导航切换
Journal of Integrative Agriculture
JIA Home
About JIA
Description
Video introduction
Editor-in-chief
Editorial board
Guideline of JIA editorial board
Editorial board
Youth Editorial Board
For authors
Instruction for authors
Title page
Copyright agreement
Templates
Endnote
Subscription
Contact
Virtual Issue
水稻遗传育种合辑Rice Genetics · Breeding · Germplasm Resources
Default
Latest
Most Read
Please wait a minute...
For Selected:
Download Citations
EndNote
Ris
BibTeX
Toggle Thumbnails
Select
Genetic diversity analysis and GWAS reveal the adaptive loci of milling and appearance quality of
japonica
(
oryza sativa
L.) in Northeast China
XU Xin, YE Jun-hua, YANG Ying-ying, LI Ruo-si, LI Zhen, WANG Shan, SUN Yan-fei, ZHANG Meng-chen, XU Qun, FENG Yue, WEI Xing-hua, YANG Yao-long
2022, 21 (
6
): 1539-1550. DOI:
10.1016/S2095-3119(21)63701-2
Abstract
(
228
)
PDF in ScienceDirect
Milling and appearance quality are important contributors to rice grain quality. Abundant genetic diversity and a suitable environment are crucial for rice improvement. In this study, we investigated the milling and appearance quality-related traits in a panel of 200
japonica
rice cultivars selected from Liaoning, Jilin and Heilongjiang provinces in Northeast China. Pedigree assessment and genetic diversity analysis indicated that cultivars from Jilin harbored the highest genetic diversity among the three geographic regions. An evaluation of grain quality indicated that cultivars from Liaoning showed superior milling quality, whereas cultivars from Heilongjiang tended to exhibit superior appearance quality. Single- and multi-locus genome-wide association studies (GWAS) were conducted to identify loci associated with milling and appearance quality-related traits. Ninety-nine significant single-nucleotide polymorphisms (SNPs) were detected. Three common SNPs were detected using the mixed linear model (MLM), mrMLM, and FASTmrMLM methods. Linkage disequilibrium decay was estimated and indicated three candidate regions (
qBRR-1
,
qBRR-9
and
qDEC-3
) for further candidate gene analysis. More than 300 genes were located in these candidate regions. Gene Ontology (GO) analysis was performed to discover the potential candidate genes. Genetic diversity analysis of the candidate regions revealed that
qBRR-9
may have been subject to strong selection during breeding. These results provide information that will be valuable for the improvement of grain quality in rice breeding.
Reference
|
Related Articles
|
Metrics
Select
A locus
TUTOU2
, determines the panicle apical abortion phenotype of rice (
Oryza sativa
L.) in
tutou2
mutant
ZHU Zi-chao, LUO Sheng, LEI Bin, LI Xian-yong, CHENG Zhi-jun
2022, 21 (
3
): 621-630. DOI:
10.1016/S2095-3119(20)63447-5
Abstract
(
108
)
PDF in ScienceDirect
Rice panicle apical abortion (PAA) is a detrimental agronomic trait resulting in spikelet number reduction and yield loss. To understand its underlying molecular mechanism, we identified one recessive PAA mutant
tutou2
from the offspring of tissue cultures. The mutation locus was finely mapped to a 75-kb interval on the long arm of chromosome 10. Sequence analysis revealed a single nucleotide substitution of A to T at the 941 position of
LOC_Os10g31910
in
tutou2
, resulting in an amino acid change from isoleucine to phenylalanine. Complementation analysis showed that the degenerated panicle phenotype in
tutou2
was rescued in the transgenic lines. A phenotype similar to
tutou2
can also be obtained by
LOC_Os10g31910
knockout in wild-type rice. These results suggested that
LOC_Os10g31910
is the causative locus
TUTOU2
responsible for the
tutou2
PAA phenotype and probably also the locus of DEL1, previously documented as a leaf senescence gene. The significant phenotypic differences between del1 and
tutou2
suggest that the locus
DEL1
/
TUTOU2
plays roles in both leaf and panicle development which were not considered fully in previous studies.
