Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (11): 3706-3722    DOI: 10.1016/j.jia.2023.12.015
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Transcriptomic and metabolomic analysis of changes in grain weight potential induced by water stress in wheat

Yanmei Gao1, 3, Maoya Jing1, Meng Zhang1, Zhen Zhang2, Yuqing Liu2, Zhimin Wang2#, Yinghua Zhang2#

1 School of Life Science, Shanxi Normal University, Taiyuan 030031, China

2 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China

3 Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu 030801, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

小麦子房发育的库强决定了粒重潜力。从孕穗到籽粒建成期是子房生长发育和潜在库强决定的关键时期。然而,水分胁迫下,小麦植株在这一时期如何平衡和协调小花数和子房/籽粒重的潜在调控机制尚不清楚。因此,我们设计了W0(生长季不灌溉)W1(拔节期灌溉75 mm)两个灌溉处理,从表型、代谢和转录组水平分析了小麦子房/籽粒重对水分胁迫的响应。结果表明,W0处理降低了土壤含水量、株高和旗叶叶面积,从而减少了粒数,尤其是弱势粒的粒数,但是提高了强势粒和弱势粒的粒重以及成熟期籽粒的平均粒重,与此同时,花前3天到花后10天子房/籽粒的重量和体积也都增加了。转录组分析表明,W0处理显著促进了蔗糖代谢和植物激素信号转导相关基因的表达,并导致可溶性酸转化酶(SAI)和蔗糖合酶(Sus)活性以及脱落酸(ABA)和吲哚-3-乙酸(IAA)水平升高,因此蔗糖含量降低,葡萄糖和果糖含量增加。此外,在W0处理下,花前几个TaTPP基因(尤其是TaTPP-6下调,IAA生物合成基因TaTAR1TaTAR2上调,这进一步提高了IAA水平。总的来说,水分胁迫减少了营养器官的生长,导致大部分弱势粒退化,但是提高了存活的子房/籽粒的ABA和IAA水平,提升了Sus酶的活性,将蔗糖降解为葡萄糖和果糖。由此可见,在水分胁迫下,较强的蔗糖利用能力,增强的SAI酶活性以及ABA和IAA介导的信号转导共同提高了小麦存活子房/籽粒的重量和体积,最终实现了子房/籽粒重和粒数之间的平衡。



Abstract  
The sink strength of developing ovaries in wheat determines the grain weight potential.  The period from booting to the grain setting stage is critical for ovary growth and development and potential sink capacity determination.  However, the underlying regulatory mechanism during this period by which the wheat plant balances and coordinates the floret number and ovary/grain weight under water stress has not been clarified.  Therefore, we designed two irrigation treatments of W0 (no seasonal irrigation) and W1 (additional 75 mm of irrigation at the jointing stage) and analyzed the responses of the ovary/grain weight to water stress at the phenotypic, metabolomic, and transcriptomic levels.  The results showed that the W0 irrigation treatment reduced the soil water content, plant height, and green area of the flag leaf, thus reducing grain number, especially for the inferior grains.  However, it improved the grain weight of the superior and inferior grains as well as average grain weight at maturity, while the average ovary/grain weight and volume during –3 to 10 days after anthesis (DAA) also increased.  Transcriptomic analysis indicated that the genes involved in both sucrose metabolism and phytohormone signal transduction were prominently accelerated by the W0 treatment, accompanied by greater enzymatic activities of soluble acid invertase (SAI) and sucrose synthase (Sus) and elevated abscisic acid (ABA) and indole-3-acetic acid (IAA) levels.  Thus, the sucrose content decreased, while the glucose and fructose contents increased.  In addition, several TaTPP genes (especially TaTPP-6) were down-regulated and the IAA biosynthesis genes TaTAR1 and TaTAR2 were up-regulated under the W0 treatment before anthesis, which further increased the IAA level.  Collectively, water stress reduced the growth of vegetative organs and eliminated most of the inferior grains, but increased the ABA and IAA levels of the surviving ovaries/grains, promoting the enzymatic activity of Sus and degrading sucrose into glucose and fructose.  As a result, the strong sucrose utilization ability, the enhanced enzymatic activity of SAI and the ABA- and IAA-mediated signaling jointly increased the weight and volume of the surviving ovaries/grains, and ultimately achieved the trade-off between ovary/grain weight and number in wheat under water stress.


