Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (11): 2446-2456    DOI: 10.1016/S2095-3119(19)62631-6
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Genome-wide association study for starch content and constitution in sorghum (Sorghum bicolor (L.) Moench)
CHEN Bing-ru1, 3, WANG Chun-yu2, WANG Ping2, ZHU Zhen-xing2, XU Ning3, SHI Gui-shan3, YU Miao3, WANG Nai3, LI Ji-hong3, HOU Jia-ming3, LI Shu-jie3, ZHOU Yu-fei1, GAO Shi-jie3, LU Xiao-chun2, HUANG Rui-dong1 
1 College of Agronomy, Shenyang Agricultural University, Shenyang 110866, P.R.China
2 Molecular Improvement of Agricultural Crops Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, P.R.China
3 Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Starch is the most important component in endosperm of sorghum grain.  Usually, two types of starch are present: amylose (AM) and amylopectin (AP).  The levels of AM and AP contents play a significant role in the appearance, structure, and quality of sorghum grains and in marketing applications.  In the present study, a panel of 634 sorghum (Sorghum bicolor (L.) Moench) accessions were evaluated for starch, AM, and AP contents of grain, which included a mini core collection of 242 accessions from the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in India, and 252 landraces and 140 cultivars from China.  The average starch content was 67.64% and the average AM and AP contents were 20.19 and 79.81%, respectively.  We developed a total of 260 000 high-confidence single nucleotide polymorphism (SNP) markers in the panel of 634 accessions of S. bicolor using specific locus amplified fragment sequencing (SLAF-seq).  We performed genome-wide association studies (GWAS) of starch, AM, and AM/AP of grain and SNP markers based on a mixed linear model (MLM).  In total, 70 significant association signals were detected for starch, AM, and AM/AP ratio of grain with P<4.452×10–7, of which 10 SNPs were identified with significant starch, 51 SNPs were associated with AM, and nine SNPs were associated with the AM/AP ratio.  The Gene Ontology (GO) analysis identified 12 candidate genes at five QTLs associated with starch metabolism within the 200-kb intervals, located on chromosomes 1, 5, 6, and 9.  Of these genes, Sobic.006G036500.1 encodes peptidyl-prolyl cis-trans-isomerase CYP38 responsible for hexose monophosphate shunt (HMS) and Sobic.009G071800 encodes 6-phospho-fructokinase (PFK), which is involved in the embden-meyerhof pathway (EMP).  Kompetitive allele specific PCR (KASP) markers were developed to validate the GWAS results.  The C allele is correlated with a high starch content, while the T allele is linked with a low level of starch content, and provides reliable haplotypes for MAS in sorghum quality improvement.
Keywords:  sorghum               genome-wide association mapping (GWAS)              starch content              amylose (AM)              candidate genes              KASP  
Received: 20 June 2018   Accepted:
Fund: This work was supported by the earmarked fund for China Agriculture Research System (CARS-06).
Corresponding Authors:  Correspondence HUANG Rui-dong, E-mail: r_huang@126.com; LU Xiao-chun, Tel: +86-24-31021083, E-mail: Luxiaochun2000@126.com   
About author:  CHEN Bing-ru, Tel: +86-434-6283190, E-mail: chenbingru1979 @163.com;

Cite this article: 

CHEN Bing-ru, WANG Chun-yu, WANG Ping, ZHU Zhen-xing, XU Ning, SHI Gui-shan, YU Miao, WANG Nai, LI Ji-hong, HOU Jia-ming, LI Shu-jie, ZHOU Yu-fei, GAO Shi-jie, LU Xiao-chun, HUANG Rui. 2019. Genome-wide association study for starch content and constitution in sorghum (Sorghum bicolor (L.) Moench). Journal of Integrative Agriculture, 18(11): 2446-2456.

de Alencar Figueiredo L F, Sine B, Chantereau J, Mestres C, Fliedel G, Rami J F, Glaszmann J C, Deu M, Courtois B. 2010. Variability of grain quality in sorghum: Association with polymorphism in Sh2, Bt2, SssI, Ae1, Wx and O2. Theoretical and Applied Genetics, 121, 1171–1185.
