Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Knockdown of OsCOI1 increases rice yield under normal conditions and compromises thermotolerance during panicle differentiation

Dongling Ji1, Xiaowu Yan1, Yu Wei1, Yunxia Han3, Weiyang Zhang1, Lijun Liu1, Hao Zhang1, Zhiqing Wang1, Zujian Zhang1, Jianchang Yang1, 2, Weilu Wang1, 2#

1 Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China

2 Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China 

3 School of Business, Yangzhou University, Yangzhou 225009, China

 Highlights 

Knockdown of OsCOI1 boosts yield under NT yet is essential for thermotolerance during the panicle differentiation stage.

HS disrupts C-N balance and antioxidant defense in the OsCOI1 mutant, severely inhibiting spikelet differentiation and causing excessive yield loss.

Exogenous MeJA mitigated heat damage in WT but not in OsCOI1 mutants, demonstrating that OsCOI1 is indispensable for JA-mediated regulation under HS.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

茉莉酸(JA)信号通路在植物生长发育及逆境响应中发挥核心调控作用,但其如何通过OsCOI1基因介导颖花发育与产量稳定性的机制,尤其是在穗分化期PDS遭遇热胁迫(HS时的调控机理,目前尚不明确。本研究采用野生型水稻日本晴WT)及OsCOI1敲低突变体coi1‑18JA信号受阻)为试验材料,系统研究了热胁迫对穗形态建成碳氮代谢、累积与分配根系氧化活性抗氧化酶活性,内源茉莉酸及茉莉酸甲酯MeJA含量产量及其构成因的影响。结果表明,与WT相比,coi1‑18常温(NT)条件下穗粒数、结实率及千粒重显著提高,从而产量整体提升23.2%。而在HS条件下,coi1‑18突变体内源JAMeJA含量显著降低,伴随抗氧化能力减弱、碳氮代谢紊乱及根系氧化活动下降,导致颖花分化受抑及热敏感性增强,其产量降低幅度较WT高16.1个百分点。此外,外源MeJA处理可在一定程度上缓解WTHS下的颖花分化抑制,但对coi1‑18的恢复作用不显著。综合而言,OsCOI1作为JA信号核心调控因子表现出明显的环境依赖性:在NT条件下敲低OsCOI1有利于提高产量,而在PDSHS条件下则损害热耐受性。本研究揭示了JA信号调控产量与热胁迫耐受之间的权衡关系,为水稻育种中茉莉酸信号调控策略提供重要理论依据。



Abstract  Although jasmonate (JA) signaling participates in heat stress (HS) responses, the mechanism by which it balances spikelet development and yield stability via the OsCOI1 gene remains unclear, particularly under HS during the panicle differentiation stage (PDS). This study comprehensively examined the influence of HS on panicle architecture, carbon (C) and nitrogen (N) metabolism, accumulation and allocation, root oxidative activity, antioxidant enzyme activity, JA and methyl jasmonate (MeJA) contents, yield and yield components using wild-type rice (WT, Nipponbare) and the coi1-18 mutant (OsCOI1 knockdown mutant, blocked JA signaling). The results demonstrated that under normal temperature (NT) conditions, the coi1-18 mutant exhibited significantly higher grain number per panicle, grain setting rate, and 1000-grain weight relative to the WT, collectively increasing grain yield by 23.2%. Conversely, under HS, reduced JA and MeJA contents in the coi1-18 mutant resulted in enhanced heat sensitivity, diminished antioxidant capacity, and dysregulated C-N metabolism. These effects markedly suppressed spikelet differentiation, thereby causing a yield reduction in the coi1-18 mutant that was 16.1 percentage points greater than in WT. Exogenous MeJA application effectively mitigated HS-induced suppression of spikelets differentiation in WT but failed to significantly rescue the phenotype in the coi1-18 mutant. This study reveals OsCOI1 as a context-dependent regulator: knockdown of OsCOI1 enhances yield under NT but impairs HS tolerance during PDS. This indicates a breeding-relevant trade-off and suggests that modulating JA signaling could balance yield under NT with panicle protection under HS.
Keywords:  rice       heat stress       OsCOI1 mutant       spikelet differentiation       C-N distribution       antioxidant system  
Online: 30 December 2025  
Fund: 

This work received financial support from the National Natural Science Foundation of China (32201888), the Jiangsu Provincial Agricultural Science and Technology Innovation Fund, China (CX(23)1035), the Priority Academic Project Development Program of Jiangsu Higher Education Institutions, China (PAPD), and the Qing Lan Project of Yangzhou University, China.

