Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (1): 272-289    DOI: 10.1016/j.jia.2023.11.009
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Deletion of Salmonella pathogenicity islands SPI-1, 2 and 3 induces substantial morphological and metabolic alternation and protective immune potential

Gaosong Liu*, Xuelian Lü*, Qiufeng Tian, Wanjiang Zhang, Fei Yi, Yueling Zhang, Shenye Yu#

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China

 Highlights 
Deletion of Salmonella pathogenicity islands SPI-1, 2 and 3 leads to profound alterations in carbon metabolism spectrum which will be potential diagnostic markers.
Four SPI mutants were temporarily colonized in chicks and rapidly cleared without causing any clinical symptoms or significant pathological changes.
Four SPI mutants are safe and effective attenuated Salmonella live vaccines or vectors.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

为了研究沙门菌三种主要毒力岛SPIsSPI-123)对其生理学、致病性和免疫原性的影响,本研究通过构建改进的λ-Red同源重组系统,以肠炎沙门菌SM6野毒株为亲本制备了三种主要SPIsSPI-123)的单缺失(SM6ΔSPI1, SM6ΔSPI2, SM6ΔSPI3)和三缺失突变体(SM6ΔSPI1&2&3);对突变体的生长和稳定性进行检测;采用扫描电镜观察菌体形态;利用Biolog微生物鉴定系统检测碳源代谢情况;检测突变体对Caco-2细胞的粘附和侵袭能力;以1×107 CFU剂量腹腔注射7日龄来航鸡于注射后第248(dpi)检测突变体在肝脏和脾脏内的定殖情况;另外,按1×107 CFU剂量将各突变体分别于72135日龄腹腔免疫后在首免23456周(wpi)收集血清检测特异性IgG水平,并于42日龄腹腔注射1×109 CFU剂量的SM6野毒株,于攻毒后第714天检测血液中细胞因子水平,同时收集脾细胞检测CD3+CD4+CD3+CD8+比率,对免疫和攻毒后鸡只的临床表现和组织病理损伤进行打分,对各突变体的免疫效力进行评价。结果表明,单缺失突变体的表面表现出更粗糙的质地,并似乎被一层透明的胶体包裹,而与亲本菌株相比,三缺失突变体的形态保持不变。SPI突变体的碳代谢谱发生了深刻的变化,在95个碳源中的30个碳源(主要是碳水化合物)中观察到了显著且具有统计学意义的变化(30个碳来源中的17个)。此外,与亲本菌株相比,四种突变体对Caco-2细胞的粘附能力显著降低。此外,突变体SM6ΔSPI1SM6ΔSPI1&2&3的入侵能力显著降低,而SM6ΔSPI3SM6△SPI2的入侵能力不同程度地增强。重要的是,四个突变体中没有一个在雏鸡中引起任何临床症状。然而,它们确实在脾脏和肝脏短暂定植。值得注意的是,SM6ΔSPI1&2&3突变体在感染后8天内从脾脏和肝脏中迅速清除,并且在器官中没有观察到显著的病理变化。此外,当受到攻击时,突变体免疫组的抗体水平显著增加,CD3+CD4+CD3+CD8+亚群发生变化,SM6ΔSPI1&2&3免疫鸡血清中的IL-4IFN-γ细胞因子水平超过其他组。总之,四个SPI突变体的成功构建为进一步探索SPI的致病(包括代谢)机制和开发安全有效的减毒沙门氏菌活疫苗或载体奠定了基础。



