Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Exploring strategies for agricultural sustainability in super hybrid rice using the food-carbon-nitrogen-water-energy-profit nexus framework
Jun Deng1, Ke Liu1, 2#, Xiangqian Feng1, Jiayu Ye1, Matthew Tom Harrison2, Peter de Voil3, Tajamul Hussain4, Liying Huang1, Xiaohai Tian1, Meixue Zhou2, Yunbo Zhang1#

1 MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River/College of Agriculture, Yangtze University, Jingzhou 434025, China 

2 Tasmanian Institute of Agriculture, University of Tasmania, Newnham Drive, Launceston, TAS 7248, Australia

3 Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Gatton Campus, Gatton, QLD, Australia

4 Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR 97838, USA

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

超级杂交稻产量潜力不断突破,为保障中国乃至全球的粮食安全做出了重大贡献。然而,面对资源趋紧、环境污染严重、生态系统退化的严峻形势,亟需探索高产、高效、生态、安全的绿色栽培管理模式,以实现超级杂交稻的可持续发展因此本研究采用了食物----能源-效益 (FCNWEP) 关系框架,综合评估了不同作物管理策略中国中部三个地点的可持续性。田间试验于 2017 年至 2021 年在湖北荆州、湖北随州以及湖南长沙进行,试验品种为广泛种植的优良超级杂交稻 “Y两优900”试验设置四种作物管理策略:对照(CK0 kg N ha-1)、常规作物管理(CCM210-250 kg N ha-1,基肥:分蘖肥=7:3)和两种综合作物管理策略(ICM1180-210 kg N ha-1,基肥:分蘖肥:穗肥= 5:2:3ICM2240-270 kg N ha-1,基肥:分蘖肥:穗肥:粒肥= 5:2:2:1,并评估了不同作物管理策略下水稻产量、碳足迹、氮足迹、能源足迹、氮素利用效率和经济效益的差异。结果表明,不同作物管理策略水稻产量存在显著差异,ICM2 在三个地点的产量均高于 CCM ICM1。在荆州、随州和长沙,ICM2 的产量分别比 CCM 30.2%24.7% 13.3%。此外,荆州、随州和长沙 ICM2 的净利润分别比 CCM ICM1 31.8% 115.2%32.2% 109.9% 以及 15.4% 34.0%。综合作物管理策略,特别是 ICM2,提高了氮肥和能源利用效率,从而减少了碳、氮、水和能源足迹。总体而言,基于 FCNWEP 框架计算的综合可持续性得分表明,与 CCM 相比,ICM2 ICM1 表现出更高的可持续性水平。本研究为水稻生产的实际管理措施提供了科学指导,并为加强农业可持续性提出了建议。



Abstract  

The breakthrough in super hybrid rice yield has significantly contributed to China's and global food security.  However, the inherent conflict between high productivity and environmentally sustainable agriculture poses challenges. Issues like water scarcity, energy crises, escalating greenhouse gas emissions, and diminishing farm profitability all threaten agricultural sustainability.  In response to these challenges, we applied a holistic food-carbon-nitrogen-water-energy-profit (FCNWEP) nexus framework to comprehensively evaluate sustainability of distinct crop management strategies across three sub-sites in central China.  Field experiments were conducted in Hubei and Hunan Provinces from 2017 to 2021, with a widely adopted elite super hybrid rice (Y-liangyou900).  Four crop management treatments were implemented: a control (CK, 0 kg N ha-1), conventional crop management (CCM, 210-250 kg N ha-1, 7:3 basal: mid-tiller fertilizer ratio), and two integrated crop management treatments (ICM1, 180-210 kg N ha-1, 5:2:3 basal: mid-tiller: panicle initiation fertilizer ratio; ICM2, 240-270 kg N ha-1, 5:2:2:1 basal: mid-tiller: panicle initiation: flowering fertilizer ratio).  Grain yield, carbon footprint, nitrogen footprint, energy footprint, nitrogen use efficiency and economic benefits were among the assessed variables.  Our results showed that significant yield variations were observed, with ICM2 consistently outperforming CCM and ICM1 across the three sites.  In Jingzhou, Suizhou, and Changsha, ICM2's grain yield was 30.2, 24.7, and 13.3% higher than CCM, respectively.  Additionally, net profits for ICM2 exceeded those of CCM and ICM1 by 31.8 and 115.2% in Jingzhou, 32.2 and 109.9% in Suizhou, and 15.4 and 34.0% in Changsha.  Integrated crop managements, specifically ICM2, demonstrated improved nitrogen and energy use efficiency, resulting in reduced carbon, nitrogen, water, and energy footprints.  Overall, composite sustainability scores, calculated using the FCNWEP framework, indicated that both ICM2 and ICM1 generally exhibited higher sustainability levels compared to CCM.  This study offers valuable insights into practical management methodologies and provides recommendations for enhancing agricultural sustainability.