Aluko G, Martinez C, Tohme J, Castano C, Bergman C, Oard J H. 2004. QTL mapping of grain quality traits from the interspecific cross Oryza sativa×O. glaberrima. Theoretical and Applied Genetics, 109, 630–639.
Atwell S, Huang Y S, Vilhjalmsson B J, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone A M, Hu T T. 2010.  Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 465, 627–631.
Ayres N M, McClung A M, Larkin P D, Bligh H F J, Jones C A, ParkW D. 1997. Microsatellites and a single-nucleotide polymorphism differentiate apparent amylose classes in an extended rice pedigree of US rice germplasm. Theoretical and Applied Genetics, 94, 773–781.
Boyles R E, Pfeiffer B K, Cooper E A, Rauh L, Zielinski K J, Myers M T, Brenton Z, Rooney W L, Kresovich S. 2017. Genetic dissection of sorghum grain quality traits using diverse and segregating populations. Theoretical and Applied Genetics, 130, 697–716.
Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. 2007. TASSEL: Software for association mapping of complex traits in diver samples. Bioinformatics, 23, 2633–2635.
Cook J P, McMullen M D, Holland J B, Tian F, Bradbury P, RossIbarra J, Buckler E S, Flint-Garcia S A. 2012. Genetic architecture of maize kernel composition in the nested  association mapping and inbred association panels. Plant Physiology, 158, 824–834.
Cui Z H, Luo J H, Qi ChY, Ruan Y Y, Li J, Zhang A, Yang X H, He Y. 2016. Genome-wide association study (GWAS) reveals the genetic architecture of four husk traits in maize. BMC Genomics, 17, 946–960.
Denyer K, Johnson P, Zeeman S, Smith A M. 2001. The control of amylose synthesis. Journal of Plant Physiology, 158, 479–487.
Fang Q, Hanna M A. 2000. Functional properties of polylactic acid starch-based loose-fill packaging foams. Cereal Chemistry, 77, 779–783.
Flint J, Eskin E. 2012. Genome-wide association studies in mice. Nature Reviews Genetics, 13, 807–817.
Fukunaga K, kawase M, Kato K. 2002. Structural variation in the Waxy gene and differentiation in foxtail millet [Setariaitalica (L.) P. Beauv.]: implication for multiple origins of the waxy phenotye. Molecular Genetics Genomics, 268, 214–222.
Hamblin M T, Salas Fernandez M G,Tuinstra M R, Rooney W L, Kresovich S. 2007. Sequence variation at candidate loci in the starch metabolism pathway in sorghum: prospects for linkage disequilibrium mapping. Crop Science, 47, S125–S134.
Han Y, Zhao X, Liu D, Li Y, Lightfoot D A, Yang Z. 2016.Domestication footprints anchogenomic regions of agronomic importance in soybeans. New Phytologist, 209, 871–884.
Holm S. 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70.
Huang X H, Wei X H, Tao S, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C R, Lu T T, Zhang Z W, Li M, Fan D L, Guo Y L, Wang A H, Wang L, Deng L W, Li W J, Lu Y Q, Weng Q J, Liu K Y, et al. 2010. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 42, 961–967.
Huang X H, Zhao Y, Wei X H, Li C Y, Wang A H, Zhao Q, Li W J, Guo Y L, Deng L W, Zhu C R, Fan D L, Lu Y Q, Weng Q J, Liu K Y, Zhou T Y, Jing Y F, Si L Z, Dong G J, Huang T, Lu T T, et al. 2012. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics, 44, 32–39.
Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. 2006. Molecular detectionof QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theoretical and Applied Genetics, 113, 753–766.
Jeon J S, Ryoo N, Hahn T R, Walia H, Nakamura Y. 2010.Starch biosynthesis in cereal endosperm. Plant Physiology and Biochemistry, 48, 383–392.
Jia G Q, Huang X H, Zhi H, Zhao Y, Zhao Q, Li W J, Chai Y, Yang L F, Liu K Y, Lu H Y, Zhu C R, Lu Y Q, Zhou C C, Fan D L, Weng Q J, Guo Y L, Huang T, Zhang L, Lu T T, Feng Q, et al. 2013. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtailmillet (Setaria italica). Nature Genetics, 45, 957–961.