Reference
|
Related Articles
|
Metrics
Select
The removal of nitrate reductase phosphorylation enhances tolerance to ammonium nitrogen deficiency in rice
HAN Rui-cai, XU Zhi-rong, LI Chen-yan, Adnan Rasheed, PAN Xiao-hua, SHI Qing-hua, WU Zi-ming
2022, 21 (
3
): 631-643. DOI:
10.1016/S2095-3119(20)63473-6
Abstract
(
109
)
PDF in ScienceDirect
Nitrate reductase (NR) is a key enzyme for nitrogen assimilation in plants, and its activity is regulated by posttranslational phosphorylation. To investigate the effects of dephosphorylation of the NIA1 protein on the growth and the physiological and biochemical characteristics of rice under different forms of nitrogen supplies, the phenotypes, nitrogen metabolism and reactive oxygen metabolism were measured in NIA1 phosphorylation site-directed mutant lines (
S532D
and
S532A
), an
OsNia1
over-expression line (
OE
) and Kitaake (wild type, WT). Compared with WT and
OE
,
S532D
and
S532A
have stronger nitrogen assimilation capacities. When ammonium nitrate served as the nitrogen source, the plant heights, dry weights of shoots and chlorophyll (Chl) contents of
S532D
and
S532A
were lower than those of the WT and
OE
, whereas hydrogen peroxide (
H
2
O
2
), malondialdehyde (MDA) and nitrite contents were higher. When potassium nitrate served as the nitrogen source, the plant heights, dry weights of shoots and Chl contents of
S532D
and
S532A
were higher than those of the WT and OE, there were no significant differences in the contents of H
2
O
2
and MDA in the leaves of the test materials, and the difference in nitrite contents among different lines decreased. When ammonium sulfate served as the nitrogen source, there were no significant differences in the physiological indexes of the test materials, except NR activity. Compared with ammonium nitrate and ammonium sulfate, the content of NH
4
+
-N in the leaves of each plant was lower when potassium nitrate was used as the nitrogen source. The qPCR results showed that
OsGS
and
OsNGS1
were negatively regulated by downstream metabolites, and
OsNrt2.2
was induced by nitrate. In summary, when ammonium nitrate served as the nitrogen source, the weak growth of NIA1 phosphorylation site-directed mutant lines was due to the toxicity caused by the excessive accumulation of nitrite. When potassium nitrate served as the nitrogen source, the assimilation rates of nitrate, nitrite and ammonium salt were accelerated in NIA1 phosphorylation site-directed mutant lines, which could provide more nitrogen nutrition and improve the tolerance of rice to ammonium nitrogen deficiency. These results could provide a possible method to improve the efficiency of nitrogen utilization in rice under low-nitrogen conditions.
Reference
|
Related Articles
|
Metrics
Select
Reducing phosphorylation of nitrate reductase improves nitrate assimilation in rice
HAN Rui-cai, LI Chen-yan, Adnan Rasheed, PAN Xiao-hua, SHI Qing-hua, WU Zi-ming
2022, 21 (
1
): 15-25. DOI:
10.1016/S2095-3119(20)63386-X
Abstract
(
79
)
PDF in ScienceDirect
Nitrate reductase (NR) is an important enzyme for nitrate assimilation in plants, and post-translational phosphorylation regulates NR activity. To evaluate the impact of the dephosphorylation of nitrate reductase 1 (NIA1) protein on NR activity, nitrogen metabolism and plant growth, NIA1 phosphorylation site directed mutant lines (S532D and S532A) and an OsNia1 over-expression line (OE) were constructed, and the phenotype, NIA1 protein and its phosphorylation level, NR activity, nitrate metabolism and reactive oxygen metabolism of the transgenic lines were analysed. Exogenous NIA1 protein was not phosphorylated in S532D and S532A mutant lines, and their NR activities, activity states of NR and assimilation efficiencies of NO3–-N were higher than those in Kitaake (WT) and OE. The changes in these physiological and biochemical indexes in the OE line were less than in S532D and S532A compared to WT. These results suggest that the removal of transcriptional level control had little effect on nitrogen metabolism, but the removal of post-translational modification had a profound effect on it. With the removal of NIA1 phosphorylation and the improvement in the nitrate assimilation efficiency, the plant height and chlorophyll content of S532D and S532A decreased and the hydrogen peroxide and malondialdehyde contents of rice seedlings increased, which may be related to the excessive accumulation of nitrite as an intermediate metabolite. These results indicated that the phosphorylation of NR may be a self-protection mechanism of rice. The reduced phosphorylation level of nitrate reductase improved the assimilation of nitrate, and the increased phosphorylation level reduced the accumulation of nitrite and prevented the toxic effects of reactive oxygen species in rice.