Keywords:  super hybrid              ecological footprint              rice production              integrated crop management              sustainability  
Online: 19 July 2024  
Fund: This study was funded by the National Natural Science Foundation of China (32172108; 32301940), Young Elite Scientists Sponsorship Program by CAST (2023QNRC001), China Postdoctoral Science Foundation (2022M710489), Chinese Scholarship Council (202310930003) and the National Key Research and Development Program of China (2022YFD2301004).
About author:  #Correspondence Ke Liu, E-mail: ke.liu@utas.edu.au; Yunbo Zhang, E-mail: yzhang@yangtzeu.edu.cn

Cite this article: 

Jun Deng, Ke Liu, Xiangqian Feng, Jiayu Ye, Matthew Tom Harrison, Peter de Voil, Tajamul Hussain, Liying Huang, Xiaohai Tian, Meixue Zhou, Yunbo Zhang. 2024. Exploring strategies for agricultural sustainability in super hybrid rice using the food-carbon-nitrogen-water-energy-profit nexus framework. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.07.025

Cai S Y, Zhao X, Pittelkow C M, Fan M S, Zhang X, Yan X Y. 2023. Optimal nitrogen rate strategy for sustainable rice production in China. Nature, 615, 73–79.

Chapagain A K, Hoekstra A Y. 2011. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecological Economics, 70, 749–758.

Chaudhary A, Gustafson D, Mathys A. 2018. Multi-indicator sustainability assessment of global food systems. Nature Communications, 9, 848.

Chen X P, Cui Z L, Fan M S, Vitousek P, Zhao M, MA W Q, Wang Z L, Zhang W J, Yan X Y, Yang J C, Deng X P, Gao Q, Zhang Q, Guo S W, Ren J, Li S Q, Ye Y L, Wang Z H, Huang J L, Tang Q Y,  et al. 2014. Producing more grain with lower environmental costs. Nature, 514, 486–489.

Chen Z D, Xu C C, Ji L, Feng J F, Li F B, Zhou X Y, Fang F P. 2020. Effects of multi-cropping system on temporal and spatial distribution of carbon and nitrogen footprint of major crops in China. Global Ecology and Conservation, 22, e00895.

Choudhury A T M A, Kennedy I R. 2005. Nitrogen fertilizer losses from rice soils and control of environmental pollution problems. Communications in Soil Science and Plant Analysis, 36, 1625–1639. 

Deng J, Harrison M T, Liu K, Ye J Y, Xiong X, Fahad S, Huang L Y, Tian X H, Zhang Y B. 2022a. Integrated crop management practices improve grain yield and resource use efficiency of super hybrid rice. Frontiers in Plant Science, 13, 851562.

Deng J, Sheng T, Zhong X F, Ye J Y, Wang C H, Huang L Y, Tian X H, Liu K, Zhang Y B. 2023. Delayed leaf senescence improves radiation use efficiency and explains yield advantage of large panicle-type hybrid rice. Plants, 12, 4063.

Deng J, Ye J, Liu K, Harrison M T, Zhong X F, Wang C H, Tian X H, Huang L Y, Zhang Y B. 2022b. Optimizing agronomy improves super hybrid rice yield and nitrogen use efficiency through enhanced post-heading carbon and nitrogen metabolism. Agronomy, 13, 13.

Deng N Y, Grassini P, Yang H S, Huang J L, Cassman K G, Peng S B. 2019. Closing yield gaps for rice self-sufficiency in China. Nature Communications, 10, 1725.