Abstract  

The Salmonella pathogenicity islands (SPIs) play crucial roles in the progression of Salmonella infection.  In this study, we constructed an improved λ Red homologous recombination system to prepare single and triple deletion mutants of 3 prominent SPIs (SPI-1, 2, and 3), aiming at the impact of deletion on morphology, carbon source metabolism, adhesion and invasion capacity, in vivo colonization, and immune efficacy in chicks.  Our examination revealed that the surface of the single deletion mutants (SM6ΔSPI1, ΔSPI2, and ΔSPI3) exhibited a more rugged texture and appeared to be enveloped in a layer of transparent colloid, whereas the morphology of the triple deletion mutant (SM6ΔSPI1&2&3) remained unaltered when compared to the parent strain.  The carbon metabolic spectrum of the SPI mutants underwent profound alterations, with a notable and statistically significant modification observed in 30 out of 95 carbon sources, primarily carbohydrates (17 out of 30).  Furthermore, the adhesion capacity of the 4 mutants to Caco-2 cells was significantly reduced when compared to that of the parent strain.  Moreover, the invasion capacity of mutants SM6ΔSPI1 and SM6ΔSPI1&2&3 exhibited a substantial decrease, while it was enhanced to varying degrees for SM6ΔSPI3 and SM6ΔSPI2.  Importantly, none of the 4 mutants induced any clinical symptoms in the chicks.  However, they did transiently colonize the spleen and liver.  Notably, the SM6ΔSPI1&2&3 mutant was rapidly cleared from both the spleen and liver within 8 days post-infection and no notable pathological changes were observed in the organs.  Additionally, when challenged, the mutants immunized groups displayed a significant increase in antibody levels and alterations in the CD3+CD4+ and CD3+CD8+ subpopulations, and the levels of IL-4 and IFN-γ cytokines in the SM6ΔSPI1&2&3 immunized chicken serum surpassed those of other groups.  In summary, the successful construction of the 4 SPI mutants lays the groundwork for further exploration into the pathogenic (including metabolic) mechanisms of SPIs and the development of safe and effective live attenuated Salmonella vaccines or carriers.

Keywords:  Salmonella Pathogenicity Islands (SPIs)       morphology       carbon source metabolism       pathogenicity       immunogenicity       live attenuated vaccine  
Received: 31 July 2023   Accepted: 16 October 2023
Fund: This work was supported by the National Key R&D Program of China (2022YFF0710500), the National Natural Science Foundation of China (32172853 and 32373013), the Central Public-interest Scientific Institution Basal Research Fund, China (1610302022001).  

About author:  Gaosong Liu, E-mail: gaosongliu@126.com; #Correspondence Shenye Yu, Tel: +86-451-51051733, E-mail: yushenye@caas.cn * These authors contributed equally to this study.

Cite this article: 

Gaosong Liu, Xuelian Lü, Qiufeng Tian, Wanjiang Zhang, Fei Yi, Yueling Zhang, Shenye Yu. 2025. Deletion of Salmonella pathogenicity islands SPI-1, 2 and 3 induces substantial morphological and metabolic alternation and protective immune potential. Journal of Integrative Agriculture, 24(1): 272-289.

Agron P G, Walker R L, Kinde H, Sawyer S J, Hayes D C, Wollard J, Andersen G L. 2001. Identification by subtractive hybridization of sequences specific for Salmonella enterica serovar enteritidis. Applied and Environmental Microbiology67, 4984–4991.

Barat S, Willer Y, Rizos K, Claudi B, Mazé A, Schemmer A K, Kirchhoff D, Schmidt A, Burton N, Bumann D. 2012. Immunity to intracellular Salmonella depends on surface-associated antigens. PLoS Pathogens8, e1002966.

Barrow P A. 2007. Salmonella infections: Immune and non-immune protection with vaccines. Avian Pathology36, 1–13.

Berndt A, Wilhelm A, Jugert C, Pieper J, Sachse K, Methner U. 2007. Chicken cecum immune response to Salmonella enterica serovars of different levels of invasiveness. Infection and Immunity75, 5993–6007.

Blanc-Potard A B, Solomon F, Kayser J, Groisman E A. 1999. The SPI-3 pathogenicity island of Salmonella entericaJournal of Bacteriology181, 998–1004.

Boyen F, Haesebrouck F, Maes D, Van Immerseel F, Ducatelle R, Pasmans F. 2008. Non-typhoidal Salmonella infections in pigs: A closer look at epidemiology, pathogenesis and control. Veterinary Microbiology130, 1–19.

