Please wait a minute...
Journal of Integrative Agriculture  2020, Vol. 19 Issue (1): 120-132    DOI: 10.1016/S2095-3119(19)62824-8
Special Issue: 园艺-分子生物合辑Horticulture — Genetics · Breeding
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Domestication and breeding changed tomato fruit transcriptome 
LIU Dan1, 2*, YANG Liang2, 4*, ZHANG Jin-zhe3, ZHU Guang-tao5, LÜ Hong-jun2, 6, LÜ Ya-qing2, WANG Yan-ling2, CAO Xue1, SUN Tian-shu3, HUANG San-wen2, WU Yao-yao 
1 College of Horticulture, Northwest A&F University, Yangling 712100, P.R.China
2 Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518124, P.R.China
3 Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
4 Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province/Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, P.R.China
5 The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming 650500, P.R.China
6 Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences/Shandong Province Key Laboratory for Biology of Greenhouse Vegetables/Shandong Branch of National Improvement Center for Vegetables, Jinan 250100, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Tomato (Solanum lycopersicum) stress resistance and fruit total soluble solid (TSS) content have changed dramatically during selective breeding, and transcriptome variation has played a critical role in this rewiring.  However, the single tomato reference genome impedes characterization of whole-transcriptome variation during domestication and breeding at the population level.  Here, we constructed a pan-transcriptome of orange-stage tomato fruit, and investigated global expression presence/absence variation (ePAV) and differentially expressed genes (DEGs) based on RNA sequencing (RNA-seq) data from 399 tomato accessions.  A total of 7 181 genes absent from the reference genome were identified, 6 122 of which were ePAV genes during tomato domestication and breeding including resistance genes such as late blight resistance gene PIM_DN29746_c0_g3_i1 and peroxidase P7-like gene PIM_DN30274_c0_g2_i1.  In addition, 3 629 genes were significantly differentially expressed during tomato selection, among which 19 genes were associated with the reduced fruit TSS content of modern tomato cultivars, including LIN5, TIV1, and seven novel sugar transporter genes.  Our results indicate that natural and artificial selection greatly shaped the tomato transcriptome, thereby altering the fruit TSS content and resistance to abiotic and biotic stresses.
Keywords:  tomato        pan-transcriptome        ePAV        DEG        domestication        breeding  
Received: 27 March 2019   Accepted:
Fund: The authors are grateful to Prof. Zhang Zhonghua (Qingdao Agricultural University, China) for discussion and project coordination; Prof. Li Qing (The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences) for her revision of the manuscript, Prof. Zhu Xijian and Prof.Jiang Jibin (Yunnan Normal University, China) and Prof. Feng Shuangshuang (Nanjing Agricultural University, China) for greenhouse assistance. This work was supported by the Agricultural Science and Technology Innovation Program (ASTIP-CAAS), the National Natural Science Foundation of China (31601360) and the 13th Five-Year Plan Vegetable Breeding Program of Sichuan Province, China (2016NYZ0033).
Corresponding Authors:  Correspondence HUANG San-wen, E-mail: huangsanwen@caas.cn; WU Yao-yao, E-mail: wuyaoyao@caas.cn   
About author:  * These authors contributed equally to this study.

Cite this article: 

LIU Dan, YANG Liang, ZHANG Jin-zhe, ZHU Guang-tao, Lü Hong-jun, Lü Ya-qing, WANG Yan-ling, CAO Xue, SUN Tian-shu, HUANG San-wen, WU Yao-yao. 2020. Domestication and breeding changed tomato fruit transcriptome . Journal of Integrative Agriculture, 19(1): 120-132.

Afoufa-Bastien D, Medici A, Jeauffre J, Coutos-Thevenot P, Lemoine R, Atanassova R, Laloi M. 2010. The Vitis vinifera sugar transporter gene family, phylogenetic overview and macroarray expression profiling. BMC Plant Biology, 10, 245–265.
Alseekh S, Tohge T, Wendenberg R, Scossa F, Omranian N, Li J, Kleessen S, Giavalisco P, Pleban T, Mueller-Roeber B, Zamir D, Nikoloski Z, Fernie A R. 2015. Identification and mode of inheritance of quantitative trait loci for secondary metabolite abundance in tomato. The Plant Cell, 27, 485–512.