Reference
|
Related Articles
|
Metrics
Select
Characterization and fine mapping of
RTMS10
, a semi-dominant reverse thermo-sensitive genic male sterile locus in rice
NI Jin-long, WANG De-zheng, NI Da-hu, SONG Feng-shun, YANG Jian-bo, YAO Da-nian
2022, 21 (
2
): 316-325. DOI:
10.1016/S2095-3119(20)63563-8
Abstract
(
145
)
PDF in ScienceDirect
The discovery and application of environment-sensitive genic male sterile (EGMS) rice germplasm provide an easy method for hybrid rice breeding and have made great contributions to hybrid rice production. Typically, the photoperiod- and thermo-sensitive GMS (P/TGMS) lines utilized in two-line hybrid systems are male sterile under long day or/and high temperature but fertile under short day or/and low temperature conditions. However, YannongS (YnS), a reverse TGMS (rTGMS) line, is sterile under low temperature (<29°C) and fertile under high temperature (>29.5°C). Here, we report a genetic study on the rTGMS trait in YnS. Interestingly, the F
1
plants of the cross between YnS and a cultivar, L422, were male sterile at 22°C and completely fertile at 27°C. Moreover, the segregation ratio of fertile and sterile individuals in YnS/L422 F
2
populations changed from 1:3.05 to 2.95:1 when the ambient temperature increased, showing that the rTGMS trait exhibits semi-dominance in YnS. We further found a locus on chromosome 10, termed
RTMS1
0, which controls the rTGMS trait in YnS. We then finely mapped
RTMS10
to a ~68 kb interval between markers ID13116 and ID1318 by YnS/L422 BC
6
F
2
populations. A near iso-genic line (NIL) NL1 from the BC
6
F
3
generation was developed and the pollen of NL1 became abnormal from the meiosis stage under low temperature. In summary, we identified an rTGMS locus,
RTMS10
, and provided co-segregated markers, which could help to accelerate molecular breeding of rTGMS lines and better understand the rTGMS trait in rice.
Reference
|
Related Articles
|
Metrics
Select
Prospects of utilization of inter-subspecific heterosis between
indica
and
japonica
rice
ZHANG Gui-quan
2020, 19 (
1
): 1-10. DOI:
10.1016/S2095-3119(19)62843-1
Abstract
(
113
)
PDF in ScienceDirect
The Asian cultivated rice (
Oryza sativa
L.) grown worldwide is divided into two subspecies, indica and japonica. It is well known that the heterosis of inter-subspecies is usually stronger than that of intra-subspecies. Since the 1970s,
indica
hybrid rice, an intra-subspecific hybrid rice, has being widely used in China and even in the world. However, the inter-subspecific hybrid rice between indica and
japonica
is still unavailable. The major obstacle is the hybrid sterility of the inter-subspecies. In recent decades, the genetic and molecular basis of indica-japonica hybrid sterility was understood more and more clearly. Some breeding approaches for overcoming inter-subspecific hybrid sterility were proposed and used to develop the indica-japonica hybrid rice. The updated understanding will offer new approaches for development of breeding lines for overcoming
indica
-
japonica
hybrid sterility, which facilitates developing of inter-subspecific hybrid rice.