About author:  #Correspondence Weilu Wang, E-mail: weiluwang868@yzu.edu.cn

Cite this article: 

Dongling Ji, Xiaowu Yan, Yu Wei, Yunxia Han, Weiyang Zhang, Lijun Liu, Hao Zhang, Zhiqing Wang, Zujian Zhang, Jianchang Yang, Weilu Wang. 2025. Knockdown of OsCOI1 increases rice yield under normal conditions and compromises thermotolerance during panicle differentiation. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.048

Anjum S A, Tanveer M, Hussain S, Tung S A, Samad R A, Wang L C, Khan I, Rehman N, Shah A N, Shahzad B. 2015. Exogenously applied methyl jasmonate improves the drought tolerance in wheat imposed at early and late developmental stages. Acta Physiologiae Plantarum, 38, 25.

Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitan H, Matsuoka M. 2005. Cytokinin oxidase regulates rice grain production. Science, 309, 741-745.

Bahuguna R N, Solis C A, Shi W, Jagadish K S V. 2017. Post-flowering night respiration and altered sink activity account for high night temperature-induced grain yield and quality loss in rice (Oryza sativa L.). Physiologia Plantarum, 159, 59–73.

Cai C, Yin X Y, He S Q, Jiang W Y, Si C F, Struik P C, Luo W H, Li G, Xie Y T, Xiong Y, Pan G X. 2016. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global Change Biology, 22, 856–874.

Cai Q, Yuan Z, Chen M J, Yin C S, Luo Z J, Zhao X X, Liang W Q, Hu J P, Zhang D B. 2014. Jasmonic acid regulates spikelet development in rice. Nature Communications, 5, 3476.

Cai Z Z, Wang G, Li J Q, Kong L, Tang W Q, Chen X Q, Qu X J, Liu C C, Peng Y L, Liu Y, Deng Z L,Ye Y F, Wu W R, Duan Y L. 2023. Thermo-sensitive spikelet defects 1 acclimatizes rice spikelet initiation and development to high temperature. Plant Physiology, 191, 1684-1701.

Cao Y Y, Duan H, Yang L N, Wang Z Q, Zhou S C, Yang J C. 2008. Effect of heat stress during meiosis on grain yield of rice cultivars differing in heat tolerance and its physiological mechanism. Acta Agronomica Sinica, 34, 2134–2142. (in Chinese)

Chance B, Maehly A C. 1955. Assay of catalases and peroxidases. Methods in Enzymology, 2, 764–775.

Chen J, Miao W Q, Fei K, Shan H L, Zhou Y J, Shen Y, Li C Q, He J, Zhu K Y, Wang Z Q, Yang J C. 2021. Jasmonates alleviate the harm of high-temperature stress during anthesis to stigma vitality of photothermosensitive genetic male sterile rice lines. Frontiers in Plant Science, 12, 634953.

Chen L, Khan S, Long X, Shao F, Huang J, Yin L. 2023. Effects of the ammonium stress on photosynthesis and ammonium assimilation in submerged leaves of Ottelia cordata - an endangered aquatic plant. Aquatic Toxicology, 261, 106606.  

Chen Y H, Chen H Z, Xiang J, Zhang Y K, Wang Z G, Zhu D F, Wang J K, Zhang Y P, Wang Y L. 2021. Rice spikelet formation inhibition caused by decreased sugar utilization under high temperature is associated with brassinolide decomposition. Environmental and Experimental Botany, 190, 104585.

Chen Y H, Wang Y L, Chen H Z, Xiang J, Zhang Y K, Wang Z G, Zhu D F, Zhang Y P. 2023. Brassinosteroids mediate endogenous phytohormone metabolism to alleviate high temperature injury at panicle initiation stage in rice. Rice Science, 30, 70-86.