Cogan T A, Humphrey T J. 2003. The rise and fall of Salmonella enteritidis in the UK. Journal of Applied Microbiology94, 114–119.

Cooper G L, Nicholas R A J, Cullen G A, Hormaeche C E. 1990. Vaccination of chickens with a Salmonella enteritidis aroa live oral Salmonella vaccine. Microbial Pathogenesis9, 255–265.

Datsenko K A, Wanner B L. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America97, 6640–6645.

Desin T S, Mickael C S, Lam P K S, Potter A A, Köster W. 2010. Protection of epithelial cells from Salmonella enterica serovar Enteritidis invasion by antibodies against the SPI-1 type III secretion system. Canadian Journal of Microbiology56, 522–526.

van Diepen A, van de Gevel J S, Koudijs M M, Ossendorp F, Beekhuizen H, Janssen R, van Dissel J T. 2005. Gamma irradiation or CD4+-T-cell depletion causes reactivation of latent Salmonella enterica serovar Typhimurium infection in C3H/HeN mice. Infection and Immunity73, 2857–2862.

Dongre A R, Kovats S, deRoos P, McCormack A L, Nakagawa T, Paharkova-Vatchkova V, Eng J, Caldwell H, Yates Iii J R, Rudensky A Y. 2001. In vivo MHC class II presentation of cytosolic proteins revealed by rapid automated tandem mass spectrometry and functional analyses. European Journal of Immunology31, 1485–1494.

Dorsey C W, Laarakker M C, Humphries A D, Weening E H, Bäumler A J. 2005. Salmonella enterica serotype Typhimurium MisL is an intestinal colonization factor that binds fibronectin. Molecular Microbiology57, 196–211.

Galán J E. 2001. Salmonella Interactions with host cells: type III secretion at work. Annual Review of Cell and Developmental Biology17, 53–86.

Galkin V E, Orlova A, VanLoock M S, Zhou D, Galán J E, Egelman E H. 2002. The bacterial protein SipA polymerizes G-actin and mimics muscle nebulin. Nature Structural Biology9, 518–521

Gast R K. 2007. Serotype-specific and serotype-independent strategies for preharvest control of food-borne Salmonella in poultry. Avian Diseases51, 817–828.

Guibourdenche M, Roggentin P, Mikoleit M, Fields P I, Bockemühl J, Grimont P A D, Weill F X. 2010. Supplement 2003–2007 (No. 47) to the White-Kauffmann-Le Minor scheme. Research in Microbiology161, 26–29.

Hensel M, Shea J E, Waterman S R, Mundy R, Nikolaus T, Banks G, Vazquez-Torres A, Gleeson C, Fang F C, Holden D W. 1998. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Molecular Microbiology30, 163–174.

Herring C D, Glasner J D, Blattner F R. 2003. Gene replacement without selection: regulated suppression of amber mutations in Escherichia coliGene311, 153–163.

Jennings M E, Quick L N, Ubol N, Shrom S, Dollahon N, Wilson J W. 2012. Characterization of Salmonella type III secretion hyper-activity which results in biofilm-like cell aggregation. PLoS ONE7, e33080.

Johanns T M, Ertelt J M, Rowe J H, Way S S. 2010. Regulatory T cell suppressive potency dictates the balance between bacterial proliferation and clearance during persistent Salmonella infection. PLoS Pathogens6, e1001043.

Knodler L A, Vallance B A, Celli J, Winfree S, Hansen B, Montero M, Steele-Mortimer O. 2010. Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia. Proceedings of the National Academy of Sciences of the United States of America107, 17733–17738.

Laparra J M, Sanz Y. 2009. Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium. Letters in Applied Microbiology49, 695–701.

Lee S J, McLachlan J B, Kurtz J R, Fan D, Winter S E, Baumler A J, Jenkins M K, McSorley S J. 2012. Temporal expression of bacterial proteins instructs host CD4 T cell expansion and Th17 development. PLoS Pathogens8, e1002499.

