Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (5): 1646-1655    DOI: 10.1016/j.jia.2024.09.009
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of Pi-efficient elite allele of the TaPHT1;6 gene and development of its functional marker in common wheat (Triticum aestivum L.)

Huanting Shi1, 2, Chuang Lou1, Jinfeng Wang1, Dianqi Dong1, Longfei Yang1, Gezi Li1, Zhiqiang Tian1, Qiaoxia Han1#, Pengfei Wang1#, Guozhang Kang1, 2, 3#

1 National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou 450046, China

2 Shennong Laboratory of Henan Province, Zhengzhou 450002, China

3 State Key Laboratory of High-Efficiency Production of Wheat–Maize Double Cropping, Henan Agricultural University, Zhengzhou 450046, China

 Highlights 
TaPHT1;6-5B gene has three haplotypes (Hap1, Hap2, and Hap3).
Hap3 is inorganic phosphate (Pi)-efficient and is characterized with both higher Pi fertilizer absorption efficiency and Pi fertilizer utilization efficiency.
Functional marker dCAPS-571 of TaPHT1;6-5B is developed for wheat breeding.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

磷(Pi)利用效率低是农业生产面临的一个重要挑战,不仅导致生产成本的增加和环境问题,同时也造成了磷矿资源的短缺。高亲和磷转运蛋白在作物磷吸收转运过程中发挥了重要功能,然而编码这些蛋白基因的分子标记甚少被开发。本研究扩增了167个小麦品种的高亲和磷转运蛋白基因(TaPHT1;6-5A5B5D)的启动子和编码区序列,发现TaPHT1;6-5ATaPHT1;6-5D无等位变异位点,TaPHT1;6-5B启动子上存在16个等位变异位点,形成三种单倍型Hap1Hap2Hap3。在连续两年田间试验中,测定了三种单倍型小麦品种的生物量、籽粒产量、磷含量、磷肥吸收效率及磷肥利用效率,发现Hap3属于磷高效优异单倍型;在其机理上,通过LUC assay发现Hap3启动子具有更强的基因表达驱动能力,在Hap3小麦品种内TaPHT1;6-5B表达水平显著高于其它两个单倍型;在应用上,基于TaPHT1;6-5B启动子上的等位变异位点,开发了一个用于区分Hap3和其它两种单倍型的功能标记dCAPS-571,可用于磷高效小麦品种的选育。



Abstract  
One of agriculture’s major challenges is the low efficiency of phosphate (Pi) use, which leads to increased costs, harmful environmental impacts, and the depletion of phosphorus (P) resources.  The TaPHT1;6 gene, which encodes a high-affinity Pi transporter (PHT), plays a crucial role in Pi absorption and transport.  In this study, the promoter and coding regions of three TaPHT1;6 gene copies on chromosomes 5A, 5B, and 5D were individually amplified and sequenced from 167 common wheat (Triticum aestivum L.) cultivars.  Sequence analysis revealed 16 allelic variation sites within the promoters of TaPHT1;6-5B among these cultivars, forming three distinct haplotypes: Hap1, Hap2, and Hap3.  Field trials were conducted over two years to compare wheat genotypes with these haplotypes, focusing on assessing plant dry weight, grain yield, P content, Pi fertilizer absorption efficiency, and Pi fertilizer utilization efficiency.  Results indicated that Hap3 represented the favored Pi-efficient haplotype.  Dual-luciferase reporter assay demonstrated that the Hap3 promoter, carrying the identified allelic variation sites, exhibited higher gene-driven capability, leading to increased expression levels of the TaPHT1;6-5B gene.  We developed a distributed cleaved amplified polymorphic site marker (dCAPS-571) to distinguish Hap3 from the other two haplotypes based on these allelic variation sites, presenting an opportunity for breeding Pi-efficient wheat cultivars.  This study successfully identified polymorphic sites on TaPHT1;6-5B associated with Pi efficiency and developed a functional molecular marker to facilitate future breeding endeavors.



Keywords:  Triticum aestivum L.       high-affinity Pi transporter        Pi use efficiency        Pi-efficient molecular marker  
Received: 27 May 2024   Online: 14 September 2024   Accepted: 04 August 2024
Fund: 

This work was financially supported by the Shennong Laboratory Project of Henan Province, China (SN01-2022-01), the China Postdoctoral Science Foundation (2023M731006), and the Project of Science and Technology of Henan Province, China (232102111104).

