Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Identification and functional validation of five cytochrome P450 monooxygenase genes conferring cyantraniliprole resistance in Bemisia tabaci

Xiaolan Liu1*, Zhuang Zhang1*, Kaixin Li1, Zanrong Wen1, Wei Xu2, Huiwen Tan1, Xichao Hu1, Lei Guo1#

1 College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China

2 Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia

 Highlights 

Cytochrome P450 enzymes contributed to the resistance of B. tabaci to cyantraniliprole (CYA).

l Five P450 genes were identified as overexpressed in four resistant strains.

l The roles of the five P450 genes in CYA resistance were verified using RNAi and in vitro metabolism.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

烟粉虱(Bemisia tabaci)是一种重要的农业害虫,已对多杀虫剂发展不同程度的抗性,给农业生产带来了严重威胁溴氰虫酰胺对烟粉虱表现出良好防治效果,但在长期的田间使用后,烟粉虱已经对其产生中等到高水平抗性目前,烟粉虱对溴氰虫酰胺的抗性机制尚未完全阐明。本研究选择4个对溴氰虫酰胺表现中等抗性的品系(抗性倍数为24.9至28.9倍)进行研究增效剂及解毒酶活力测定结果表明,细胞色素P450氧化酶参与了烟粉虱对溴氰虫酰胺的抗性。基于转录组测序结合RT-qPCR分析,鉴定到5P450基因(CYP305H2CYP6EM1CYP3133D3CYP3133D5CYP3133E2)在抗性品系中显著上调表达对这些基因进行特异性沉默后,发现溴氰虫酰胺的毒力增加了22.3%50.3%。在High Five细胞中异源表达上述P450蛋白并开展体外代谢实验,结果显示,这些P450酶对溴氰虫酰胺的代谢速率在两小时内比对照组高出2.5至6.0倍。综上,本研究通过差异表达基因筛选、体内功能干扰以及体外代谢验证揭示了多个P450基因烟粉虱对溴氰虫酰胺代谢抗性中的作用。这一发现为全面理解害虫对酰胺类杀虫剂抗性的分子机制提供了理论依据,并突出细胞色素P450酶在害虫对酰胺类杀虫剂代谢适应中的关键作用。



Abstract  

The whitefly, Bemisia tabaci, is a major agricultural pest that has developed resistance to a broad range of insecticides. Despite the promising efficacy of cyantraniliprole (CYA) against Btabaci, medium to high levels of resistance have emerged after prolonged field use. However, the mechanisms driving CYA resistance remain poorly understood. In this study, four Btabaci strains exhibiting 24.9-fold to 28.9-fold resistance ratio to CYA were investigated. Synergist assays and enzyme activity measurements indicated cytochrome P450 enzymes contribute to this resistance. RNA sequencing and RT-qPCR analysis identified five P450 genes (CYP305H2, CYP6EM1, CYP3133D3, CYP3133D5, and CYP3133E2) as significantly overexpressed in resistant strains. Targeted silencing of these genes led to a 22.3% to 50.3% increase in CYA toxicity. The metabolic rates of these P450 enzymes against CYA were 2.5- to 6.0-fold higher than that in the control group within two hours. These results provide new insights into the molecular basis of CYA resistance in B. tabaci and highlight the pivotal role of cytochrome P450 enzymes in metabolic adaptation to diamide insecticides.

Keywords:  whitefly       diamide insecticide       metabolic resistance       P450       upregulation  
Online: 29 January 2026  
Fund: 

The work was supported by grants from the National Natural Science Foundation of China (32572874 and 32072456), the Natural Science Foundation of Shandong Province (ZR2024MC073), and the Science and Technology Supporting Program for Young Innovative Teams in Higher Education of Shandong Province (2020KJF001).

About author:  Xiaolan Liu, E-mail: lxlandjj@163.com; Zhuang Zhang, E-mail: 952063393@qq.com; # Corresponding author: Lei Guo, E-mail: guoleicau@163.com * These authors contributed equally to this work.