Liu S Y, Jia R Y, Li Q Q, Feng D S, Shen H Y, Yang C, Wang M S, Zhu D K, Chen S, Liu M F, Zhao X X, Yin Z Q, Jing B, Cheng A C. 2018. Immunogenicity and protective efficacy of DHBV DNA vaccines expressing envelope and capsid fusion proteins in ducks delivered by attenuated Salmonella typhimuriumJournal of Integrative Agriculture, 17, 928–939.

Lundberg U, Vinatzer U, Berdnik D, von Gabain A, Baccarini M. 1999. Growth phase-regulated induction of Salmonella-induced macrophage apoptosis correlates with transient expression of SPI-1 genes. Journal of Bacteriology181, 3433–3437.

Ma F, Wang G Y, Zhou H, Ma Z, Lin H X, Fan H J. 2019. Evaluating the efficacy of an attenuated Streptococcus equi ssp. zooepidemicus vaccine produced by multi-gene deletion in pathogenicity island SeseCisland_4. Journal of Integrative Agriculture18, 1093–1102.

Matulova M, Havlickova H, Sisak F, Babak V, Rychlik I. 2013a. SPI1 defective mutants of Salmonella enterica induce cross-protective immunity in chickens against challenge with serovars Typhimurium and Enteritidis. Vaccine31, 3156–3162.

Matulova M, Havlickova H, Sisak F, Rychlik I. 2012a. Vaccination of chickens with Salmonella Pathogenicity Island (SPI) 1 and SPI2 defective mutants of Salmonella enterica serovar Enteritidis. Vaccine30, 2090–2097.

Matulova M, Rajova J, Vlasatikova L, Volf J, Stepanova H, Havlickova H, Sisak F, Rychlik I. 2012b. Characterization of chicken spleen transcriptome after infection with Salmonella enterica serovar Enteritidis. PLoS ONE7, e48101.

Matulova M, Varmuzova K, Sisak F, Havlickova H, Babak V, Stejskal K, Zdrahal Z, Rychlik I. 2013b. Chicken innate immune response to oral infection with Salmonella enterica serovar Enteritidis. Veterinary Research44, 37–37.

Misselwitz B, Kreibich S K, Rout S, Stecher B, Periaswamy B, Hardt W D. 2011. Salmonella enterica serovar Typhimurium binds to HeLa cells via Fim-mediated reversible adhesion and irreversible type three secretion system 1-mediated docking. Infection and Immunity79, 330–341.

Mutwiri G, Gerdts V, Sylvia L V D H , Auray G, Eng N, Garlapati S, Babiuk L A, Potter A. 2011. Combination adjuvants: the next generation of adjuvants? Expert Review of Vaccines10, 95–107.

Pavlova B, Volf J, Ondrackova P, Matiasovic J, Stepanova H, Crhanova M, Karasova D, Faldyna M, Rychlik I. 2011. SPI-1-encoded type III secretion system of Salmonella enterica is required for the suppression of porcine alveolar macrophage cytokine expression. Veterinary Research42, 16.

Rychlik I, Karasova D, Sebkova A, Volf J, Sisak F, Havlickova H, Kummer V, Imre A, Szmolka A, Nagy B. 2009. Virulence potential of five major pathogenicity islands (SPI-1 to SPI-5) of Salmonella enterica serovar Enteritidis for chickens. BMC Microbiology9, 268.

Shi J, Casanova J E. 2006. Invasion of host cells by Salmonella typhimurium requires focal adhesion kinase and p130Cas. Molecular Biology of the Cell17, 4698–4708.

Sivula C P, Bogomolnaya L M, Andrews-Polymenis H L. 2008. A comparison of cecal colonization of Salmonella enterica serotype Typhimurium in white leghorn chicks and Salmonella-resistant mice. BMC Microbiology8, 1–13.

Steele-Mortimer O. 2008. Infection of epithelial cells with Salmonella entericaBacterial Pathogenesis431, 201–211.

Taghavi A, Allan B, Mutwiri G, Van Kessel A, Willson P, Babiuk L, Potter A, Gomis S. 2008. Protection of neonatal broiler chicks against Salmonella Typhimurium septicemia by DNA containing CpG motifs. Avian Diseases52, 398–406.