Keywords:  grain weight       sucrose metabolism        endogenous hormones        water stress        transcriptome  
Received: 01 August 2023   Accepted: 13 November 2023
Fund: 
This research program was sponsored by the Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, China (SBGJXTZX-44), the Fundamental Research Program of Shanxi Province, China (20210302124237), the National Key Research and Development Program of China (2022YFD2300802), and the China Agriculture Research System (CARS-3).  Financial support from the above sources is gratefully acknowledged.  
About author:  Yanmei Gao, Tel: +86-351-2051196, E-mail: gaoyanmei0225@ 163.com; #Correspondence Zhimin Wang, Tel: +86-10-62733399, E-mail: wangzm@cau.edu.cn; Yinghua Zhang, Tel: +86-10-62732431, E-mail: zhangyh1216@126.com

Cite this article: 

Yanmei Gao, Maoya Jing, Meng Zhang, Zhen Zhang, Yuqing Liu, Zhimin Wang, Yinghua Zhang. 2024. Transcriptomic and metabolomic analysis of changes in grain weight potential induced by water stress in wheat. Journal of Integrative Agriculture, 23(11): 3706-3722.

Acreche M M, Slafer G A. 2006. Grain weight response to increases in number of grains in wheat in a Mediterranean area. Field Crops Research98, 52–59.

Ahmadi A, Baker D A. 1999. Effects of abscisic acid (ABA) on grain filling processes in wheat. Plant Growth Regulation28, 187–197.

Arathi H S. 2011. Selective embryo abortion in a perennial tree-legume: A case for maternal advantage of reduced seed number per fruit. Journal of Plant Research124, 675–681.

Basunia M A, Nonhebel H M. 2019. Hormonal regulation of cereal endosperm development with a focus on rice (Oryza sativa). Functional Plant Biology46, 493–506.

Bernardi J, Battaglia R, Bagnaresi P, Lucini L, Marocco A. 2019. Transcriptomic and metabolomic analysis of ZmYUC1 mutant reveals the role of auxin during early endosperm formation in maize. Plant Science281, 133–145.

Borrás L, Slafer G A, Otegui M E. 2004. Seed dry weight response to source–sink manipulations in wheat, maize and soybean: A quantitative reappraisal. Field Crops Research86, 131–146.

Boussora F, Allam M, Guasmi F, Ferchichi A, Rutten T, Hansson M, Youssef H M, Börner A. 2019. Spike developmental stages and ABA role in spikelet primordia abortion contribute to the final yield in barley (Hordeum vulgare L.). Botanical Studies60, 13–24.

Brinton J, Uauy C. 2019. A reductionist approach to dissecting grain weight and yield in wheat. Journal of Integrative Plant Biology61, 337–358.

Calderini D F, Abeledo L G, Savin R, Slafer G A. 1999. Effect of temperature and carpel size during pre-anthesis on potential grain weight in wheat. Journal of Agricultural Science132, 453–459.

Calderini D F, Castillo F M, Arenas M A, Molero G, Reynolds M P, Craze M, Bowden S, Milner M J, Wallington E J, Dowle P, Gomez L D, McQueen-Mason S J. 2020. Overcoming the trade-off between grain weight and number in wheat by the ectopic expression of expansion in developing seeds leads to increased yield potential. New Phytologist230, 629–640.

Calderini D F, Savin R, Abeledo L G, Reynolds M P, Slafer G A. 2001. The importance of the period immediately preceding anthesis for grain weight determination in wheat. Euphytica119, 199–204.

Carmo-Silva E, Andralojc P J, Scales J C, Driever S M, Mead A, Lawson T, Raines C A, Parry M A J. 2017. Phenotyping of field-grown wheat in the UK highlights contribution of light response of photosynthesis and flag leaf longevity to grain yield. Journal of Experimental Botany68, 3473–3486.

Du H, Wu N, Chang Y, Li X H, Xiao J H, Xiong L Z. 2013. Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. Plant Molecular Biology83, 475–488.