Devoto A, Ellis C, Magusin A, Chang H S, Chilcott C, Zhu T, Turner J G. 2005. Expression profiling reveals COI1 to be a key regulator of genesinvolved in wound- and methyl jasmonate-induced secondarymetabolism, defence, and hormone interactions. Plant Molecular Biology, 58, 497–513.

Ding W Y, Gou Y J, Li Y J, Li J J, Fang Y D, Liu X P, Zhu X Y, Ye R J, Heng Y Q, Wang H Y, Shen R X. 2024. A jasmonate-mediated regulatory network modulates diurnal floret opening time in rice. New Phytologist, 244, 176–191.

Dong K, Wu F Q, Cheng S Q, Li S, Zhang F, Xing X X, Jin X, Luo S, Feng M, Miao R, Chang Y Q, Zhang S, You X M, Wang P R, Zhang X, Lei C L, Ren Y L, Zhu S S, Guo X P, Wu C Y, Wan J M. 2024. OsPRMT6a-mediated arginine methylation of OsJAZ1 regulates jasmonate signaling and spikelet development in rice. Molecular Plant, 17, 900–919.

Feys B J F, Benedetti C E, Penfold C N, Turner J G. 1994. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell, 6, 751–759.

Giannopolitis C N, Ries S K. 1977. Superoxide dismutases: I. occurrence in higher plants. Plant Physiology, 59, 309–314.

Guo Q, Yoshida Y, Major I T, Wang K, Sugimoto K, Kapali G, Kapali G, Havko N E, Benning C, Howe G A. 2018. JAZ repressors of metabolic defense promote growth and reproductive fitness in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of Ameirica, 115, 10768-10777.

Han X, Hu Y R, Zhang G S, Jiang Y J, Chen X L, Yu D Q. 2018. Jasmonate negatively regulates stomatal development in Arabidopsis cotyledons. Plant Physiology, 176, 2871–2885.

Havko N E, Das M R, McClain A M, Kapali G, Sharkey T D, Howe G A. 2020. Insect herbivory antagonizes leaf cooling responses to elevated temperature in tomato. Proceedings of the National Academy of Sciences of the United States of America, 117, 2211–2217.

Havko N E, Major I T, Jewell J B, Attaran E, Browse J, Howe G A. 2016. Control of carbon assimilation and partitioning by jasmonate: An accounting of growth–defense tradeoffs. Plants, 5, 7.

Hewedy O A, Elsheery N I, Karkour A M, Elhamouly N, Arafa R A, Mahmoud G A, Dawood M F A, Hussein W E, Mansour A, Amin D H, Allakhverdiev S I, Zivcak M, Bresticet M. 2023. Jasmonic acid regulates plant development and orchestrates stress response during tough times. Environmental and Experimental Botany, 208, 105260.

Hodges D M, DeLong J M, Forney C F, Prange R K. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604–611.

Hu Q Q, Wang W C, Lu Q F, Huang J L, Peng S B, Cui K H. 2021. Abnormal anther development leads to lower spikelet fertility in rice (Oryza sativa L.) under high temperature during the panicle initiation stage. BMC Plant Biology, 21, 428.

Huang H, Wang C L, Tian H X, Sun Y, Xie D X, Song S S. 2014. Amino acid substitutions of GLY98, LEU245 and GLU543 in COI1 distinctively affect jasmonate-regulated male fertility in Arabidopsis. Science China Life Sciences, 57, 145–154.

Huang R H, Gu J N, Zhang S C. 2017. Study on Arabidopsis thaliana COI1 gene regulates plant response to sucrose. Plant Physiology Journal, 53, 668–676.

Itoh J I., Nonomura K I, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y. 2005. Rice plant development: From zygote to spikelet. Plant and Cell Physiology, 46, 23–47.

Jagadish S, Craufurd P, Wheeler T. 2007. High temperature stress and spikelet fertility in rice (Oryza sativa L.). Journal of Experimental Botany, 58, 1627–1635.

