Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (7): 1731-1742    DOI: 10.1016/S2095-3119(20)63258-0
Special Issue: 水稻遗传育种合辑Rice Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Receptor-like kinase OsASLRK regulates methylglyoxal response and content in rice
LIN Fa-ming, LI Shen, WANG Ke, TIAN Hao-ran, GAO Jun-feng, DU Chang-qing
Collaborative Innovation Center of Henan Grain Crops/Henan Key Laboratory of Rice Biology/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

类受体蛋白激酶(Receptor-like kinases, RLKs)对于植物响应非生物胁迫至关重要。丙酮醛(Methylglyoxal, MG)作为一种细胞内源代谢产物,通常被认为是一种逆境信号分子。然而,关于RLK和MG之间的关系确知之甚少。本研究中,我们阐述了一个类受体蛋白激酶OsASLRK调控水稻MG响应和内源MG含量的功能。首先,我们发现OsASLRK基因启动子区域含有一个典型的MG反应元件(AAAAAAAA)。定量RT-PCR分析表明,OsASLRK转录水平的表达以时间和剂量依赖性方式显著受外源MG的诱导。GUS染色同样证实,外源MG处理可显著增强水稻根中OsASLRK的表达。遗传学分析表明,Osaslrk突变体表现出对外源MG敏感性增强,并且在外源MG处理下内源MG含量上升,而过表达OsASLRK的水稻植株表现出相反的表型。DAB染色,氧化清除酶活性和GSH含量测定表明,OsASLRK通过提高抗氧化酶活性和减轻膜损伤来调节MG敏感性和含量变化。因此,该研究结果为阐明水稻类受体蛋白激酶OsASLRK调控MG的功能提供了新证据。




Abstract  
Receptor-like kinases (RLKs) are essential for plant abiotic stress responses.  Methylglyoxal (MG) is a cellular metabolite that is often considered to be a stress signal molecule.  However, limited information is available about the relationship between RLKs and MG.  Here, we addressed the function of a receptor-like kinase, OsASLRK, in the MG response and content in rice.  A typical MG-responsive element (AAAAAAAA) exists in the promoter region of the OsASLRK gene.  RT-qPCR analysis indicated that the transcript level of OsASLRK was significantly increased by exogenous MG in a time- and dosage-dependent fashion.  GUS staining also confirmed that the expression of OsASLRK in rice root was enhanced by exogenous MG treatment.  Genetic analysis suggested that the Osaslrk mutant displays increased sensitivity to MG and it showed higher endogenous MG content under exogenous MG treatments, while OsASLRK-overexpressing rice plants showed the opposite phenotypes.  Diaminobenzidine (DAB) staining, scavenging enzyme activities and GSH content assays indicate that OsASLRK regulates MG sensitivity and content via the elevation of antioxidative enzyme activities and alleviation of membrane damage.  Therefore, our results provide new evidence illustrating the roles that receptor-like kinase OsASLRK plays in MG regulation in rice.
Keywords:  receptor-like kinase (RLK)        OsASLRK        methylglyoxal (MG)        rice  
Received: 26 November 2019   Accepted:
Fund: This research was financially supported by the National Natural Science Foundation of China (U1704106, 3190142), the Doctoral Scientific Research Fund of Henan Agricultural University, China (30500561) and the Open Innovation Project of Undergraduate Laboratory of Henan Agricultural University, China (KF1902).
Corresponding Authors:  Correspondence DU Chang-qing, Tel: +86-371-56990188, E-mail: Changqing_84@henau.edu.cn   
About author:  LIN Fa-ming, E-mail: 15378799128@163.com;

Cite this article: 

LIN Fa-ming, LI Shen, WANG Ke, TIAN Hao-ran, GAO Jun-feng, DU Chang-qing. 2021. Receptor-like kinase OsASLRK regulates methylglyoxal response and content in rice. Journal of Integrative Agriculture, 20(7): 1731-1742.

Chen L J, Wuriyanghan H, Zhang Y Q, Duan K X, Chen H W, Li Q T, Lu X, He S J, Ma B, Zhang W K, Lin Q, Chen S Y, Zhang J S. 2013. An S-domain receptor-like kinase, OsSIK2, confers abiotic stress tolerance and delays dark-induced leaf senescence in rice. Plant Physiology, 163, 1752–1765.
