–brain barrier permeability by inducing IL-8 release. Inflammation39, 718–726.

Sycuro L K, Rule C S, Petersen T W, Wyckoff T J, Sessler T, Nagarkar D B, Khalid F, Pincus Z, Biboy J, Vollmer W, Salama N R. 2013. Flow cytometry-based enrichment for cell shape mutants identifies multiple genes that influence Helicobacter pylori morphology. Molecular Microbiology90, 869–883.

Wang J, Kong D, Zhang S, Jiang H, Zheng Y, Zang Y, Hao H, Jiang Y. 2015. Interaction of fibrinogen and muramidase-released protein promotes the development of Streptococcus suis meningitis. Frontiers in Microbiology6, 1001.

Wang Y, Wang Y, Liu B, Wang S, Li J, Gong S, Sun L, Yi L. 2019. pdh modulate virulence through reducing stress tolerance and biofilm formation of Streptococcus suis serotype 2. Virulence10, 588–599.

Wilson T L, Jeffers J, Rapp-Gabrielson V J, Martin S, Klein L K, Lowery D E, Fuller T E. 2007. A novel signature-tagged mutagenesis system for Streptococcus suis serotype 2. Veterinary Microbiology122, 135–145.

Wu Q, Li C, Li C, Chen H, Shuliang L. 2010. Purification and characterization of a novel collagenase from Bacillus pumilus Col-J. Applied Biochemistry and Biotechnology160, 129–139.

Xia X, Qin W, Zhu H, Wang X, Jiang J, Hu J. 2019. How Streptococcus suis serotype 2 attempts to avoid attack by host immune defenses. Journal of MicrobiologyImmunology and Infection52, 516–525.

Xu Q, Torres J E, Hakim M, Babiak P M, Pal P, Battistoni C M, Nguyen M, Panitch A, Solorio L, Liu J C. 2021. Collagen-and hyaluronic acid-based hydrogels and their biomedical applications. Materials Science & Engineering (R. Reports), 146, 100641.

Yang J, Ma W, Wu Y, Zhou H, Song S, Cao Y, Wang C, Liu X, Ren J, Duan J, Pei Z, Jin C. 2021. O-acetylation of capsular polysialic acid enables Escherichia coli K1 escaping from siglec-mediated innate immunity and lysosomal degradation of Ecoli-containing vacuoles in macrophage-like cells. Microbiology Spectrum9, e0039921.

Yasmina M, Carlos A, Jose P M, Agnieszka K. 2010. Evaluation of evans blue extravasation as a measure of peripheral inflammation. Radiology81, 963–970.

Zhang Y Z, Ran L Y, Li C Y, Chen X L. 2015. Diversity, structures, and collagen-degrading mechanisms of bacterial collagenolytic proteases. Applied and Environmental Microbiology81, 6098–6107.

Zhao Z, Shang X, Chen Y, Zheng Y, Huang W, Jiang H, Lv Q, Kong D, Jiang Y, Liu P. 2020. Bacteria elevate extracellular adenosine to exploit host signaling for blood–brain barrier disruption. Virulence11, 980–994.

Zhe M, Jie P, Hui Z, Bin X, Xiaomeng P, Huixing L, Chengping L, Hongjie F. 2016. SILAC and LC-MS/MS identification of Streptococcus equi ssp. zooepidemicus proteins that contribute to mouse brain microvascular endothelial cell infection. Applied Microbiology and Biotechnology100, 7125–7136.

[1] Jie Zhao, Sa Xiao, Wei Yao, Xudong Chang, Xinglong Wang, Zengqi Yang, Wenbin Wang. Velogenic Newcastle disease virus invades chicken brain by infecting brain microvascular endothelial cells to increase blood-brain barrier permeability[J]. >Journal of Integrative Agriculture, 2025, 24(2): 712-723.
[2] HU Hong-lian, YANG Shu-qing, CHENG Meng, SONG Li-wen, XU Ming, GAO Min, YU Zhong-tang. Long-term effect of subacute ruminal acidosis on the morphology and function of rumen epithelial barrier in lactating goats[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3302-3313.
No Suggested Reading articles found!