Ji D L, Xiao W H, Sun Z W, Liu L J, Gu J F, Zhang H, Harrison M T, Liu K, Wang Z Q, Wang W L, Yang J C. 2023. Translocation and distribution of carbon-nitrogen in relation to rice yield and grain quality as affected by high temperature at early panicle initiation stage. Rice Science, 30, 598–612.

Kamachi K, Yamaya T, Mae T, Ojima K. 1991. A role for glutamine snthetase in the remobilization of leaf nitrogen during natural senescence in rice leaves 1. Plant Physiology, 96, 411–417.

Kılıç M, Gollan P J, Aro E M, Rintamäki E. 2025. Jasmonic acid signaling and glutathione coordinate plant recovery from high light stress. Plant Physiology, 197, kiaf143.

Kirkman H N, Gaetani G F. 1984. Catalase: A tetrameric enzyme with four tightly bound molecules of NADPH. Proceedings of the National Academy of Sciences of the United States of America, 81, 4343–4347.

Li Y L, Fan X R, Shen Q R. 2008. The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants. Plant, Cell & Environment, 31, 73–85.

Liu B, Seong K Y, Pang S H, Song J Q, Gao H, Wang C L, Zhai J Q, Zhang Y, Gao S, Li X D, Qi T C, Song S S. 2021. Functional specificity, diversity, and redundancy of Arabidopsis JAZ family repressors in jasmonate and COI1-regulated growth, development, and defense. New Phytologist, 231, 1525-1545.

Liu K, Li T T, Chen Y, Huang J, Qiu Y Y, Li S Y, Wang H, Zhu A, Zhuo X X, Yu F, Zhang H, Gu J F, Liu L J, Yang J C. 2020. Effects of root morphology and physiology on the formation and regulation of large panicles in rice. Field Crops Research, 258, 107946.

Matin M N, Kang S G. 2012. Genetic and phenotypic analysis of lax1-6, a mutant allele of LAX PANICLE1 in rice. Journal of Plant Biology, 55, 50-63.

Miura K, Ikeda M, Matsubara A, Song X J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature Genetics, 42, 545-549.

Peng S B, Huang J L, Sheehy J E, Laza R C, Visperas R M, Zhong X H, Centeno G S, Khush G S, Cassman K G. 2004. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 101, 9971–9975.

Ramasamy S, ten Berge H F M, Purushothaman S. 1997. Yield formation in rice in response to drainage and nitrogen application. Field Crops Research, 51, 65–82.

Ray D K, Mueller N D, West P C, Foley J A. 2013. Yield trends are insufficient to double global crop oroduction by 2050. PLoS ONE, 8, e66428.

Sánchez B, Rasmussen A, Porter J R. 2014. Temperatures and the growth and development of maize and rice: A review. Global Change Biology, 20, 408–417.

Shi W J, Muthurajan R, Rahman H, Selvam J, Peng S B, Zou Y B, Jagadish K S V. 2013. Source–sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality. New Phytologist, 197, 825–837.

Song X G, Meng X B, Guo H Y, Cheng Q, Jiang Y H, Chen M J, Liu G F, Wang B, Wang Y H, Li J Y, Yu H. 2022. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nature Biotechnology, 40, 1403-1411.

Soualiou S, Duan F Y, Li X, Zhou W B. 2023. Nitrogen supply alleviates cold stress by increasing photosynthesis and nitrogen assimilation in maize seedlings. Journal of Experimental Botany, 74, 3142–3162.

Sun T, Liu B, Hasegawa T, Liao Z Y, Tang L, Liu L L, Cao W X, Zhu Y. 2023. Sink-source unbalance leads to abnormal partitioning of biomass and nitrogen in rice under extreme heat stress: An experimental and modeling study. European Journal of Agronomy, 142, 126678.

Turner J G, Ellis C, Devoto A. 2002. The jasmonate signal pathway. The Plant Cell14, S153–S164.

Valenzuela C E, Acevedo-Acevedo O, Miranda G S, Vergara-Barros P, Holuigue L, Figueroa C R, Figueroa P M. 2016. Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root. Journal of Experimental Botany, 67, 4209–4220.