Ehdaie B, Alloush G A, Waines J G. 2008. Genotypic variation in linear rate of grain growth and contribution of stem reserves to grain yield in wheat. Field Crops Research106, 34–43.

Fichtner F, Lunn J E. 2021. The role of trehalose 6-phosphate (Tre6P) in plant metabolism and development. Annual Review of Plant Biology72, 737–760.

Gao Y M, Zhang M, Yao C S, Liu Y Q, Wang Z M, Zhang Y H. 2021. Increasing seeding density under limited irrigation improves crop yield and water productivity of winter wheat by constructing a reasonable population architecture. Agricultural Water Management253, 106951.

Garcia P M, Asega A F, Silva E A, Carvalho M A M. 2011. Effect of drought and re-watering on fructan metabolism in Vernonia herbacea (Vell.) Rusby. Plant Physiology and Biochemistry49, 664–670.

González F G, Miralles D J, Slafer G A. 2011. Wheat floret survival as related to pre-anthesis spike growth. Journal of Experimental Botany62, 4889–4901.

Guo T, Chen K, Dong N Q, Ye W W, Shan J X, Lin H X. 2020. Tillering and small grain 1 dominates the tryptophan aminotransferase family required for local auxin biosynthesis in rice. Journal of Integrative Plant Biology62, 581–600.

Guo Z F, Chen D J, Schnurbusch T. 2018. Plant and floret growth at distinct developmental stages during the stem elongation phase in wheat. Frontiers in Plant Science9, 1–14.

Harb A, Krishnan A, Ambavaram M M, Pereira A. 2010. Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiology154, 1254–1271.

Herrera J, Calderini D F. 2020. Pericarp growth dynamics associate with final grain weight in wheat under contrasting plant densities and increased night temperature. Annals of Botany126, 1063–1076.

Hou J F, Huang X, Sun W, Du C Y, Wang C Y, Xie Y X, Ma Y. 2018. Accumulation of water-soluble carbohydrates and gene expression in wheat stems correlates with drought resistance. Journal of Plant Physiology231, 182–191.

Kaur H, Ozga J A, Reinecke D M. 2021. Balancing of hormonal biosynthesis and catabolism pathways, a strategy to ameliorate the negative effects of heat stress on reproductive growth. PlantCell & Environment44, 1486–1503.

Liang Z M, Cao X D, Gao R, Guo N, Tang Y Y, Vinay N, Liu Y. 2025. Brassinosteroids alleviates wheat floret degeneration under low nitrogen stress by promoting the distribution of sucrose from stems to spikes. Journal of Integrative Agriculture, doi.org/10.1016/j.jia.2023.12.017.

Lindström L I, Pellegrini C N, Aguirrezábal L A N, Herna´ndez L F. 2006. Growth and development of sunflower fruits under shade during pre and early post-anthesis period. Field Crops Research96, 151–159.

Liu C, Mao B G, Yuan D Y, Chu C C, Duan M J. 2021. Salt tolerance in rice: Physiological responses and molecular mechanisms. The Crop Journal10, 13–25.

Liu Y, Wang Q S, Ding Y F, Li G H, Xu J X, Wang S H. 2011. Effects of external ABA, GA3 and NAA on the tiller bud outgrowth of rice is related to changes in endogenous hormones. Plant Growth Regulation65, 247–254.

Liu Y H, Offler C E, Ruan Y L. 2016. Cell wall invertase promotes fruit set under heat stress by suppressing ROS-independent cell death. Plant Physiology172, 163–180.

Lizana X C, Riegel R, Gomez L D, Herrera J, Isla A, McQueen-Mason S J, Calderini D F. 2010. Expansins expression is associated with grain size dynamics in wheat (Triticum aestivum L.). Journal of Experimental Botany61, 1147–1157.

Meitzel T, Radchuk R, McAdam E L, Thormählen I, Feil R, Munz E, Hilo A, Geigenberger P, Ross J J, Lunn J E, Borisjuk L. 2021. Trehalose 6-phosphate promotes seed filling by activating auxin biosynthesis. New Phytologist229, 1553–1565.