Clark S E. 2001. Cell signal at the shoot meristem. Molecular Cell Biology, 2, 276–284.
Cooper R A. 1984. Metabolism of methylglyoxal in microorganisms. Annual Review of Microbiology, 38, 49–68.
Dievart A, Perin C, Hirsch J, Bettembourg M, Lanau N, Artus F, Bureau C, Noel N, Droc G, Peyramard M, Pereira S, Courtois B, Morel J B, Guiderdoni E. 2016. The phenome analysis of mutant alleles in Leucine-Rich Repeat Receptor-Like Kinase genes in rice reveals new potential targets for stress tolerant cereals. Plant Science, 242, 240–249.
Ghosh A, Pareek A, Sopory S K, Singla-Pareek S L. 2014. A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool. The Plant Journal, 80, 93–105.
Hoque T S, Uraji M, Tuya A, Nakamura Y, Murata Y. 2012. Methylglyoxal inhibits seed germination and root elongation and upregulates transcription of stress-responsive genes in ABA-dependent pathway in Arabidopsis. Plant Biology, 14, 854–858.
Hu C, Zhu Y, Cui Y, Cheng K, Liang W, Wei Z, Zhu M, Yin H, Zeng L, Xiao Y, Lv M, Yi J, Hou S, He K, Li J, Gou X. 2018. A group of receptor kinases are essential for CLAVATA signaling to maintain stem cell homeostasis. Nature Plants, 4, 205–211.
Jack M, Wright D. 2012. Role of advanced glycation endproducts and glyoxalase I in diabetic peripheral sensory neuropathy. Translational Research, 159, 355–365.
Jefferson R A, Kavanagh T A, Bevan M W. 1987. GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6, 3901–3907.
Kalapos M P. 1999. Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications. Toxicology Letters, 110, 145–175.
Kaur C, Ghosh A, Pareek A, Sopory S K, Singla-Pareek S L. 2014. Glyoxalases and stress tolerance in plants. Biochemical Society Transactions, 42, 485–490.
Kaur C, Kushwaha H R, Mustafiz A, Pareek A, Sopory S K, Singla-Pareek S L. 2015. Analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule. Frontiers in Plant Science, 6, 682.
Lin F M, Li S, Wang K, Tian H R, Gao J F, Zhao Q Z, Du C Q. 2020. A leucine-rich repeat receptor-like kinase, OsSTLK, modulates salt tolerance in rice. Plant Science, 296, 110465.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2[– ΔΔC(t)] method. Methods, 25, 402–408.
Maeta K, Izawa S, Inoue Y. 2005. Methylglyoxal, a metabolite derived from glycolysis, functions as a signal initiator of the high osmolarity glycerol-mitogen-activated protein kinase cascade and calcineurin/Crz1-mediated pathway in Saccharomyces cerevisiae. The Journal of Biological Chemistry, 280, 253–260.
Murata-Kamiya N, Kamiya H. 2001. Methylglyoxal, an endogenous aldehyde, crosslinks DNA polymerase and the substrate DNA. Nucleic Acids Research, 29, 3433–3438.
Mustafiz A, Sahoo K K, Singla-Pareek S L, Sopory S K. 2010. Metabolic engineering of glyoxalase pathway for enhancing stress tolerance in plants. Methods in Molecular Biology, 639, 95–118.
Nam K H, Li J. 2002. BRI1/BAK1, a receptor kinase pairs mediating brassinosteroid signaling. Cell, 110, 203–212.
Oehlenschlæger C B, Gersby L B A, Ahsan N, Pedersen J T, Kristensen A, Solakova T V, Thelen J J, Fuglsang A T. 2017. Activation of the LRR receptor-like kinase PSY1R requires transphosphorylation of residues in the activation loop. Frontiers in Plant Science, 8, 2005.
Ouyang S Q, Liu Y F, Liu P, Lei G, He S J, Ma B, Zhang W K, Zhang J S, Chen S Y. 2010. Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. The Plant Journal, 62, 316–329.
Peng Y, Chen L, Li S, Zhang Y, Xu R, Liu Z, Liu W, Kong J, Huang X, Wang Y, Cheng B, Zheng L, Li Y. 2018. BRI1 and BAK1 interact with G proteins and regulate sugar-responsive growth and development in Arabidopsis. Nature Communications, 9, 1522.