Bai Y, Lindhout P. 2007. Domestication and breeding of tomatoes, what have we gained and what can we gain in the future? Annals of Botany, 100, 1085–1094.
Balibrea M E, Martínez-Andújar C, Cuartero J, Bolarín M C, Pérez-Alfocea F. 2006. The high fruit soluble sugar content in wild Lycopersicon species and their hybrids with cultivars depends on sucrose import during ripening rather than on sucrose metabolism. Functional Plant Biology, 33, 279–288.
Beckles D M. 2012. Factors affecting the postharvest soluble solids and sugar content of tomato. Solanum lycopersicum L. fruit. Postharvest Biology & Technology, 63, 129–140.
Beckles D M, Hong N, Stamova L, Luengwilai K. 2011. Biochemical factors contributing to tomato fruit sugar content: A review. Fruits, 67, 49–64.
Bernards M A, Fleming W D, Llewellyn D B, Priefer R, Yang X, Sabatino A, Plourde G L. 1999. Biochemical characterization of the suberization-associated anionic peroxidase of potato. Plant Physiology, 121, 135–146.
Doerks T, Copley R R, Schultz J, Ponting C P, Bork P. 2002. Systematic identification of novel protein domain families associated with nuclear functions. Genome Research, 12, 47–56.
Ferraro G, D’Angelo M, Sulpice R, Stitt M, Valle E M. 2015. Reduced levels of NADH-dependent glutamate dehydrogenase decrease the glutamate content of ripe tomato fruit but have no effect on green fruit or leaves. Journal of Experimental Botany, 66, 3381–3389.
Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29, 644–652.
Hirsch C N, Foerster J M, Johnson J M, Sekhon R S, Muttoni G, Vaillancourt B, Penagaricano F, Lindquist E, Pedraza M A, Barry K, de Leon N, Kaeppler S M, Buell C R. 2014. Insights into the maize pan-genome and pan-transcriptome. The Plant Cell, 26, 121–135.
Hradilová I, Trněný O, Válková M, Cechova M, Janská A, Khan A W, Prokešová L, Winter P, Rotter B, Krezdorn N. 2017. A combined comparative transcriptomic, metabolomic, and anatomical analyses of two key domestication traits, pod dehiscence and seed dormancy in pea. Pisum sp. Frontiers in Plant Science, 8, 542.
Huang Y X, Yin Y G, Sanuki A, Fukuda N, Ezura H, Matsukura C. 2015. Phosphoenolpyruvate carboxykinase. PEPCK deficiency affects the germination, growth and fruit sugar content in tomato. Solanum lycopersicum L. Plant Physiology and Biochemistry, 96, 417–425.
Husain S E, James C, Shields R, Foyer C H. 2001. Manipulation of fruit fugar composition but not content in Lycopersicon esculentum fruit by introgression of an acid invertase gene from Lycopersicon pimpinellifolium. New Phytologist, 150, 65–72.
Jin M, Liu H, He C, Fu J, Xiao Y, Wang Y, Xie W, Wang G, Yan J. 2016. Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation. Scientific Reports, 6, 18936.
Kim D, Langmead B, Salzberg S L. 2015. HISAT, a fast spliced aligner with low memory requirements. Nature Methods, 12, 357–360.
Klann E M, Hall B, Bennett A B. 1996. Antisense acid invertase. TIV1 gene alters soluble sugar composition and size in transgenic tomato fruit. Plant Physiology, 112, 1321–1330.
Koenig D, Jiménez-Gómez J M, Kimura S, Fulop D, Chitwood D H, Headland L R, Kumar R, Covington M F, Devisetty U K, Tat A V, Tohge T, Bolger A, Schneeberger K, Ossowski S, Lanz C, Xiong G, Taylor-Teeples M, Brady S M, Pauly M, Weigel D, et al. 2013. Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proceedings of the National Academy of Sciences of the United States of America, 110, E2655–E2662.
Lamb C, Dixon R A. 1997. The oxidative burst in plant disease resistance. Annual Review of Plant Biology, 48, 251–275.
Langmead B, Salzberg S L. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods, 9, 357–359.
Li H, Bob H, Alec W, Tim F, Jue R. 2009. The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078–2079.
Li L, Stoeckert C J, Roos D S. 2003. OrthoMCL, identification of ortholog groups for eukaryotic genomes. Genome Research, 13, 2178–2189.