Mena-Alí J I, Rocha O J. 2005. Selective seed abortion affects the performance of the offspring in Bauhinia ungulataAnnals of Botany95, 1017–1023.

O’Hara L E, Paul M J, Wingler A. 2013. How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate. Molecular Plant6, 261–274.

Ranwala A P, Miller W B. 1998. Sucrose-cleaving enzymes and carbohydrate pools in lilium longiflorum floral organs. Physiologia Plantarum103, 541–550.

Ruan Y, Patrick J W, Bouzayen M, Osorio S, Fernie A R. 2012. Molecular regulation of seed and fruit set. Trends in Plant Science17, 656–665.

Ruan Y L. 2014. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology65, 33–67.

Sah S K, Reddy K R, Li J X. 2016. Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science7, 571.

Schnyder H, Gillenberg C, Hinz J. 1993. Fructan contents and dry matter deposition in different tissues of the wheat grain during development. PlantCell & Environment16, 179–187.

Serrago R A I. Savin A R, Slafer G A. 2013. Understanding grain yield responses to source–sink ratios during grain filling in wheat and barley under contrasting environments. Field Crops Research150, 42–51.

Shen S, Liang X G, Zhang L, Zhao X, Liu Y P, Lin S, Gao Z, Wang P, Wang Z M, Zhou S L. 2020. Intervening in sibling competition for assimilates by controlled pollination prevents seed abortion under postpollination drought in maize. PlantCell & Environment43, 903–919.

Shen S, Zhang L, Liang X G, Zhao X, Lin S, Qu L H, Liu Y P, Gao Z, Ruan Y L, Zhou S L. 2018. Delayed pollination and low availability of assimilates are major factors causing maize kernel abortion. Journal of Experimental Botany69, 1599–1613.

Tang T, Xie H, Wang Y, Lü B, Liang J S. 2009. The Effect of sucrose and abscisic acid interaction on sucrose synthase and its relationship to grain filling of rice (Oryza sativa L.). Journal of Experimental Botany60, 2641–2652.

Teng Z N, Yu H H, Wang G Q, Meng S, Liu B H, Yi Y K, Chen Y K, Zheng Q, Liu L, Yang J C, Duan M J, Zhang J H, Ye N H. 2021. Synergistic interaction between ABA and IAA due to moderate soil drying promotes grain filling of inferior spikelets in rice. The Plant Journal109, 1457–1472

Waadt R. 2020. Phytohormone signaling mechanisms and genetic methods for their modulation and detection. Current Opinion in Plant Biology57, 31–40.

Waddington S R, Cartwright P M, Wall P C. 1983. A quantitative scale of spike initial and pistil development in barley and wheat. Annals of Botany51, 119–130.

Wang G Q, Li H X, Feng L, Chen M X, Meng S, Ye N H, Zhang J H. 2019. Transcriptomic analysis of grain filling in rice inferior grains under moderate soil drying. Journal of Experimental Botany70, 1597–1611.

Wang G Q, Zhang J H. 2020. Carbohydrate, hormone and enzyme regulations of rice grain filling under post-anthesis soil drying. Environmental and Experimental Botany178, 104165.

Wang L L, Lu Q Q, Wen X X, Lu C C. 2015. Enhanced sucrose loading improves rice yield by increasing grain size. Plant Physiology169, 2848–2862.

Wang Z Q, Xu Y J, Chen T T, Zhang H, Yang J C, Zhang J H. 2015. Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling. Planta241, 1091–1107.

Wardlaw I F, Willenbrink J. 2000. Mobilization of fructan reserves and changes in enzyme activities in wheat stems correlate with water stress during kernel filling. New Phytologist148, 413–422.

Xie Q, Mayes S, Sparkes D L. 2015. Carpel size, grain filling, and morphology determine individual grain weight in wheat. Journal of Experimental Botany66, 6715–6730.

Xu X Y, E Z G, Zhang D P, Yun Q B, Zhou Y, Niu B X. Chen C. 2021. OsYUC11-mediated auxin biosynthesis is essential for endosperm development of rice. Plant Physiology185, 934–950.