Tian Q F, Zhou W, Si W, Yi F, Hua X, Yue M, Chen L P, Liu S G, Yu S Y. 2018. Construction of Salmonella Pullorum ghost by co-expression of lysis gene E and the antimicrobial peptide SMAP29 and evaluation of its immune efficacy in specific-pathogen-free chicks. Journal of Integrative Agriculture17, 197–209.

Valdez Y, Ferreira R B R, Finlay B B. 2009. Molecular mechanisms of Salmonella virulence and host resistance. Current Topics in Microbiology and Immunology337, 93–127.

Yu S Y, Peng W, Si W, Yin L, Liu S G, Liu H F, Zhao H L, Wang C L, Chang Y H, Lin Y Z. 2011. Enhancement of bacteriolysis of shuffled phage PhiX174 gene E. Virology Journal8, 1–6.

Zhao Q, Yang Z S, Cao S J, Chang Y F, Cao Y Q, Li J B, Yao Z X, Wen Y P, Huang X B, Wu R, Yan Q G, Huang Y, Ma X P, Han X F, Wu Y. 2019. Acute oral toxicity test and assessment of combined toxicity of cadmium and aflatoxin B1 in kunming mice. Food and Chemical Toxicology131, 110577.

Zhou D, Galán J. 2001. Salmonella entry into host cells: The work in concert of type III secreted effector proteins. Microbes and Infection3, 1293–1298.

Zhou D, Li P, Lin Y, Lott J M, Hislop A D, Canaday D H, Brutkiewicz R R, Blum J S. 2005. Lamp-2a facilitates MHC class ii presentation of cytoplasmic antigens. Immunity22, 571–581.

Zloza A, Sullivan Y B, Connick E, Landay A L, Al-Harthi L. 2003. CD8+ T cells that express CD4 on their surface (CD4dimCD8bright T cells) recognize an antigen-specific target, are detected in vivo, and can be productively infected by T-tropic HIV. Blood102, 2156–2164.

[1] Wenrui Fan, Yuntong Chen, Mengmeng Yu, Yongzhen Liu, Yulong Gao. Advances on ALV-J in China over the past two decades[J]. >Journal of Integrative Agriculture, 2025, 24(2): 429-440.
[2] Fei Xiang, Zhenyuan Li, Yichen Zheng, Caixia Ding, Benu Adhikari, Xiaojie Ma, Xuebing Xu, Jinjin Zhu, Bello Zaki Abubakar, Aimin Shi, Hui Hu, Qiang Wang. Characterization and correlation of engineering properties with microstructure in peanuts: A microscopic to macroscopic analysis[J]. >Journal of Integrative Agriculture, 2025, 24(1): 339-352.
[3] Heng Wan, Zhenhua Wei, Chunshuo Liu, Xin Yang, Yaosheng Wang, Fulai Liu. Biochar amendment modulates xylem ionic constituents and ABA signaling: Its implications in enhancing water-use efficiency of maize (Zea mays L.) under reduced irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(1): 132-146.
[4] Haiyang Li, Yuan Zhang, Cancan Qin, Zhifang Wang, Lingjun Hao, Panpan Zhang, Yongqiang Yuan, Chaopu Ding, Mengxuan Wang, Feifei Zan, Jiaxing Meng, Xunyu Zhuang, Zheran Liu, Limin Wang, Haifeng Zhou, Linlin Chen, Min Wang, Xiaoping Xing, Hongxia Yuan, Honglian Li, Shengli Ding. Identification and characterization of FpRco1 in regulating vegetative growth and pathogenicity based on T-DNA insertion in Fusarium pseudograminearum[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3055-3065.
[5] Libin Liang, Yaning Bai, Wenyan Huang, Pengfei Ren, Xing Li, Dou Wang, Yuhan Yang, Zhen Gao, Jiao Tang, Xingchen Wu, Shimin Gao, Yanna Guo, Mingming Hu, Zhiwei Wang, Zhongbing Wang, Haili Ma, Junping Li. Genetic and biological properties of H9N2 avian influenza viruses isolated in central China from 2020 to 2022[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2778-2791.
[6] Yuhan Yang, Dou Wang, Yaning Bai, Wenyan Huang, Shimin Gao, Xingchen Wu, Ying Wang, Jianle Ren, Jinxin He, Lin Jin, Mingming Hu, Zhiwei Wang, Zhongbing Wang, Haili Ma, Junping Li, Libin Liang. Genetic and pathogenic characterization of new infectious bronchitis virus strains in the GVI-1 and GI-19 lineages isolated in central China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2407-2420.
[7] Yue Jiang, Rong Wang, Lili Du, Xueyu Wang, Xi Zhang, Pengfei Qi, Qianfei Wu, Baoyi Peng, Zonghua Wang, Mo Wang, Ya Li.