Reference
|
Related Articles
|
Metrics
Select
OsHemA
gene, encoding glutamyl-tRNA reductase (GluTR) is essential for chlorophyll biosynthesis in rice (
Oryza sativa
)
ZENG Zhao-qiong, LIN Tian-zi, ZHAO Jie-yu, ZHENG Tian-hui, XU Le-feng, WANG Yi-hua, LIU Ling-long, JIANG Ling, CHEN Sai-hua, WAN Jian-min
2020, 19 (
3
): 612-623. DOI:
10.1016/S2095-3119(19)62710-3
Abstract
(
92
)
PDF in ScienceDirect
Chlorophyll (Chl) biosynthesis is essential for photosynthesis and plant growth. Glutamyl-tRNA reductase (GluTR) catalyzes glutamyl-tRNA into glutamate-1-semialdehyde (GSA) and initiates the chlorophyll biosynthesis. Even though the main role of GluTR has been established, the effects caused by natural variations in its corresponding gene remain largely unknown. Here, we characterized a spontaneous mutant in paddy field with Chl biosynthesis deficiency, designated as
cbd1
. With intact thylakoid lamellar structure, the
cbd1
plant showed light green leaves and reduced Chl and carotenoids (Cars) content significantly compared to the wild type. By map-based gene cloning, the mutation was restricted within a 57-kb region on chromosome 10, in which an mPingA miniature inverted-repeat transposable element (MITE) inserted in the promoter region of
OsHemA
gene. Both leaf color and the pigment contents in
cbd1
were recovered in a complementation test, confirming
OsHemA
was responsible for the mutant phenotype.
OsHemA
was uniquely predicted to encode GluTR and its expression level was dramatically repressed in
cbd1
. Transient transformation in protoplasts demonstrated that GluTR localized in chloroplasts and a signal peptide exists in its N-terminus. A majority of Chl biosynthesis genes, except for POR and CHLG, were down-regulated synchronously by the repression of OsHemA, suggesting that an attenuation occurred in the Chl biosynthesis pathway. Interestingly, we found major agronomic traits involved in rice yield were statistically unaffected, except for the number of full grains per panicle was increased in
cbd1
. Collectively, OsHemA plays an essential role in Chl biosynthesis in rice and its weak allele can adjust leaf color and Chls content without compromise to rice yield.
Reference
|
Related Articles
|
Metrics
Select
Gene mapping and candidate gene analysis of
aberrant-floral spikelet 1
(
afs1
) in rice (
Oryza sativa
L.)
ZHANG Ting, YOU Jing, YU Guo-ling, ZHANG Yi, CHEN Huan, LI Yi-dan, YE Li, YAO Wan-yue, TU Yu-jie, LING Ying-hua, HE Guang-hua, LI Yun-feng
2020, 19 (
4
): 921-930. DOI:
10.1016/S2095-3119(19)62847-9
Abstract
(
73
)
PDF in ScienceDirect
The spikelet is a unique inflorescence structure in grasses. However, the molecular mechanism that regulates its development remains unclear, and we therefore characterize a spikelet mutant of rice (
Oryza sativa
L.),
aberrant-floral spikelet
1 (
afs1
), which was derived from treatment of Xinong 1B with ethyl methanesulfonate. In the afs1 mutant, the spikelet developed an additional lemma-like organ alongside the other normally developed floral organs, and the paleae were degenerated to differing degrees with or without normally developed inner floral organs. Genetic analysis revealed that the
afs1
phenotype was controlled by a single recessive gene. The
AFS1
gene was mapped between the insertion/deletion (InDel) marker Indel19 and the simple sequence repeat marker RM16893, with a physical distance of 128.5 kb on chromosome 4. Using sequence analysis, we identified the deletion of a 5-bp fragment and a transversion from G to A within
LOC_Os04g32510/ LAX2
, which caused early termination of translation in the afs1 mutant. These findings suggest that AFS1 may be a new allele of
LAX2
, and is involved in the development of floral organs by regulating the expression of genes related to their development. The above results provide a new view on the function of
LAX2
, which may also regulate the development of spikelets.