About author:  #Correspondence Qiaoxia Han, E-mail: hqxia@henau.edu.cn; Pengfei Wang, E-mail: wangpf@henau.edu.cn; Guozhang Kang, E-mail: guozhangkang@henau.edu.cn

Cite this article: 

Huanting Shi, Chuang Lou, Jinfeng Wang, Dianqi Dong, Longfei Yang, Gezi Li, Zhiqiang Tian, Qiaoxia Han, Pengfei Wang, Guozhang Kang. 2025. Identification of Pi-efficient elite allele of the TaPHT1;6 gene and development of its functional marker in common wheat (Triticum aestivum L.). Journal of Integrative Agriculture, 24(5): 1646-1655.

Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Yu L, Shen Q, Wu P, Miller A J, Xu G. 2009. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. The Plant Journal57, 798–809.

Brinch-Pedersen H, Sørensen L D, Holm P B. 2002. Engineering crop plants: Getting a handle on phosphate. Trends in Plant Science7, 118–125.

Chang M X, Gu M, Xia Y W, Dai X L, Dai C R, Zhang J, Wang S C, Qu H Y, Yamaji N, Ma J F, Xu G H. 2019. OsPHT1;3 mediates uptake, translocation, and remobilization of phosphate under extremely low phosphate regimes. Plant Physiology179, 656–670.

Chen A Q, Hu J, Sun S B, Xu G H. 2007. Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. New Phytologist173, 817–831.

Chen Z D, Wang J F, Dong D Q, Lou C, Zhang Y, Wang Y X, Yu B, Wang P F, Kang G Z. 2024. Comparative analysis of TaPHT1;9 function using CRISPR-edited mutants, ectopic transgenic plants and their wild types under soil conditions. Plant and Soil, doi: 10.1007/s11104-024-06855-9.

Cobb J N, Declerck G, Greenberg A, Clark R, McCouch S. 2013. Next-generation phenotyping: Requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theoretical and Applied Genetics126, 867–887.

Collard B C Y, Jahufer M Z Z, Brouwer J B, Pang E C K. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica142, 169–196.

Dean R, Van K J A L, Pretorius Z A, Hammond-Kosack K E, Di P A, Spanu P D, Rudd J J, Dickman M, Kahmann R, Ellis J, Foster G D. 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13, 414–430.

Dissanayaka S, Kottearachchi N S, Weerasena J, Peiris M. 2014. Development of a CAPS marker for the badh2.7 allele in Sri Lankan fragrant rice (Oryza sativa). Plant Breeding133, 560–565.

Dubcovsky J, Dvorak J. 2007. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science316, 1862–1866.

Feldman M, Levy A A. 2012. Genome evolution due to allopolyploidization in wheat. Genetics192, 763–774.

Grün A, Buchner P, Broadley M R, Hawkesford M J. 2018. Identification and expression profiling of Pht1 phosphate transporters in wheat in controlled environments and in the field. Plant Biology20, 374–389.

Gu M, Chen A, Sun S, Xu G. 2016. Complex regulation of plant phosphate transporters and the gap between molecular mechanisms and practical application: What is missing? Molecular Plant9, 396–416.

Hellens R P, Allan A C, Friel E N, Templeton M D, Karunairetnam S, Laing W A. 2005. Transient plant expression vectors for functional genomics, quantification of promoter activity and RNA silencing. Plant Methods1, 13.

Huang J F, Li L, Mao X G, Wang J Y, Liu H M, Li C N, Jing R L. 2020. dCAPS markers developed for nitrate transporter genes TaNRT2L12s associating with 1 000-grain weight in wheat. Journal of Integrative Agriculture19, 1543–1553.

Iwaki K, Nishida J, Yanagisawa T, Yoshida H, Kato K. 2002. Genetic analysis of Vrn-B1 for vernalization requirement by using linked dCAPS markers in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics104, 571–576.

Jing F, Miao Y, Zhang P, Chen T, Liu Y, Ma J, Li M, Yang D. 2022. Characterization of TaSPP-5A gene associated with sucrose content in wheat (Triticum aestivum L.). BMC Plant Biology22, 58.

Jung J Y, Ried M K, Hothorn M, Poirier Y. 2018. Control of plant phosphate homeostasis by inositol pyrophosphates and the SPX domain. Current Opinion in Biotechnology49, 156–162.