Li M, Feng F, Cheng L. 2012. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS ONE, 7, e33055.
Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X, Huang Z, Li J, Zhang C, Wang T, Zhang Y, Wang A, Zhang Y, Lin K, Li C, Xiong G, et al. 2014. Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46, 1220–1226.
Menu T, Saglio P, Granot D, Dai N, Raymond P, Ricard B. 2004. High hexokinase activity in tomato fruit perturbs carbon and energy metabolism and reduces fruit and seed size. The Plant Cell and Environment, 27, 89–98.
Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5, 621–628.
Nguyen-Quoc B, Foyer C. 2001. A role for “futile cycles” involving invertase and sucrose synthase in sucrose metabolism of tomato fruit. Journal of Experimental Botany, 52, 881–889.
Niknafs Y S, Pandian B, Iyer H K, Chinnaiyan A M, Iyer M K. 2017. TACO produces robust multisample transcriptome assemblies from RNA-seq. Nature Methods, 14, 68–70.
Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 11, 1650–1667.
Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33, 290–295.
Petreikov M, Shen S, Yeselson Y, Levin I, Bar M, Schaffer A A. 2006. Temporally extended gene expression of the ADP-Glc pyrophosphorylase large subunit. AgpL1 leads to increased enzyme activity in developing tomato fruit. Planta, 224, 1465–1479.
Pruitt K D, Tatusova T, Maglott D R. 2007. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research, 35, 61–65.
Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R. 2005. InterProScan, protein domains identifier. Nucleic Acids Research, 33, 116–120.
Ranc N, Munos S, Santoni S, Causse M. 2008. A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes. solanaceae. BMC Plant Biology, 8, 130–148.
Rao E S, Kadirvel P, Symonds R C, Geethanjali S, Thontadarya R N, Ebert A W. 2015. Variations in DREB1A and VP1.1 genes show association with salt tolerance traits in wild tomato (Solanum pimpinellifolium). PLoS ONE, 10, e0132535.
Ren Y, Guo S, Zhang J, He H, Sun H, Tian S, Gong G, Zhang H, Levi A, Tadmor Y, Xu Y. 2018. A tonoplast sugar transporter underlies a sugar accumulation QTL in watermelon. Plant Physiology, 176, 836–850.
Riely B K, Martin G B. 2000. Ancient origin of pathogen recognition specificity conferred by the tomato disease resistance gene Pto. Proceedings of the National Academy of Sciences of the United States of America, 98, 2059–2064.
Sagar M, Chervin C, Mila I, Hao Y, Roustan J P, Benichou M, Gibon Y, Biais B, Maury P, Latche A, Pech J C, Bouzayen M, Zouine M. 2013. SlARF4, an auxin response factor involved in the control of sugar metabolism during tomato fruit development. Plant Physiology, 161, 1362–1374.
Sagor G H, Berberich T, Tanaka S, Nishiyama M, Kanayama Y, Kojima S, Muramoto K, Kusano T. 2016. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene. Plant Biotechnology Journal, 14, 1116–1126.
Sauvage C, Rau A, Aichholz C, Chadoeuf J, Sarah G, Ruiz M, Santoni S, Causse M, David J, Glemin S. 2017. Domestication rewired gene expression and nucleotide diversity patterns in tomato. The Plant Journal, 91, 631–645.
Schmittgen T D, Livak K J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3, 1101–1108.
Swanson-Wagner R, Briskine R, Schaefer R, Hufford M B, Ross-Ibarra J, Myers C L, Tiffin P, Springer N M. 2012. Reshaping of the maize transcriptome by domestication. Proceedings of the National Academy of Sciences of the United States of America, 109, 11878–11883.
Tieman D, Zhu G, Resende Jr M F, Lin T, Nguyen C, Bies D, Rambla J L, Beltran K S, Taylor M, Zhang B, Ikeda H, Liu Z, Fisher J, Zemach I, Monforte A, Zamir D, Granell A, Kirst M, Huang S, Klee H. 2017. A chemical genetic roadmap to improved tomato flavor. Science, 355, 391–394.
Wang T D, Zhang H F, Wu Z C, Li J G, Huang X M, Wang H C. 2015. Sugar uptake in the aril of litchi fruit depends on the apoplasmic post-phloem transport and the activity of proton pumps and the putative transporter LcSUT4. Plant and Cell Physiology, 56, 377–387.