FAO (Food and Agriculture Organization of the United Nations). 2020. Data release detail food and agriculture organization of the United Nations. [2021-9-8]. https://www.fao.org/food-agriculture-statistics/data-release/data-release-detail/en/c/1675061/

FAO (Food and Agriculture Organization of the United Nations). 2022. Food and agriculture organization of the united nation) statistical yearbook 2022. [2023-7-15]. https://www.fao.org/policy-support/tools-and-publications/resources-details/en/c/1627308/

Gustafson D, Asseng S, Kruse J, Thoma G, Guan K Y, Hoogenboom G, Matlock M, McLean M, Parajuli R, Rajagopalan K, Stöckle C, Sulser T B, Tarar L, Wiebe K, Zhao C, Fraisse C, Gimenez C, Intarapapong P, Karimi T, Kruger C, et al. 2021. Supply chains for processed potato and tomato products in the United States will have enhanced resilience with planting adaptation strategies. Nature Food, 2, 862–872.

He Q S, Liu D L, Wang B, Wang Z K, Cowie A, Simmons A, Xu Z C, Li L C, Shi Y, Liu K, Harrison M T, Waters C, Huete A, Yu Q, et al. 2024. A food-energy-water-carbon nexus framework informs region-specific optimal strategies for agricultural sustainability. Resources, Conservation and Recycling, 203, 107428.

Jiang Q T, Bhattarai N, Pahlow M, Xu Z C. 2022. Environmental sustainability and footprints of global aquaculture. Resources, Conservation and Recycling, 180, 106183.

Jiang Y, Carrijo D, Huang S, Chen J, Balaine N, Zhang W J, Groenigen K J v G, Linquist B. 2019. Water management to mitigate the global warming potential of rice systems: A global meta-analysis. Field Crops Research, 234, 47–54.

Jiang Y, Wang L L, Yan XJ, Tian Y L, Deng A X, Zhang W J. 2013. Super rice cropping will enhance rice yield and reduce CH4 emission: A case study in Nanjing, China. Rice Science, 20, 427–433.

Jin Z Q, Liao W J, Mu Y X, Li Y S, Nie L X. 2023a. Integrated assessment of water footprint and energy production efficiency in different rice-rape rotation systems. Energy, 266, 126535.

Jin Z Q, Mu Y X, Li Y S, Nie L X. 2023b. Effect of different rice planting methods on the water, energy and carbon footprints of subsequent wheat. Frontiers in Sustainable Food Systems7, 1173916.

Johnson-Beebout S E, Angeles O R, Alberto M C R, Buresh R J. 2009. Simultaneous minimization of nitrous oxide and methane emission from rice paddy soils is improbable due to redox potential changes with depth in a greenhouse experiment without plants. Geoderma, 149, 45–53.

IPCC (Intergovernmental Panel on Climate Change). 2006. Guidelines for national greenhouse gas inventories.  [2024-1-5]. https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/  

ISO 14044. 2006. Environmental management-life cycle assessment-requirements and guidelines. International Organization for Standardization. [2024-1-9] https://www.iso.org/standard/38498.html.

Kang S H, Kim Y, Lee S, Kim H, Kim M. 2022. A study on the field applicability of intermittent irrigation in protected cultivation using an automatic irrigation system. Applied Sciences, 12, 10680.

Lampayan R M, Rejesus R M, Singleton G R, Bouman B A M. 2015. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Research, 170, 95–108.

Leip A, Weiss F, Lesschen J P, Westhoek H. 2014. The nitrogen footprint of food products in the European Union. Journal of Agricultural Science, 152, 20–33.

Liu J, Chen S, Wang H, Chen X D. 2015. Calculation of carbon footprints for water diversion and desalination projects. Energy Procedia, 75, 2483–2494.

Liu K, Harrison M T, Archontoulis S, Huth N, Yang R, Liu D L, Yan H L, Meinke H, Huber I, Feng P Y, Ahmed I, Zhang Y B, Tian X H, Zhou M X. 2021. Climate change shifts forward flowering and reduces crop waterlogging stress. Environmental Research Letters, 16, 094017.

Liu K, Harrison, M T, Yan H L, Liu D L, Meinke H, Hoogenboom G, Wang B, Peng B, Guan K Y, Jaegermeyr J, Wang E L, Zhang F, Yin X G, Archontoulis S, Nie L X, Badea A, Man J G, Wallach D, Zhao J, Benjumea A B, et al.  2023. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nature Communications, 14, 765.