Reference
|
Related Articles
|
Metrics
Select
Identification of long-grain chromosome segment substitution line Z744 and QTL analysis for agronomic traits in rice
MA Fu-ying, DU Jie, WANG Da-chuan, WANG Hui, ZHAO Bing-bing, HE Guang-hua, YANG Zheng-lin, ZHANG Ting, WU Ren-hong, ZHAO Fang-ming
2020, 19 (
5
): 1163-1169. DOI:
10.1016/S2095-3119(19)62751-6
Abstract
(
71
)
PDF in ScienceDirect
Length of grain affects the appearance, quality, and yield of rice. A rice long-grain chromosome segment substitution line Z744, with Nipponbare as the recipient parent and Xihui 18 as the donor parent, was identified. Z744 contains a total of six substitution segments distributed on chromosomes (Chrs.) 1, 2, 6, 7, and 12, with an average substitution length of 2.72 Mb. The grain length, ratio of length to width, and 1 000-grain weight of Z744 were significantly higher than those in Nipponbare. The plant height, panicle number, and seed-set ratio in Z744 were significantly lower than those in Nipponbare, but they were still 78.7 cm, 13.5 per plant, and 86.49%, respectively. Furthermore, eight QTLs of different traits were identified in the secondary F
2
population, constructed by Nipponbare and Z744 hybridization. The grain weight of Z744 was controlled by two synergistic QTLs (
qGWT1
and
qGWT7
) and two subtractive QTLs (
qGWT2
and
qGWT6
), respectively. The increase in the grain weight of Z744 was caused mainly by the increase in grain length. Two QTLs were detected,
qGL1
and
qGL7-3
, which accounted for 25.54 and 15.58% of phenotypic variation, respectively. A Chi-square test showed that the long-grain number and the short-grain number were in accordance with the 3:1 separation ratio, which indicates that the long grain is dominant over the short-grain and Z744 was controlled mainly by the principal effect
qGL1
. These results offered a good basis for further fine mapping of
qGL1
and further dissection of other QTLs into single-segment substitution lines.
Reference
|
Related Articles
|
Metrics
Select
Mapping quantitative trait loci associated with starch paste viscosity attributes by using double haploid populations of rice (
Oryza sativa
L.)
Tahmina SHAR, SHENG Zhong-hua, Umed ALI, Sajid FIAZ, WEI Xiang-jin, XIE Li-hong, JIAO Gui-ai, Fahad ALI, SHAO Gao-neng, HU Shi-kai, HU Pei-song, TANG Shao-qing
2020, 19 (
7
): 1691-1703. DOI:
10.1016/S2095-3119(19)62726-7
Abstract
(
74
)
PDF in ScienceDirect
The paste viscosity attributes of starch, measured by rapid visco analyzer (RVA), are important factors for the evaluation of the cooking and eating qualities of rice in breeding programs. To determine the genetic roots of the paste viscosity attributes of rice grains, quantitative trait loci (QTLs) associated with the paste viscosity attributes were mapped, using a double haploid (DH) population derived from Zhongjiazao 17 (YK17), a super rice variety, crossed with D50, a tropic japonica variety. Fifty-four QTLs, for seven parameters of the RVA profiles, were identified in three planting seasons. The 54 QTLs were located on all of the 12 chromosomes, with a single QTL explaining 5.99 to 47.11% of phenotypic variation. From the QTLs identified, four were repeatedly detected under three environmental conditions and the other four QTLs were repeated under two environments. Most of the QTLs detected for peak viscosity (PKV), trough viscosity (TV), cool paste viscosity (CPV), breakdown viscosity (BDV), setback viscosity (SBV), and peak time (PeT) were located in the interval of RM6775–RM3805 under all three environmental conditions, with the exception of pasting temperature (PaT). For digenic interactions, eight QTLs with six traits were identified for additive×environment interactions in all three planting environments. The epistatic interactions were estimated only for PKV, SBV and PaT. The present study will facilitate further understanding of the genetic architecture of eating and cooking quality (ECQ) in the rice quality improvement program.