Wingenter K, Schulz A, Wormit A, Wic S, Trentmann O, Hoermiller I I, Heyer A G, Marten I, Hedrich R, Neuhaus H E. 2010. Increased activity of the vacuolar monosaccharide transporter TMT1 alters cellular sugar partitioning, sugar signaling, and seed yield in Arabidopsis. Plant Physiology, 154, 665–677.
Won S Y, Kwon S J, Lee T H, Jung J A, Kim J S, Kang S H, Sohn S H. 2017. Comparative transcriptome analysis reveals whole-genome duplications and gene selection patterns in cultivated and wild Chrysanthemum species. Plant Molecular Biology, 95, 451–461.
Xu C, Park S J, Van Eck J, Lippman Z B. 2016. Control of inflorescence architecture in tomato by BTB/POZ transcriptional regulators. Genes & Development, 30, 2048–2061.
Yang L, Wu L, Chang W, Li Z, Miao M, Li Y, Yang J, Liu Z, Tan J. 2017. Overexpression of the maize E3 ubiquitin ligase gene ZmAIRP4 enhances drought stress tolerance in Arabidopsis. Plant Physiology and Biochemistry, 123, 34–42.
Ye J, Wang X, Hu T, Zhang F, Wang B, Li C, Yang T, Li H, Lu Y, Giovannoni J J, Zhang Y, Ye Z. 2017. An indel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance. The Plant Cell, 29, 2249–2268.
Yuan Y, Mei L, Wu M, Wei W, Shan W, Gong Z, Zhang Q, Yang F, Yan F, Zhang Q, Luo Y, Xu X, Zhang W, Miao M, Lu W, Li Z, Deng W. 2018. SlARF10, an auxin response factor, is involved in chlorophyll and sugar accumulation during tomato fruit development. Journal of Experimental Botany, 69, 5507–5518.
Zanor M I, Osorio S, Nunes-Nesi A, Carrari F, Lohse M, Usadel B, Kuhn C, Bleiss W, Giavalisco P, Willmitzer L, Sulpice R, Zhou Y H, Fernie A R. 2009. RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiology, 150, 1204–1218.
Zar J H. 1972. Significance testing of the spearman rank correlation coefficient. Journal of the American Statistical Association, 67, 578–580.
Zhang C, Liu L, Wang X, Vossen J, Li G, Li T, Zheng Z, Gao J, Guo Y, Visser R G, Li J, Bai Y, Du Y. 2014. The Ph-3 gene from Solanum pimpinellifolium encodes CC-NBS-LRR protein conferring resistance to Phytophthora infestans. Theoretical and Applied Genetics, 127, 1353–1364.
Zhang L, Su W, Tao R, Zhang W, Chen J, Wu P, Yan C, Jia Y, Larkin R M, Lavelle D, Truco M J, Chin-Wo S R, Michelmore R W, Kuang H. 2017. RNA sequencing provides insights into the evolution of lettuce and the regulation of flavonoid biosynthesis. Nature Communications, 8, 2264.
Zhu G, Wang S, Huang Z, Zhang S, Liao Q, Zhang C, Lin T, Qin M, Peng M, Yang C. 2018. Rewiring of the fruit metabolome in tomato breeding. Cell, 172, 249–261.
[1] Roberta SPANÒ, Mariarosaria MASTROCHIRICO, Francesco LONGOBARDI, Salvatore CERVELLIERI, Vincenzo LIPPOLIS, Tiziana MASCIA. Characterization of volatile organic compounds in grafted tomato plants upon potyvirus necrotic infection[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2426-2440.
[2] DU Dan, HU Xin, SONG Xiao-mei, XIA Xiao-jiao, SUN Zhen-yu, LANG Min, PAN Yang-lu, ZHENG Yu, PAN Yu. SlTPP4 participates in ABA-mediated salt tolerance by enhancing root architecture in tomato[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2384-2396.
[3] TU Ke-ling, YIN Yu-lin, YANG Li-ming, WANG Jian-hua, SUN Qun. Discrimination of individual seed viability by using the oxygen consumption technique and headspace-gas chromatography-ion mobility spectrometry[J]. >Journal of Integrative Agriculture, 2023, 22(3): 727-737.