Liu Y L, Du J Q, Xu X L, Kardol P, Hu D. 2020. Microtopography-induced ecohydrological effects alter plant community structure. Geoderma, 362, 114119.

Lu J, Wang D Y, Liu K, Chu G, Huang L Y, Tian X H, Zhang Y B. 2020. Inbred varieties outperformed hybrid rice varieties under dense planting with reducing nitrogen. Scientific Reports, 10, 8769. 

Luo L J, Mei H W, Yu X Q, Xia H, Chen L, Liu H Y, Zhang A N, Xu K, Wei H B, Liu G L, Wang F M, Liu Y, Ma X S, Lou Q J, Feng F J, Zhou L G, Chen S J, Yan M, Liu Z C, Bi J G, et al. 2019. Water-saving and drought-resistance rice: From the concept topractice and theory. Molecular Breeding, 39, 145.

Ma G H, Yuan L P. 2015. Hybrid rice achievements, development and prospect in China. Journal of Integrative Agriculture, 14, 197–205. 

Ma P, Lan Y, Lv X, Fang P, Yang Z Y, Sun Y J, Zhang R P, Ma J. 2021. Reasonable nitrogen fertilizer management improves rice yield and quality under a rapeseed/wheat–rice rotation system. Agriculture, 11, 490.

Mooney S J, Sjogersten S. 2022. Greenhouse gas emissions rise due to tillage. Natture Food, 3, 246–246.

Mubeen K, Sarwar N, Shehzad M, Ghaffar A, Aziz M. 2022. Irrigation management in rice. In: Sarwar N, Atique-ur-Rehman, Ahmad S, Hasanuzzaman M, eds., Modern Techniques of Rice Crop Production. Springer, Singapore. pp. 105–114.

Nhamo L, Mabhaudhi T, Mpandeli S, Dickens C, Nhemachena C, Senzanje A, Naidoo D, Liphadzi S, Modi A T. 2020. An integrative analytical model for the water-energy-food nexus: South Africa case study. Environmental Science & Policy, 109, 15–24.

Pirdashti H, Pirdashti M, Mohammadi M, Baigi M G, Movagharnejad K. 2015. Efficient use of energy through organic rice–duck mutualism system. Agronomy for Sustainable Development, 35, 1489–1497.

Qian H Y, Zhu X C, Huang S, Linquist B, Kuzyakov Y, Wassmann R, Minamikawa K, Martinez-Eixarch M, Yan X Y, Zhou F, Sander B O, Zhang W J, Shang Z Y, Zou J W, Zheng X H, Li G H, Liu Z H, Wang S H, Ding Y F, Groenigen K J v, et al. 2023. Greenhouse gas emissions and mitigation in rice agriculture. Nature Reviews Earth & Environment, 4, 716–732.

Qiao J, Wang J, Zhao D, Zhou W, Schwenke G, Yan T M, Liu D L. 2022. Optimizing N fertilizer rates sustained rice yields, improved N use efficiency, and decreased N losses via runoff from rice-wheat cropping systems. Agriculture Ecosystems & Environment, 324, 107724.

Qin J Q, Impa S M, Tang Q Y, Yang S H, Yang J, Tao Y S, Jagadish K S V. 2013. Integrated nutrient, water and other agronomic options to enhance rice grain yield and N use efficiency in double-season rice crop. Field Crops Research, 148, 15–23.

Qin J X, Duan W L, Zou S, Chen Y N, Huang W J, Rosa L. 2024. Global energy use and carbon emissions from irrigated agriculture. Nature Communications, 15, 3084.

Ramaswami A, Boyer D, Nagpure A S, Fang A, Bogra S, Bakshi B, Cohen E, Rao–Ghorpade A. 2017. An urban systems framework to assess the trans-boundary food-energy-water nexus: Implementation in Delhi, India. Environmental Research Letters, 12, 025008.

Ridoutt B G, Pfister S. 2013. A new water footprint calculation method integrating consumptive and degradative water use into a single stand-alone weighted indicator. The International Journal of Life Cycle Assessment, 18, 204–207.

Riya S, Takeuchi Y, Zhou S, Terada A, Hosomi M. 2017. Nitrous oxide production and mRNA expression analysis of nitrifying and denitrifying bacterial genes under floodwater disappearance and fertilizer application. Environmental Science and Pollution Research, 24, 15852–15859.