Reference
|
Related Articles
|
Metrics
Select
The breeding of
japonica
rice in northern China: An 11-year study (2006–2016)
CUI Yue, ZHU Meng-meng, XU Zheng-jin, CHEN Wen-fu
2020, 19 (
8
): 1941-1946. DOI:
10.1016/S2095-3119(19)62799-1
Abstract
(
99
)
PDF in ScienceDirect
The world’s population is facing food shortages due to climate change and the competition for arable land between food and energy crops. Many national and international projects to develop “super rice” cultivars were established in recent decades to attain a ‘third leap forward’ in rice production. In order to evaluate the breeding process in northern China, an 11-year tracking survey of
japonica
rice breeding, which involved a total of 520 rice accessions and 67 test plots, was completed in this study. The results showed that the yields of these accessions had increased stably, which was similar to control check varieties (CKs). The breeding strategy reduced the panicle number and increased the grain number per panicle through an increase of spikelet density (number of grains per centimeter on the panicle). This high spikelet density benefits not only the yield but also the blast resistance and amylose content. At higher latitudes, the preferred rice accessions had slim grain shape and extended growth period. In the middle latitudes among the test plots, the breeders focused on reducing the amylose content to improve the cooking quality of the rice accessions. Yield and blast resistance were the two highest priorities during the breeding selection process. The present study evaluated the breeding process in northern China during the last decade, which may lead to new insights into the future of rice breeding.
Reference
|
Related Articles
|
Metrics
Select
Transcriptome and metabolome profiling of unheading in F
1
hybrid rice
WANG Jie, WEI Shao-bo, WANG Chun-chao, Najeeb Ullah KHAN, ZHANG Zhan-ying, WANG Wen-sheng, ZHAO Xiu-qin, ZHANG Hong-liang, LI Zi-chao, GAO Yong-ming
2020, 19 (
10
): 2367-2382. DOI:
10.1016/S2095-3119(19)62838-8
Abstract
(
93
)
PDF in ScienceDirect
Heading date is a crucial agronomic trait. However, rice usually delays heading due to the photoperiod, temperature, hormones or age. The present research was conducted to analyze the mechanism controlling heading date in F
1
hybrid rice. We constructed two test-crossing populations using two introgression lines (ILs), P20 and P21 coming from SH527/FH838 as the male parent, respectively, and male sterile line Jin23A as the female parent. Meanwhile, the F
1
hybrids of H20, obtained by mating P20 with Jin23A and having no heading, and H21, from the crossing between P21 and Jin23A having normal heading, were both observed under long days. Here, we analyzed the photoperiodic response of F
1
hybrids by transcriptome and metabolome profiling. The greater differences displayed in the transcriptome and the metabolome were caused by photoperiod (exogenous) instead of genes (endogenous). The coping mechanism resulted from long days (LD) in H20, leading to differences in the circadian rhythm and glutathione metabolism relative to other samples. The circadian oscillator and GSH/GSSG cycle typically regulate ROS homeostasis, and both of them are responsible for modulating ROS in H20 under LD condition. Both circadian rhythm genes and the reported genes related to heading date function
via
the
DHD1/OsMFT1-Ehd1-RFT1-OsMADS14/OsMADS18
pathway and the glutathione metabolism pathway by regulating oxidative reduction processes. Both pathways are involved in the heading process and they interacted through the oxidative reduction process which was induced by photoperiod regulation, and all of them collectively modulated the heading process. The results of this study will be helpful for unraveling the mechanism of F
1
hybrid responses to unheading under LD condition.
Reference
|
Related Articles
|
Metrics
Select
GraS
is critical for chloroplast development and affects yield in rice
DU Zhi-xuan, HAO Hui-ying, HE Jin-peng, WANG Jian-ping, HUANG Zhou, XU Jie, FU Hai-hui, FU Jun-ru, HE Hao-hua
2020, 19 (
11
): 2603-2615. DOI:
10.1016/S2095-3119(19)62859-5
Abstract
(
92
)
PDF in ScienceDirect
Leaf color has been considered an important agronomic trait in rice (
Oryza sativa
L.) for a long time. The changes in leaf color affect the yield of rice. In this study, a
green-revertible albino
(
graS
) mutant was isolated from a
60
Co-gamma-irradiated mutant pool of
indica
cultivar Guangzhan 63-4S. The fine mapping indicated that
graS
mutant was mapped to chromosome 1, and was located in a confined region between markers ab134 and InDel 8 with genetic distances of 0.11 and 0.06 cM, respectively. Based on the annotation results, four open reading frames (ORFs) were predicted in this region. Sequence analysis revealed that
LOC_Os01g55974
had a 2-bp nucleotide insertion (AA) in the coding region that led to premature termination at the 324th base. Sequence analysis and expression analysis of related genes indicated that
LOC_Os01g55974
is the candidate gene of
GraS
. We studied the genome and protein sequences of
LOC_Os01g55974, and the data showed that
GraS
contains a deoxycytidine deaminase domain, which was expressed ubiquitously in all tissues. Further investigation indicated that
GraS
plays an essential role in the regulation of chloroplast biosynthesis, photosynthetic capacity and yield. Moreover, leaf color mutant can be used as an effective marker for the purity of breeding and hybridization.