The DNA damage repair complex MoMMS21–MoSMC5 is required for infection-related development and pathogenicity of Magnaporthe oryzae [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1956-1966.

[8] Kaiwen Lei, Hao Wu, Jerry W Spears, Xi Lin, Xi Wang, Xue Bai, Yanling Huang.

Responses of growth performance, antioxidant function, small intestinal morphology and mRNA expression of jejunal tight junction protein to dietary iron in yellow-feathered broilers [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1329-1337.

[9] Ping Xu, Hao Li, Haiyuan Li, Ge Zhao, Shengjie Dai, Xiaoyu Cui, Zhenning Liu, Lei Shi, Xiaohua Wang.

Genome-wide and candidate gene association studies identify BnPAP17 as conferring the utilization of organic phosphorus in oilseed rape [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1134-1149.

[10] Jiaxing Wei, Hong Yan, Jie Ren, Guangyue Li, Bo Zhang, Xuenong Xu.

Acaricidal effect of the antimicrobial metabolite xenocoumacin 1 on spider mite control [J]. >Journal of Integrative Agriculture, 2024, 23(3): 948-959.

[11] Cheng Guo, Xiaojie Zhang, Baobao Wang, Zhihuan Yang, Jiping Li, Shengjun Xu, Chunming Wang, Zhijie Guo, Tianwang Zhou, Liu Hong, Xiaoming Wang, Canxing Duan.

Identification, pathogenicity, and fungicide sensitivity of Eutiarosporella dactylidis associated with leaf blight on maize in China [J]. >Journal of Integrative Agriculture, 2024, 23(3): 888-900.

[12] Yina Xu, Hailing Li, Haoyu Leng, Chaofan Su, Siqi Tang, Yongtao Wang, Shiwei Zhang, Yali Feng, Yanan Wu, Daxin Wang, Ying Zhang. Genetic and biological properties of H10Nx influenza viruses in China[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3860-3869.
[13] Chengdong Yang, Manfei Luo, Xue Zhang, Linlin Ye, Ge Yu, Yi Lü, Yi Chen, Taixu Chen, Xuejian Wang, Wanzhen Feng, Qinghe Chen. Autophagy-related protein PlAtg3 participates in vegetative growth, sporangial cleavage, autophagy and pathogenicity of Peronophythora litchii[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3788-3800.
[14] Huaxiang Wu, Xiaohui Song, Muhammad Waqas-Amjid, Chuan Chen, Dayong Zhang, Wangzhen Guo. Mining elite loci and candidate genes for root morphology-related traits at the seedling stage by genome-wide association studies in upland cotton (Gossypium hirsutum L.) [J]. >Journal of Integrative Agriculture, 2024, 23(10): 3406-3418.
[15] Lingxiao Zhu, Hongchun Sun, Ranran Wang, Congcong Guo, Liantao Liu, Yongjiang Zhang, Ke Zhang, Zhiying Bai, Anchang Li, Jiehua Zhu, Cundong Li. Exogenous melatonin improves cotton yield under drought stress by enhancing root development and reducing root damage[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3387-3405.
No Suggested Reading articles found!