Sadhukhan J. 2022. Net-zero action recommendations for scope 3 emission mitigation using life cycle assessment. Energy, 15, 5522.

Sharma A, Saxena A, Sethi M, Shree V, Varun. 2011. Life cycle assessment of buildings: A review. Renewable and Sustainable Energy Reviews, 15, 871–875.

Singh P, Singh G, Sodhi G P S. 2019. Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India. Energy, 174, 269–279.

Smajgl A, Ward J (eds.). 2013. The Water-Food-Energy Nexus in the Mekong Region. Springer, New York, NY.

Verhoeven E, Decock C, Barthel M, Bertora C, Sacco D, Romani M, Sleutel S, Six J. 2018. Nitrification and coupled nitrification-denitrification at shallow depths are responsible for early season N2O emissions under alternate wetting and drying management in an Italian rice paddy system. Soil Biology and Biochemistry, 120, 58–69.

Vora N, Shah A, Bilec M M, Khanna V. 2017. Food–energy–water nexus: Quantifying embodied energy and ghg emissions from irrigation through virtual water transfers in food trade. ACS Sustainable Chemistry & Engineering, 5, 2119–2128.

 Wang L L, Coulter J A, Li L L, Luo Z Z, Chen Y L, Deng X P, Xie J H. 2020. Plastic mulching reduces nitrogen footprint of food crops in China: A meta-analysis. Science of the Total Environment, 748, 141479.

Wang X J, Zhang J Y, Gao J, Shahid S, Xia X H, Geng Z, Tang L. 2018. The new concept of water resources management in China: Ensuring water security in changing environment. Environment, Development and Sustainability, 20, 897–909.

Wang Y F, Du J Q, Pang Z, Liu Y L, Xue K, Hautier Y, Zhang B, Tang L, Jiang L L, Ji B M, Xu X L, Zhang J, Hu R H, Zhou S T, Wang F, Che R X, Wang D, Zhou C T, Cui X Y, Eisenhauer N, et al. 2022. Unimodal productivity–biodiversity relationship along the gradient of multidimensional resources across Chinese grasslands. National Science Review, 9, nwac165.

Xia L L, Ti C P, Li B L, Xia Y Q, Yan X Y. 2016. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Science of the Total Environment, 556, 116–125.

Yan X Y, Akiyama H, Yagi K, Akimoto H. 2009. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 intergovernmental panel on climate change guidelines. Global Biogeochemical Cycles, 23, 2008GB003299.

 Yuan S, Zhan X W, Xu L, Ling X X, Peng S B. 2022. Increase energy use efficiency and economic benefit with reduced environmental footprint in rice production of central China. Environmental Science and Pollution Research, 29, 7382-7392.

Zhang C, Ju X T, Powlson D, Oenema O, Smith P. 2019. Nitrogen surplus benchmarks for controlling N pollution in the main cropping systems of China. Environmental Science & Technology, 53, 6678–6687.

Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang J H. 2009. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Science, 49, 2246–2260.

Zhang Q S, Sun J H, Zhang G X, Liu X M, Wu Y F, Sun J X, Hu B T. 2023. Spatiotemporal dynamics of water supply–demand patterns under large-scale paddy expansion: Implications for regional sustainable water resource management. Agricultural Water Management, 285, 108388.

Zhang W F, Dou Z X, He P, Ju X T, Powlson D, Chadwick D, Norse D, Lu Y L, Zhang Y, Wu L, Chen X P, Cassman K G, Zhang F S. 2013. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences of the United States of America, 110, 8375–8380.

Zhang W S, Qian C R, Carlson K M, Ge X L, Wang X B, Chen X P. 2021. Increasing farm size to improve energy use efficiency and sustainability in maize production. Food and Energy Security, 10, e271.

Zhou L Y, Zhu Y H, Kan Z R, Li F M, Zhang F. 2023. The impact of crop residue return on the food–carbon–water–energy nexus in a rice–wheat rotation system under climate warming. Science of the Total Environment, 894, 164675.

Zhou Y J, Ji Y L, Zhang M, Xu Y Z, Li Z, Tu D B, Wu W G. 2023. Exploring a sustainable rice-cropping system to balance grain yield, environmental footprint and economic benefits in the middle and lower reaches of the Yangtze River in China. Journal of Cleaner Production, 404, 136988.

No related articles found!
No Suggested Reading articles found!