Reference
|
Related Articles
|
Metrics
Select
Breeding of CMS maintainer lines through anther culture assisted by high-resolution melting-based markers
WANG Ping, BAI Yu-lu, WANG Min-xia, HU Bin-hua, PU Zhi-gang, ZHANG Zhi-yong, ZHANG Qiong, XU Deng-wu, LUO Wen-long, CHEN Zhi-qiang
2020, 19 (
12
): 2965-2973. DOI:
10.1016/S2095-3119(20)63179-3
Abstract
(
61
)
PDF in ScienceDirect
The integrated use of molecular marker-assisted selection (MAS) and anther culture has potential to significantly increase efficiency in plant breeding; however, reports on this kind of practical use are very limited. In the present study, we report the development of cytoplasmic male sterile (CMS) maintainers with aroma, disease resistance and red-brown hulls, as an example of integration of MAS and anther culture in rice breeding. A high-resolution melting (HRM)-based functional molecular marker was developed for the red-brown hull trait caused by a unique mutation (
rbh1
) in
OsCAD2
. Functional molecular markers for genes of rice blast resistance (
Pi2
), aroma (
fgr
) and red-brown hull (
rbh1
) were used for precise genotyping of individual plants in the BC
1
and BC
2
F
2
populations derived from a cross between CMS maintainers Huaxiang B (
pi2–/rbh1–/fgr–)
and Rong 3B (
Pi2+/RBH1+/Fgr+).
A total of 89 doubled haploid (DH) lines were generated from selected BC
2
F
2
plants (
Pi2+/rbh1–/fgr–)
by anther culture. Seven DH lines were subsequently selected as the potential new CMS maintainers based on their overall performance and high resistance to blast. Our study demonstrated that integration of MAS and anther culture significantly accelerated the development of CMS maintainers with multiple stacked genes.
Reference
|
Related Articles
|
Metrics
Select
Genome-wide pedigree analysis of elite rice Shuhui 527 reveals key regions for breeding
REN Yun, CHEN Dan, LI Wen-jie, TAO Luo, YUAN Guo-qiang, CAO Ye, LI Xue-mei, DENG Qi-ming, WANG Shi-quan, ZHENG Ai-ping, ZHU Jun, LIU Huai-nian, WANG Ling-xia, LI Ping, LI Shuang-cheng
2021, 20 (
1
): 35-45. DOI:
10.1016/S2095-3119(20)63256-7
Abstract
(
97
)
PDF in ScienceDirect
Hybrid rice significantly contributes to the food supply worldwide. Backbone parents play important roles in elite hybrid rice breeding systems. In this study, we performed pedigree-based analysis of the elite backbone parent rice variety, namely, Shuhui 527 (SH527,
Oryza sativa
), to exploit key genome regions during breeding. Twenty-four cultivars (including SH527, its six progenitors and 17 derived cultivars) were collected and analyzed with high-density single nucleotide polymorphism (SNP) array. Scanning all these cultivars with genome-wide SNP data indicated the unique contributions of progenitors to the SH527 genome and identified the key genomic regions of SH527 conserved within all its derivatives. These findings were further supported by known rice yield-related genes or unknown QTLs identified by genome-wide association study. This study reveals several key regions for SH527 and provides insights into hybrid rice breeding.