Yadav U P, Ivakov A, Feil R, Duan G Y, Walther D, Giavalisco P, Piques M, Carillo P, Hubberten H M, Stitt M, Lunn J E. 2014. The sucrose-trehalose 6-phosphate (Tre6P) nexus: Specificity and mechanisms of sucrose signalling by Tre6P. Journal of Experimental Botany65, 1051–1068.

Yang J C, Zhang J H. 2006. Grain filling of cereals under soil drying. New Phytologist169, 223–236.

Yang J C, Zhang J H, Liu K, Wang Z Q, Liu L J. 2007. Abscisic acid and ethylene interact in rice spikelets in response to water stress during meiosis. Journal of Plant Growth Regulation26, 318–328.

Yang J C, Zhang J H, Wang Z Q, Xu G W, Zhu Q S. 2004. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiology135, 1621–1629.

Yang J C, Zhang J H, Wang Z Q, Zhu Q S. 2001. Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling. Journal of Experimental Botany52, 2169–2179.

Zadoks J C, Chang T T, Konzak C F. 1974. A decimal code for the growth stages of cereals. Weed Research14, 415–421.

Zhang H, Li H W, Yuan L M, Wang Z Q, Yang J C, Zhang J H. 2012. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. Journal of Experimental Botany63, 215–227.

Zhang L, Liang X G, Shen S, Yin H, Zhou L L, Gao Z, Lv X Y, Zhou S L. 2018. Increasing the abscisic acid level in maize grains induces precocious maturation by accelerating grain filling and dehydration. Plant Growth Regulation86, 65–79.

Zhang M, Gao Y M, Zhang Z, Liu Y, Han M K, Hu N Y, Wang Z M, Sun Z C, Zhang Y H. 2020. Limited irrigation influence on rotation yield, water use, and wheat traits. Agronomy Journal112, 241–256.

Zhang X Y, Chen S Y, Sun H Y, Wang Y M, Shao L W. 2010. Water use efficiency and associated traits in winter wheat cultivars in the North China Plain. Agricultural Water Management97, 1117–1125.

Zhang Z, Huang J, Gao Y M, Liu Y, Li J P, Zhou X N, Yao C S, Wang Z M, Sun Z C, Zhang Y H. 2020. Suppressed ABA signal transduction in the spike promotes sucrose use in the stem and reduces grain number in wheat under water stress. Journal of Experimental Botany71, 7241–7256.

Zhang Z, Li J, Hu N Y, Li W, Qin W L, Li J P, Gao Y M, Liu Y, Sun Z C, Yu K, Wang Z M, Zhang Y H. 2021. Spike growth affects spike fertility through the number of florets with green anthers before floret abortion in wheat. Field Crops Research260, 108007.

Zhao Y. 2018. Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes. Annual Review of Plant Biology69, 417–435.

Zinselmeier C, Jeong B R, Boyer J S. 1999. Starch and the control of kernel number in maize at low water potentials. Plant Physiology121, 25–36.

[1] Meixue Sun, Tong Li, Yingjie Liu, Kenneth Wilson, Xingyu Chen, Robert I. Graham, Xianming Yang, Guangwei Ren, Pengjun Xu. A dicistrovirus increases pupal mortality in Spodoptera frugiperda by suppressing protease activity and inhibiting larval diet consumption[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2723-2734.
[2] Qian Wang, Huimin Cao, Jingcheng Wang, Zirong Gu, Qiuyun Lin, Zeyan Zhang, Xueying Zhao, Wei Gao, Huijun Zhu, Hubin Yan, Jianjun Yan, Qingting Hao, Yaowen Zhang. Fine-mapping and primary analysis of candidate genes associated with seed coat color in mung bean (Vigna radiata L.)[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2571-2588.
[3] Hengwei Yu, Zhimei Yang, Jianfang Wang, Huaxuan Li, Xuefeng Li, Entang Liang, Chugang Mei, Linsen Zan. Identification of key genes and metabolites involved in meat quality performance in Qinchuan cattle by WGCNA[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3923-3937.
[4] Simin Liao, Zhibin Xu, Xiaoli Fan, Qiang Zhou, Xiaofeng Liu, Cheng Jiang, Liangen Chen, Dian Lin, Bo Feng, Tao Wang.