Wang J Q, Wang Y L, Chen Y L, Chen H Z, Xiang J, Zhang Y K, Wang Z Q, Zhang Y P. 2025. Progress on physiological mechanisms of rice spikelet degeneration at different panicle positions caused by abiotic stress. Rice Science, 32, 193-202.  

Wang W L, Cai C, He J, Gu J F, Zhu G L, Zhang W Y, Zhu J G, Liu G. 2020. Yield, dry matter distribution and photosynthetic characteristics of rice under elevated CO2 and increased temperature conditions. Field Crops Research, 248, 107605.

Wang W L, Cai C, Lam S K, Liu G, Zhu J. 2018. Elevated CO2 cannot compensate for japonica grain yield losses under increasing air temperature because of the decrease in spikelet density. European Journal of Agronomy, 99, 21–29.

Wang W L, Ji D L, Yan X W, Wei Y, Han Y X, Zhang W Y, Liu L J, Zhang H, Wang Z Q, Zhang Z J, Yang J C. 2025. Methyl jasmonate regulates panicle morphogenesis by mediating the negative effects of high temperature stress on carbon and nitrogen allocation and utilization. Environmental and Experimental Botany, 234, 106150.

Wang X J, Chen Y M, Liu S T, Fu W J, Zhuang Y Q, Xu J, Lou Y G, Baldwin I T, Li R. 2023. Functional dissection of rice jasmonate receptors involved in development and defense. New Phytologist, 238, 2144–2158.

Wang Y L, Zhang Y K, Shi Q H, Chen H Z, Xiang J, Hu G H, Chen Y H, Wang X D, Wang J K, Yi Z H, Zhu D F, Zhang Y P. 2020. Decrement of sugar consumption in rice young panicle under high temperature aggravates spikelet number reduction. Rice Science, 27, 44–55.

Wang Z Q, Zhang W Y, Yang J C. 2018. Physiological mechanism underlying spikelet degeneration in rice. Journal of Integrative Agriculture, 17, 1475-1481.

Wasternack C. 2014. Action of jasmonates in plant stress responses and development-Applied aspects. Biotechnology Advances, 32, 31–39.

Welch J R, Vincent J R, Auffhammer M, Moya P F, Dobermann A, Dawe D. 2010. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proceedings of the National Academy of Sciences of the United States of America, 107, 14562–14567.

Wu C, Cui K H, Wang W C, Li Q, Fahad S, Hu Q Q, Huang J L, Nie L X, Mohapatra P K, Peng S B. 2017. Heat-induced cytokinin transportation and degradation are associated with reduced panicle cytokinin expression and fewer spikelets per panicle in rice. Frontiers in Plant Science, 8, 371.

Xu G H, Fan X R, Miller A J. 2012. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 63, 153–182.

Yang D L, Yao J, Mei C S, Tong X H, Zeng L J, Qun L, Xiao L X, Sun T P, Li J G, Deng X W, Lee C M, Thomashow M F, Yang Y N, He Z H, He S Y. 2012. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proceedings of the National Academy of Sciences of the United States of America, 109, 1192–1200.

Yang J C, Fei K Q, Chen J, Wang Z Q, Zhang W Y, Zhang J C. 2020. Jasmonates alleviate spikelet-opening impairment caused by high temperature stress during anthesis of photo-thermo-sensitive genic male sterile rice lines. Food and Energy Security, 9, 233.

Yin Z C, Zhou B T, Duan M K, Chen H S, Wang H J. 2023. Climate extremes become increasingly fierce in China. The Innovation, 4, 100406.

Zhai Q Z, Zhang X, Wu F M, Feng H L, Deng L, Xu L, Zhang M, Wang Q M, Li C Y. 2015. Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in arabidopsis. The Plant Cell, 27, 2814–2828.

Zhang P, Zhu W W, He Y, Fan J Y, Shi J, Fu R F, Hu J P, Li L, Zhang D B, Liang W Q. 2023. THERMOSENSITIVE BARREN PANICLE (TAP) is required for rice panicle and spikelet development at high ambient temperature. New Phytologist, 237, 855–869. 