Karper R E. 1933. Inheritance of waxy endosperm in sorghum. Journal of Heredity, 24, 257–262.
Kawahigashi H, Oshima M, Nishikawa T, Okuizumi H, Kasug S, Yonemaru J I. 2013. A novel waxy allele in sorghum landraces in East Asia. Plant Breeding, 132, 305–310.
Korte A, Farlow A. 2013. The advantages and limitations of trait analysis with GWAS: A review. Plant Methods, 9, 29.
Li C S, Huang Y C, Huang R D, Wu Y R, Wang W Q. 2017.The genetic architecture of amylose biosynthesis in maize kernel. Plant Biotechnology Journal, 16, 688–695.
Li H, Peng Z Y, Yang X H, Wang W D, Fu J J, Wang J H, Han Y J, Chai Y C, Guo T T, Yang N, Liu J, Warburton M L, Cheng Y B , Hao X M, Zhang P, Zhao J Y, Liu Y J, Wang G Y, Li J S, Yan J B. 2013. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 45, 43–50.
Li J, Xiao J, Grandillo S, Jiang L, Wan Y, Deng Q, Yuan L, McCouch S R. 2004. QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African
(O. glaberrima S.) rice. Genome, 47, 697–704.
Liu N, Xue Y, Guo Z, Li W, Tang J. 2016. Genome-wide association study identifies candidate genes for starch content regulation in maize kernels. Frontiers in Plant Science, 7, 1–8.
McCartney C A, Somers D J, Lukow O, Ames N, Noll J, Cloutier S, Humphreys D G, McCallum B D. 2006. QTL analysis of quality traits in the spring wheat cross RL4452דAC Domain”. Plant Breeding, 125, 565–575.
McIntyre C L, Drenth J, Gonzalez N, Henzell R G, Jordan D R. 2008. Molecular characterization of the waxy locus in sorghum. Genome, 51, 524–533.
Ni X L, Zhao G L, Wang X K, Liu T P, Chen G M, Ding G X. 2015. The genetic diversity analysis of 42 glutinous sorghum germplasm, resources using SSR markers. Molecular Plant Breeding, 9, 1962–1969. (in Chinese)
National Bureau of Statistics of the People’s Republic of China. 2015. China Statistical Yearbook. China Statistics Press, Beijing. (in Chinese)
Olsen K M, Purugganan M D. 2002. Molecular evidence on the origin and evolution of glutinous rice. Genetics, 162, 941–950.
Olsen H G, Hayes B J, Kent M P, Nome T, Svendsen M, Larsgard A G, Lien S. 2011. Genome-wide association mapping in Norwegian Red cattle identifies quantitative trait loci for fertility and milk production on BTA12. Animal Genetics, 42, 466–474.
Rooney L W, Pflugfelder R L.1986. Factors affecting starch digestibility with special emphasis on sorghum and corn. Journal of Animal Science, 63, 1607–1623.
Schultz J A, Juvik J A. 2004. Current models for starch synthesis and the sugary enhancer1 (se1) mutation in Zea mays. Plant Physiology and Biochemistry, 42, 457–464.
Séne M, Causse M, Damerval C, Thévenot C, Prioul J L. 2000.Quantitative trait loci affecting amylose, amylopectin and starch content in maize recombinant inbred lines. Plant Physiology and Biochemistry, 38,459–472.
Semagn K, Babu R, Hearne S, Michael O. 2013. Single nucleotide polymorphism genotyping using Kompetitive Allele Speci?c PCR (KASP): overview of the technology and its application in crop improvement. Moleular Breeding, 33, 1–14.
Sherrod L B, Albin R C, Furr R D. 1969. Net energy of regular and waxy sorghum grains for finishing steers. Journal of Animal Science, 29, 997–1000.
Sukumaran S, Xiang W, Bean S R, Pedersen J F, Kresovich S, Tuinstra M R, Tesso T T, Hamblin M T, Yu J. 2012.Association mapping for grain quality in a diverse sorghum collection. Plant Genome, 5, 126–135.
Sun X, Liu D, Zhang X, Li W, Liu H, Hong W. 2013. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE, 8, e58700.