[4] ZHANG Yu-hong, LI Zhi-xin, DU Ya-jie, LI Shi-fang, ZHANG Zhi-xiang. A universal probe for simultaneous detection of six pospiviroids and natural infection of potato spindle tuber viroid (PSTVd) in tomato in China[J]. >Journal of Integrative Agriculture, 2023, 22(3): 790-798.
[5] FENG Xu-yu, PU Jing-xuan, LIU Hai-jun, WANG Dan, LIU Yu-hang, QIAO Shu-ting, LEI Tao, LIU Rong-hao. Effect of fertigation frequency on soil nitrogen distribution and tomato yield under alternate partial root-zone drip irrigation[J]. >Journal of Integrative Agriculture, 2023, 22(3): 897-907.
[6] LIN Hao-wei, WU Zhen, ZHOU Rong, CHEN Bin, ZHONG Zhao-jiang, JIANG Fang-ling.

SlGH9-15 regulates tomato fruit cracking with hormonal and abiotic stress responsiveness cis-elements [J]. >Journal of Integrative Agriculture, 2023, 22(2): 447-463.

[7] Jelli VENKATESH, Sung Jin KIM, Muhammad Irfan SIDDIQUE, Ju Hyeon KIM, Si Hyeock LEE, Byoung-Cheorl KANG. CopE and TLR6 RNAi-mediated tomato resistance to western flower thrips[J]. >Journal of Integrative Agriculture, 2023, 22(2): 471-480.
[8] Carlos Kwesi TETTEY, YAN Zhi-yong, MA Hua-yu, ZHAO Mei-sheng, GENG Chao, TIAN Yan-ping, LI Xiang-dong . Tomato mottle mosaic virus: characterization, resistance gene effectiveness, and quintuplex RT-PCR detection system[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2641-2651.
[9] GAO Hua-wei, SUN Ru-jian, YANG Meng-yuan, YAN Long, HU Xian-zhong, FU Guang-hui, HONG Hui-long, GUO Bing-fu, ZHANG Xiang, LIU Li-ke, ZHANG Shu-zhen, QIU Li-juan. Characterization of the petiole length in soybean compact architecture mutant M657 and the breeding of new lines[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2508-2520.
[10] TANG Qiong, ZHENG Xiao-dong, GUO Jun, YU Ting. Tomato SlPti5 plays a regulative role in the plant immune response against Botrytis cinerea through modulation of ROS system and hormone pathways[J]. >Journal of Integrative Agriculture, 2022, 21(3): 697-709.
[11] CHEN Yan-hui, XIE Bin, AN Xiu-hong, MA Ren-peng, ZHAO De-ying, CHENG Cun-gang, LI En-mao, ZHOU Jiang-tao, KANG Guo-dong, ZHANG Yan-zhen. Overexpression of the apple expansin-like gene MdEXLB1 accelerates the softening of fruit texture in tomato[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3578-3588.
[12] DUAN Yao-ke, HAN Rong, SU Yan, WANG Ai-ying, LI Shuang, SUN Hao, GONG Hai-jun. Transcriptional search to identify and assess reference genes for expression analysis in Solanum lycopersicum under stress and hormone treatment conditions[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3216-3229.
[13] Subrahmaniyan KASIRAJAN, Perumal VEERAMANI, ZHOU Wei-jun. Does heat accumulation alter crop phenology, fibre yield and fibre properties of sunnhemp (Crotalaria juncea L.) genotypes with changing seasons?[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2395-2409.
[14] SHI Hai-yan, CAO Li-wen, XU Yue, YANG Xiong, LIU Shui-lin, LIANG Zhong-shuo, LI Guo-ce, YANG Yu-peng, ZHANG Yu-xing, CHEN Liang. Transcriptional profiles underlying the effects of salicylic acid on fruit ripening and senescence in pear (Pyrus pyrifolia Nakai)[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2424-2437.
[15] Hakan FIDAN, Pelin SARIKAYA, Kubra YILDIZ, Bengi TOPKAYA, Gozde ERKIS, Ozer CALIS. Robust molecular detection of the new Tomato brown rugose fruit virus in infected tomato and pepper plants from Turkey[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2170-2179.
No Suggested Reading articles found!