Zhong C, Bai Z G, Zhu L F, Zhang J H, Zhu C Q, Huang J L, Jin Q Y, Cao X C. 2019. Nitrogen-mediated alleviation of photosynthetic inhibition under moderate water deficit stress in rice (Oryza sativa L.). Environmental and Experimental Botany, 157, 269–282.

[1] Md. Zasim Uddin, Md. Nadim Mahamood, Ausrukona Ray, Md. Ileas Pramanik, Fady Alnajjar, Md Atiqur Rahman Ahad. E2ETCA: End-to-end training of CNN and attention ensembles for rice disease diagnosis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 756-768.
[2] Jun Deng, Ke Liu, Xiangqian Feng, Jiayu Ye, Matthew Tom Harrison, Peter de Voil, Tajamul Hussain, Liying Huang, Xiaohai Tian, Meixue Zhou, Yunbo Zhang. Exploring strategies for agricultural sustainability in super hybrid rice using the food–carbon–nitrogen–water–energy–profit nexus framework[J]. >Journal of Integrative Agriculture, 2026, 25(2): 624-638.
[3] Valensi Kautsar, Takamori Kanno, Kaho Sakai, Riza Kurnia Sabri, Keitaro Tawaraya, Kazunobu Toriyama, Kazuhiko Kobayashi, Weiguo Cheng. Reconstructed organic rice fields: Effects on soil organic carbon, total nitrogen, their mineralization, and rice yield in Japanese Andosols[J]. >Journal of Integrative Agriculture, 2026, 25(2): 493-500.
[4] Chao Zhang, Shanshan Li, Fan Yang, Ruifa Hu.

Does the adoption of direct-seeded rice affect pesticide use?  Evidence from China [J]. >Journal of Integrative Agriculture, 2026, 25(1): 366-376.

[5] Yunji Xu, Xuelian Weng, Shupeng Tang, Xiufeng Jiang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Alternate wetting and moderate drying irrigation improves rice cooking and eating quality by optimizing lipid and fatty acid synthesis in grains[J]. >Journal of Integrative Agriculture, 2026, 25(1): 68-80.
[6] Zichen Liu, Liyan Shang, Shuaijun Dai, Jiayu Ye, Tian Sheng, Jun Deng, Ke Liu, Shah Fahad, Xiaohai Tian, Yunbo Zhang, Liying Huang. Optimizing nitrogen application and planting density improves yield and resource use efficiency via regulating canopy light and nitrogen distribution in rice[J]. >Journal of Integrative Agriculture, 2026, 25(1): 81-91.
[7] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[8] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[9] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[10] Siriyaporn Chanapanchai, Wahdan Fitriya, Ida Bagus Made Artadana, Kanyaratt Supaibulwatana. Important role and benefits of Azolla plants in the management of agroecosystem services, biodiversity, and sustainable rice production in Southeast Asia[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3004-3023.
[11] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[12] Weiguang Yang, Bin Zhang, Weicheng Xu, Shiyuan Liu, Yubin Lan, Lei Zhang. Impact of hyperspectral reconstruction techniques on the quantitative inversion of rice physiological parameters: A case study using the MST++ model[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2540-2557.
[13] Jianan Li, Weidong Li, Wenjie Ou, Waqas Ahmed, Mohsin Mahmood, Ahmed S. M. Elnahal, Haider Sultan, Zhan Xin, Sajid Mehmood. Alleviating vanadium-induced stress on rice growth using phosphorus-loaded biochar[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2525-2539.
[14] Shulin Zhang, Yu Wang, Jinmei Hu, Xinyue Cui, Xiaoru Kang, Wei Zhao, Yuemin Pan. The N-mannosyltransferase MoAlg9 plays important roles in the development and pathogenicity of Magnaporthe oryzae[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2266-2284.
[15] Tongming Wang, Kai Zhou, Bingxian Yang, Benoit Lefebvre, Guanghua He. OsEXO70L2 is required for large lateral root formation and arbuscular mycorrhiza establishment in rice[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2035-2045.
No Suggested Reading articles found!