Mao C, Ding J, Zhang B, Xi D, Ming F. 2018. OsNAC2 positively affects salt-induced cell death and binds to the OsAP37 and OsCOX11 promoters. The Plant Journal94, 454–468.

Młodzińska E, Zboińska M. 2016. Phosphate uptake and allocation - A closer look at Arabidopsis thaliana L. and Oryza sativa L. Frontiers in Plant Science7, 1198.

Neto A P, Favarin J L, Hammond J P, Tezotto T, Couto H T Z. 2016. Analysis of phosphorus use efficiency traits in coffea genotypes reveals coffea arabica and coffea canephora have contrasting phosphorus uptake and utilization efficiencies. Frontiers in Plant Science7, 408.

Qin L, Hao C, Hou J, Wang Y, Li T, Wang L, Ma Z, Zhang X. 2014. Homologous haplotypes, expression, genetic effects and geographic distribution of the wheat yield gene TaGW2BMC Plant Biology14, 107.

Raghothama K G. 1999. Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology50, 665–693.

Romer W, Schilling G. 1986. Phosphorus requirements of the wheat plant in various stages of its life-cycle. Plant and Soil91, 221–229.

Schachtman D P, Reid R J, Ayling S M. 1998. Phosphorus uptake by plants: From soil to cell. Plant Physiology116, 447–453.

Secco D, Bouain N, Rouached A, Prom-U-Thai C, Hanin M, Pandey A K, Rouached H. 2017. Phosphate, phytate and phytases in plants: From fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat. Critical Reviews in Biotechnology37, 898–910.

Shavrukov Y. 2016. Comparison of SNP and CAPS markers application in genetic research in wheat and barley. BMC Plant Biology16, 11–15.

Teng W, Zhao Y Y, Zhao X Q, He X, Ma W Y, Deng Y, Chen X P, Tong Y P. 2017. Genome-wide identification, characterization, and expression analysis of PHT1 phosphate transporters in wheat. Frontiers in Plant Science8, 543.

Veneklaas E J, Lambers H, Bragg J, Finnegan, P M, Lovelock C E, Plaxton W C, Price C A, Scheible W, Shane M W, White P J, Raven J A. 2012. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytologist195, 306–320.

Vincent A G, Schleucher J, Gröbner G, Vestergren J, Persson P, Jansson M, Giesler R. 2012. Changes in organic phosphorus composition in boreal forest humus soils: The role of iron and aluminium. Biogeochemistry108, 485–499.

Wang P, Li G, Li G, Yuan S, Wang C, Xie Y, Guo T, Kang G, Wang D. 2021. TaPHT1;9-4B and its transcriptional regulator TaMYB4-7D contribute to phosphate uptake and plant growth in bread wheat. New Phytologist231, 1968–1983.

Wang X F, Wang Y F, Piñeros, M A, Wang Z Y, Wang W X, Li C Y, Wu Z C, Kochian L V, Wu P. 2014. Phosphate transporters OsPHT1;9 and OsPHT1;10 are involved in phosphate uptake in rice. Plant Cell and Environment37, 1159–1170.

Xu J L, Gao Z Y, Liu S, Elwafa S F A, Tian H. 2022. A multienvironmental evaluation of the N, P and K use efficiency of a large wheat diversity panel. Field Crops Research286, 108634.

Yang M J, Wang C R, Hassan M A, Li F J, Xia X C, Shi S B, Xiao Y G, He Z H. 2021. QTL mapping of root traits in wheat under different phosphorus levels using hydroponic culture. BMC Genomics22, 174.

Yuan Y Y, Gao M G, Zhang M X, Zheng H H, Zhou X W, Guo Y, Zhao Y, Kong F M, Li S S. 2017. QTL mapping for phosphorus efficiency and morphological traits at seedling and maturity stages in wheat. Frontiers in Plant Science8, 614.

Zhang F, Chen X, Vitousek P. 2013. Chinese agriculture: An experiment for the world. Nature497, 33–35.

Zhang Y, Xu L, Zhang D F, Dai J R, Wang S C. 2010. Mapping of southern corn rust-resistant genes in the W2D inbred line of maize (Zea mays L.). Molecular Breeding25, 433–439.

No related articles found!
No Suggested Reading articles found!