Genetic dissection and validation of a major QTL for grain weight on chromosome 3B in bread wheat (Triticum aestivum L.) [J]. >Journal of Integrative Agriculture, 2024, 23(1): 77-92.

[5] CHU Jin-peng, GUO Xin-hu, ZHENG Fei-na, ZHANG Xiu, DAI Xing-long, HE Ming-rong. Effect of delayed sowing on grain number, grain weight, and protein concentration of wheat grains at specific positions within spikes[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2359-2369.
[6] Zaid CHACHAR, Siffat Ullah KHAN, ZHANG Xue-huan, LENG Peng-fei, ZONG Na, ZHAO Jun. Characterization of transgenic wheat lines expressing maize ABP7 involved in kernel development[J]. >Journal of Integrative Agriculture, 2023, 22(2): 389-399.
[7] LIU Yun-chuan, WANG Xiao-lu, HAO Chen-yang, IRSHAD Ahsan, LI Tian, LIU Hong-xia, HOU Jian, ZHANG Xue-yong. TaABI19 positively regulates grain development in wheat[J]. >Journal of Integrative Agriculture, 2023, 22(1): 41-51.
[8] WU Xiao-li, LIU Miao, LI Chao-su, Allen David (Jack) MCHUGH, LI Ming, XIONG Tao, LIU Yu-bin, TANG Yong-lu. Source–sink relations and responses to sink–source manipulations during grain filling in wheat[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1593-1605.
[9] FAN Xiao-xue, BIAN Zhong-hua, SONG Bo, XU Hai. Transcriptome analysis reveals the differential regulatory effects of red and blue light on nitrate metabolism in pakchoi (Brassica campestris L.)[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1015-1027.
[10] WU Zhe, YANG Xuan, ZHAO Yu-xuan, JIA Li. Identifying candidate genes involved in trichome formation on carrot stems by transcriptome profiling and resequencing [J]. >Journal of Integrative Agriculture, 2022, 21(12): 3589-3599.
[11] MA Wei-hua, WU Tong, ZHANG Zan, LI Hang, SITU Gong-ming, YIN Chuan-lin, YE Xin-hai, CHEN Meng-yao, ZHAO Xian-xin, HE Kang, LI Fei . Using transcriptome Shannon entropy to evaluate the off-target effects and safety of insecticidal siRNAs[J]. >Journal of Integrative Agriculture, 2022, 21(1): 170-177.
[12] XUE Pao1, ZHANG Ying-xin1, LOU Xiang-yang1, ZHU Ai-ke, CHEN Yu-yu, SUN Bin, YU Ping, CHENG Shi-hua, CAO Li-yong, ZHAN Xiao-deng .
Mapping and genetic validation of a grain size QTL qGS7.1 in rice (Oryza sativa L.)
[J]. >Journal of Integrative Agriculture, 2019, 18(8): 1838-1850.
[13] WANG Yi-xue, XU Qiao-fang, CHANG Xiao-ping, HAO Chen-yang, LI Run-zhi, JING Rui-lian. A dCAPS marker developed from a stress associated protein gene TaSAP7-B governing grain size and plant height in wheat[J]. >Journal of Integrative Agriculture, 2018, 17(2): 276-284.
[14] GAO Fang-yuan, ZENG Li-hua, QIU Ling, LU Xian-jun, REN Juan-sheng, WU Xian-ting, SU Xiangwen, GAO Yong-ming, REN Guang-jun. QTL mapping of grain appearance quality traits and grain weight using a recombinant inbred population in rice (Oryza sativa L.)[J]. >Journal of Integrative Agriculture, 2016, 15(8): 1693-1702.
[15] PENG Ting, Lü Qiang, ZHAO Ya-fan, SUN Hong-zheng, HAN Ying-chun, DU Yan-xiu, ZHANG Jing, LI Jun-zhou, WANG Lin-lin, ZHAO Quan-zhi. Superior grains determined by grain weight are not fully correlated with the flowering order in rice[J]. >Journal of Integrative Agriculture, 2015, 14(5): 847-855.
No Suggested Reading articles found!