Ramasamy R, Yan S F, Schmidt A M. 2006. Methylglyoxal comes of AGE. Cell, 124, 258–260.
Ray S, Dutta S, Halder J, Ray M. 1994. Inhibition of electron flow through complex I of the mitochondrial respiratory chain of Ehrlich ascites carcinoma cells by methylglyoxal. The Biochemical Journal, 303, 69–72.
Roy S S, Biswas S, Ray M, Ray S. 2003. Protective effect of creatine against inhibition by methylglyoxal of mitochondrial respiration of cardiac cells. The Biochemical Journal, 372, 661–669.
Salem H M. 1957. Utilization of methylglyoxal in animal tissues. Proceedings of the Society for Experimental Biology and Medicine, 96, 10–13.
Shi C C, Feng C C, Yang M M, Li J L, Li X X, Zhao B C, Huang Z J, Ge R C. 2014. Overexpression of the receptor-like protein kinase genes AtRPK1 and OsRPK1 reduces the salt tolerance of Arabidopsis thaliana. Plant Science, 217–218, 63–70.
Shiu S H, Bleecker A B. 2001a. Plant receptor-like kinase gene family: diversity, function, and signaling. Science’s STKE, 2001, re22.
Shiu S H, Bleecker A B. 2001b. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proceedings of the National Academy of Sciences of the United States of America, 98, 10763–10768.
Shiu S H, Bleecker A B. 2003. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiology, 132, 530–543.
Shiu S H, Karlowski W M, Pan R, Tzeng Y H, Mayer K F, Li W H. 2004. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. The Plant Cell, 16, 1220–1234.
Singla-Pareek S L, Yadav S K, Pareek A, Reddy M K, Sopory S K. 2006. Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiology, 140, 613–623.
Sun L M, Liao K. 2017. Saccharomyces cerevisiae Hog1 MAP kinase pathway is activated in response to honokiol exposure. Journal of Applied Microbiology, 124, 754–763.
Tang W, Kim T W, Oses-Prieto J A, Sun Y, Deng Z, Zhu S, Wang R, Burlingame A L, Wang Z Y. 2008. BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science, 321, 557–560.
Thornalley P J. 2003. Glyoxalase I - structure, function and a critical role in the enzymatic defence against glycation. Biochemical Society Transactions, 31, 1343–1348.
Thornalley P J. 2008. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems - role in ageing and disease. Drug Metabolism and Drug Interactions, 23, 125–150.
Thornalley P J, Langborg A, Minhas H S. 1999. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. The Biochemical Journal, 344, 109–116.
Wu F, Sheng P, Tan J, Chen X, Lu G, Ma W, Heng Y, Lin Q, Zhu S, Wang J, Wang J, Guo X, Zhang X, Lei C, Wan J. 2015. Plasma membrane receptor-like kinase leaf panicle 2 acts downstream of the Drought and Salt Tolerance transcription factor to regulate drought sensitivity in rice. Journal of Experimental Botany, 66, 271–281.
Yadav S K, Singla-Pareek S L, Ray M, Reddy M K, Sopory S K. 2005. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochemical and Biophysical Research Communications, 337, 61–67.
Yadav S K, Singla-Pareek S L, Sopory S K. 2008. An overview on the role of methylglyoxal and glyoxalases in plants. Drug Metabolism and Drug Interactions, 23, 51–68.
You J, Chan Z. 2015. ROS regulation during abiotic stress responses in crop plants. Frontiers in Plant Science, 6, 1092.
Zhu M D, Chen X L, Zhu X Y, Xing Y D, Du D, Zhang Y Y, Liu M M, Zhang Q L, Liu X, Peng S S, He G H, Zhang T Q. 2020. Identifcation and gene mapping of the starch accumulation and premature leaf senescence mutant ossac4 in rice. Journal of Integrative Agriculture, 19, 2150–2164.
Zhou Y B, Liu C, Tang D Y, Yan L, Wang D, Yang Y Z, Gui J S, Zhao X Y, Li L G, Tang X D, Yu F, Li J L, Liu L L, Zhu Y H, Lin J Z, Liu X M. 2018. The receptor-like cytoplasmic kinase STRK1 phosphorylates and activates CatC, thereby regulating H2O2 homeostasis and improving salt tolerance in rice. The Plant Cell, 30, 1100–1118.