Pasquini C. 2003. Near infrared spectroscopy: Fundamentals, practical aspects and analytical applications. Journal of the Brazilian Chemical Society, 14,198–219.
Pedersen J, Bean S, Graybosch R, Park S, Tilley M. 2005.Characterization of waxy grain sorghum lines in relation to granule–bound starch synthase. Euphytica, 144, 151–156.
Udachan I S, Sahu A K, Hend F M. 2012. Extraction and characterization of sorghum (Sorghum bicolor L. Moench) starch. International Food Research Journal, 19, 315–319.
Upadhyaya H D, Pundir R P S, Dwivedi S L, Gowda C L L, Reddy V G, Singh S. 2009. Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Science, 49, 1769–1780.
Wang D, Bean S, McLaren J, Seib P, Madl R, Tuinstra M, Shi Y, Lenz M, Wu X, Zhao R. 2008. Grain sorghum is aviable feedstock for ethanol production. Journal of Industrial Microbiology Biotechnology, 35, 313–320.
De Wet J M J. 1978. Systematics and evolution of Sorghum Sect. Sorghum (Gramineae). American Journal of Botany, 65, 477–484.
Wilson L M, Whitt S R, Ibanez A M, Rocheford T R, Goodman M M, Buckler E S. 2004. Dissection of maize kernel composition andstarch production by candidate gene association. The Plant Cell, 16, 2719–2733.
Wong J H, Lau T, Cai N, Singh J, Pedersen J F, Vensel W H, Hurkman W J, Wilson J D, Lemaux P G, Buchanan B B. 2009. Digestibility of protein and starch from sorghum (Sorghum bicolor) is linked to biochemical and structural features of grain endosperm. Journal of Cereal Science, 49, 73–82.
Wu X, Ren C, Joshi T, Vuong T, Xu D, Nguyen H. 2010. SNP discovery by high throughput sequencing in soybean. BMC Genomics, 11, 469.
Yan S, Wu X, Bean S, Pedersen J, Tesso T, Chen Y, Wang D. 2011. Evaluation of waxy grain sorghum for ethanol production. Cereal Chemistry, 88, 589–595.
Zheng X M, Gong T T, Hong L, Ou H L, Xue D Y, Qiao W H, Wang J R, Liu S, Yang Q W, Olsen K M. 2018. Genome-wide association study of rice grain width variation. Genome, 61, 233–240.
Zhu F. 2014. Structure, physicochemical properties, modifications, and uses of sorghum starch. Comprehensive Reviews in Food Science and Food Safety, 13, 597–610.
 
[1] Md. Zasim Uddin, Md. Nadim Mahamood, Ausrukona Ray, Md. Ileas Pramanik, Fady Alnajjar, Md Atiqur Rahman Ahad. E2ETCA: End-to-end training of CNN and attention ensembles for rice disease diagnosis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 756-768.
[2] Jinbu Wang, Wencheng Zong, Liangyu Shi, Mianyan Li, Jia Li, Deming Ren, Fuping Zhao, Lixian Wang, Ligang Wang. Using mixed kernel support vector machine to improve the predictive accuracy of genome selection[J]. >Journal of Integrative Agriculture, 2026, 25(2): 775-787.
[3] Yaling Yu, Hongfan Ge, Hang Gao, Yanyan Zhang, Kangping Liu, Zhenlei Zhou. Changes of bone remodeling, cartilage damage and apoptosis-related pathways in broilers with femoral head necrosis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 788-802.
[4] Hui Song, Meiran Li, Zhenquan Duan. Current status of the genetic transformation of Arachis plants[J]. >Journal of Integrative Agriculture, 2026, 25(2): 577-584.
[5] Yue Song, Heng Wang, Mingyang Wang, Yumin Wang, Xiuxiang Lu, Wenjie Fan, Chen Yao, Pengxiang Liu, Yanjie Ma, Shengli Ming, Mengdi Wang, Lijun Shi. A novel TLR7 agonist exhibits antiviral activity against pseudorabies virus[J]. >Journal of Integrative Agriculture, 2026, 25(2): 803-813.