Reference
|
Related Articles
|
Metrics
Select
Receptor-like kinase
Os
ASLRK regulates methylglyoxal response and content in rice
LIN Fa-ming, LI Shen, WANG Ke, TIAN Hao-ran, GAO Jun-feng, DU Chang-qing
2021, 20 (
7
): 1731-1742. DOI:
10.1016/S2095-3119(20)63258-0
Abstract
(
63
)
PDF in ScienceDirect
Receptor-like kinases (RLKs) are essential for plant abiotic stress responses. Methylglyoxal (MG) is a cellular metabolite that is often considered to be a stress signal molecule. However, limited information is available about the relationship between RLKs and MG. Here, we addressed the function of a receptor-like kinase,
Os
ASLRK, in the MG response and content in rice. A typical MG-responsive element (AAAAAAAA) exists in the promoter region of the
OsASLRK
gene. RT-qPCR analysis indicated that the transcript level of
OsASLRK
was significantly increased by exogenous MG in a time- and dosage-dependent fashion. GUS staining also confirmed that the expression of
Os
ASLRK in rice root was enhanced by exogenous MG treatment. Genetic analysis suggested that the
Osaslrk
mutant displays increased sensitivity to MG and it showed higher endogenous MG content under exogenous MG treatments, while
OsASLRK
-overexpressing rice plants showed the opposite phenotypes. Diaminobenzidine (DAB) staining, scavenging enzyme activities and GSH content assays indicate that
OsASLRK
regulates MG sensitivity and content via the elevation of antioxidative enzyme activities and alleviation of membrane damage. Therefore, our results provide new evidence illustrating the roles that receptor-like kinase
Os
ASLRK plays in MG regulation in rice.
Reference
|
Related Articles
|
Metrics
Select
A rice geranylgeranyl reductase is essential for chloroplast development
LIU Xi, YI Xin, YANG Yan-rong, HUANG Qian-qian
2021, 20 (
10
): 2592-2600. DOI:
10.1016/S2095-3119(20)63324-X
Abstract
(
48
)
PDF in ScienceDirect
Chloroplasts are essential for plant photosynthesis and growth. Many genes have been identified that regulate plant chloroplast development. However, it is not known at a molecular level how these genes regulate chloroplast biogenesis. In this study, we isolated a mutant
ygl2
(
yellow-green leaf2
) that exhibited a pigment-defective phenotype.
YGL2
encodes a geranylgeranyl reductase, and in mutant
ygl2
, there was a single base change (T1361G) located in the third exon of
YGL2
that resulted in a missense mutation (L454R) in the encoded product. Transmission electron microscopy revealed that chloroplast development was impaired in the
ygl2
mutant. The expression levels of plastid-encoded genes were significantly altered in the ygl2 mutant. Furthermore, in a yeast two-hybrid assay, we found that YGL2 interacted with the RNA editing factor MORF8.
Reference
|
Related Articles
|
Metrics
Select
Transgenic
japonica
rice expressing the
cry1C
gene is resistant to striped stem borers in Northeast China
JIN Yong-mei, MA Rui, YU Zhi-jing, LIN Xiu-feng
2021, 20 (
11
): 2837-2848. DOI:
10.1016/S2095-3119(20)63279-8
Abstract
(
70
)
PDF in ScienceDirect
Rice production and quality are seriously affected by the lepidopteran pest, striped stem borer (SSB), in Northeast China. In this study, a synthetic
cry1C
gene encoding
Bacillus thuringiensis
(Bt) δ-endotoxin, which is toxic to lepidopteran pest, was transformed into a
japonica
rice variety (Jigeng 88) in Northeast China by
Agrobacterium
-mediated transformation. Through molecular detection and the Basta resistance germination assay, a total of 16 single-copy homozygous transgenic lines were obtained from 126 independent transformants expressing
cry1C
. Finally, four
cry1C
-transgenic lines (JL16, JL23, JL41, and JL42) were selected by evaluation of the Cry1C protein level, insect-resistance and agronomic traits. The
cry1C
-transgenic lines had higher resistance to SSB and higher yield compared with non-transgenic (NT) control plants. T-DNA flanking sequence analysis of the transgenic line JL42 showed that the
cry1C
gene was inserted into the intergenic region of chromosome 11, indicating that its insertion may not interfere with the genes near insertion site. In summary, this study developed four
cry1C
-transgenic
japonica
rice lines with high insect resistance and high yield. They can be used as insect-resistant germplasm materials to overcome the problem of rice yield reduction caused by SSB and reduce the use of pesticides in Northeast China.
Reference
|
Related Articles
|
Metrics