[1] GAO Peng, ZHANG Tuo, LEI Xing-yu, CUI Xin-wei, LU Yao-xiong, FAN Peng-fei, LONG Shi-ping, HUANG Jing, GAO Ju-sheng, ZHANG Zhen-hua, ZHANG Hui-min. Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2221-2232.
[2] GAO Zhi-ping, XU Min-li, ZHANG Hai-zi, LÜ Chuan-gen, CHEN Guo-xiang. Photosynthetic properties of the mid-vein and leaf lamina of field-grown, high-yield hybrid rice during senescence[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1913-1926.
[3] TIAN Chang, SUN Ming-xue, ZHOU Xuan, LI Juan, XIE Gui-xian, YANG Xiang-dong, PENG Jian-wei. Increase in yield and nitrogen use efficiency of double rice with long-term application of controlled-release urea[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2106-2118.
[4] ZHOU Tian-yang, LI Zhi-kang, LI En-peng, WANG Wei-lu, YUAN Li-min, ZHANG Hao, LIU Li-jun, WANG Zhi-qin, GU Jun-fei, YANG Jian-chang. Optimization of nitrogen fertilization improves rice quality by affecting the structure and physicochemical properties of starch at high yield levels[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1576-1592.
[5] Christian Adler PHARES, Selorm AKABA. Co-application of compost or inorganic NPK fertilizer with biochar influenced soil quality, grain yield and net income of rice[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3600-3610.
[6] Muhammad Amjad BASHIR, ZHAI Li-mei, WANG Hong-yuan, LIU Jian, Qurat-Ul-Ain RAZA, GENG Yu-cong, Abdur REHIM, LIU Hong-bin. Apparent variations in nitrogen runoff and its uptake in paddy rice under straw incorporation[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3356-3367.
[7] HUANG Li-ying, Li Xiao-xiao, ZHANG Yun-bo, Shah FAHAD, WANG Fei. dep1 improves rice grain yield and nitrogen use efficiency simultaneously by enhancing nitrogen and dry matter translocation[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3185-3198.
[8] CHEN Zhong-du, LI Feng-bo, XU Chun-chun, JI Long, FENG Jin-fei, FANG Fu-ping. Spatial and temporal changes of paddy rice ecosystem services in China during the period 1980–2014[J]. >Journal of Integrative Agriculture, 2022, 21(10): 3082-3093.
[9] CHEN Yun-feng, XIA Xian-ge, HU Cheng, LIU Dong-hai, QIAO Yan, LI Shuang-lai, FAN Xian-peng. Effects of long-term straw incorporation on nematode community composition and metabolic footprint in a rice–wheat cropping system[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2265-2276.
[10] SHI Min, Krishna P. PAUDEL, CHEN Feng-bo. Mechanization and efficiency in rice production in China[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1996-2008.
[11] ZHANG Jing, ZHANG Yan-yan, SONG Ning-yuan, CHEN Qiu-li, SUN Hong-zheng, PENG Ting, HUANG Song, ZHAO Quan-zhi. Response of grain-filling rate and grain quality of mid-season indica rice to nitrogen application[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1465-1473.
[12] WU Qiong, WANG Yu-hui, DING Yan-feng, TAO Wei-ke, GAO Shen, LI Quan-xin, LI Wei-wei, LIU Zheng-hui, LI Gang-hua. Effects of different types of slow- and controlled-release fertilizers on rice yield[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1503-1514.
[13] QU Xue, Daizo KOJIMA, Yukinaga NISHIHARA, WU La-ping, Mitsuyoshi ANDO. Can harvest outsourcing services reduce field harvest losses of rice in China?[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1396-1406.
[14] ZHANG Chuan-hong, Wandella Amos BENJAMIN, WANG Miao. The contribution of cooperative irrigation scheme to poverty reduction in Tanzania[J]. >Journal of Integrative Agriculture, 2021, 20(4): 953-963.
[15] Dilip Kumar BASTIA, Subrat Kumar BEHERA, Manas Ranjan PANDA . Impacts of soil fertility management on productivity and economics of rice and fodder intercropping systems under rainfed conditions in Odisha, India[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3114-3126.
No Suggested Reading articles found!