[6] Qiuling Huang, Yan Liao, Chunhui Huang, Huan Peng, Lingchiu Tsang, Borong Lin, Deliang Peng, Jinling Liao, Kan Zhuo. Integrative identification of Aphelenchoides fragariae (Nematoda: Aphelenchoididae) parasitizing Fuchsia hybrid in China[J]. >Journal of Integrative Agriculture, 2026, 25(2): 769-774.
[7] Jun Deng, Ke Liu, Xiangqian Feng, Jiayu Ye, Matthew Tom Harrison, Peter de Voil, Tajamul Hussain, Liying Huang, Xiaohai Tian, Meixue Zhou, Yunbo Zhang. Exploring strategies for agricultural sustainability in super hybrid rice using the food–carbon–nitrogen–water–energy–profit nexus framework[J]. >Journal of Integrative Agriculture, 2026, 25(2): 624-638.
[8] Xijun Wang, Hong Huo, Lei Shuai, Jinying Ge, Liyan Peng, Jinming Wang, Shuang Xiao, Weiye Chen, Zhiyuan Wen, Jinliang Wang, Zhigao Bu. Evaluation of safety and immunogenicity of a genetically modified rabies virus for use as an oral vaccine in several non-target species[J]. >Journal of Integrative Agriculture, 2026, 25(2): 814-819.
[9] Jing Gao, Shenglan Li, Yi Lei, Qi Wang, Zili Ning, Zhaohong Lu, Xianming Tan, Mei Xu, Feng Yang, Wenyu Yang. Delayed photosynthesis response causes carbon assimilation reduction in soybean under fluctuating light[J]. >Journal of Integrative Agriculture, 2026, 25(2): 648-658.
[10] Lihong Ma, Pengtao Wang, QianHao Zhu, Xinqi Cheng, Tao Zhang, Xinyu Zhang, Huaguo Zhu, Zuoren Yang, Jie Sun, Feng Liu. Unbalanced lipid metabolism in anther, especially the disorder of the alpha-linolenic acid metabolism pathway, leads to cotton male sterility[J]. >Journal of Integrative Agriculture, 2026, 25(2): 610-623.
[11] Teng Li, Shumei Wang, Qing Liu, Xuepeng Zhang, Lin Chen, Yuanquan Chen, Wangsheng Gao, Peng Sui. Effects of changing assimilate supply on starch synthesis in maize kernels under high temperature stress[J]. >Journal of Integrative Agriculture, 2026, 25(2): 639-647.
[12] Xiqiang Li, Yuhong Gao, Zhengjun Cui, Tingfeng Zhang, Shiyuan Chen, Shilei Xiang, Lingling Jia, Bin Yan, Yifan Wang, Lizhuo Guo, Bing Wu . Optimized nitrogen and potassium fertilizers application increases stem lodging resistance and grain yield of oil flax by enhancing lignin biosynthesis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 659-670.
[13] Xin Wan, Dangjun Wang, Junya Li, Shuaiwen Zhang, Linyang Li, Minghui He, Zhiguo Li, Hao Jiang, Peng Chen, Yi Liu. Land use type shapes carbon pathways in Tibetan alpine ecosystems: Characterization of 13C abundance in aggregates and density fractions[J]. >Journal of Integrative Agriculture, 2026, 25(2): 448-459.
[14] Liyan Wang, Buqing Wang, Zhengmiao Deng, Yonghong Xie, Tao Wang, Feng Li, Shao’an Wu, Cong Hu, Xu Li, Zhiyong Hou, Jing Zeng Ye’ai Zou, Zelin Liu, Changhui Peng, Andrew Macrae. Surface soil organic carbon losses in Dongting Lake floodplain as evidenced by field observations from 2013 to 2022[J]. >Journal of Integrative Agriculture, 2026, 25(2): 436-447.
[15] Xi Chen, Khalid Ayesha, Xue Wen, Yanan Zhang, Mengru Dou, Kexuan Jia, Yong Wang, Yuling Li, Feng Sun, Guotian Liu, Yan Xu. An integrate methods to improve the high efficiency of embryo rescue breeding in seedless grapes[J]. >Journal of Integrative Agriculture, 2026, 25(2): 721-733.
No Suggested Reading articles found!