Cite this article: 

Xiaolan Liu, Zhuang Zhang, Kaixin Li, Zanrong Wen, Wei Xu, Huiwen Tan, Xichao Hu, Lei Guo. 2026. Identification and functional validation of five cytochrome P450 monooxygenase genes conferring cyantraniliprole resistance in Bemisia tabaci. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.040

Ahmad M, Khan R. 2017. Field-evolved resistance of Bemisia tabaci (Hemiptera: Aleyrodidae) to carbodiimide and neonicotinoids in Pakistan. Journal of Economic Entomology, 110, 1235–1242.

Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biology11, R106.

Barry J D, Portillo H E, Annan I B, Cameron R A, Clagg D G, Dietrich R F, Watson L J, Leighty R M, Ryan D L, McMillan J A, Swain R S, Kaczmarczyk R A. 2015. Movement of cyantraniliprole in plants after foliar applications and its impact on the control of sucking and chewing insects. Pest Management Science, 71, 395−403.

Bielza P, Moreno I, Belando A, Gravalos C, Izquierdo J N R. 2019. Spiromesifen and spirotetramat resistance in field populations of Bemisia tabaci Gennadius in Spain. Pest Management Science, 75, 45–52.

Bolger A M, Marc L, Bjoern U. 2014. Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics, 15, 2114–2120.

Brown J K, Frohlich D R, Rosell R C. 1995. The sweetpotato or silverleaf whiteflies: Biotypes of Bemisia tabaci or a species complex? Annual Review of Entomology, 40, 511−534.

Caballero R, Schuster D J, Peres N A, Mangandi J, Hasing T, Trexler F, Kalb S, Portillo H E, Marçon P C, Annan I B. 2015. Effectiveness of cyantraniliprole for managing Bemisia tabaci (Hemiptera: Aleyrodidae) and interfering with transmission of tomato yellow leaf curl virus on tomato. Journal of Economic Entomology108, 894−903.

Campos M, Silva T, Silva W, Silva J, Siqueira H. 2015. Susceptibility of Tuta absoluta (Lepidoptera: Gelechiidae) Brazilian populations to ryanodine receptor modulators. Pest Management Science, 71, 537−544.

Chen J, Wang Z, Cao L, Gong Y, Hoffmann A, Wei S. 2018. Toxicity of seven insecticides to different developmental stages of the whitefly Bemisia tabaci MED (Hemiptera: Aleyrodidae) in multiple field populations of China. Ecotoxicology, 27, 742–751.

Chen W, Hasegawa D K, Kaur N, Kliot A, Pinheiro P V, Luan J, Stensmyr M C, Zheng Y, Liu W, Sun H, Xu Y, Luo Y, Kruse A, Yang X, Kontsedalov S, Lebedev G, Fisher T W, Nelson D R, Hunter W B, Brown J K, et al. 2016. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biology, 14, 110.

Cordova D, Benner E A, Sacher M D, Rauh J J, Sopa J S, Lahm G P, Selby T P, Stevenson T M, Flexner L, Gutteridge S, Rhoades D F, Wu L, Smith R M, Tao Y. 2006. Anthranilic diamides: A new class of insecticides with a novel mode of action, ryanodine receptor activation. Pesticide Biochemistry and Physiology, 84, 196−214.

Dermauw W, Van Leeuwen T, Feyereisen R. 2020. Diversity and evolution of the P450 family in arthropods. Insect Biochemistry and Molecular Biology, 127, 103490.

Feyereisen R. 1999. Insect P450 enzymes, Annual Review of Entomology, 44, 507–533.

Grávalos C, Fernández E, Belando A, Moreno I, Ros C, Bielza P. 2015. Cross-resistance and baseline susceptibility of Mediterranean strains of Bemisia tabaci to cyantraniliprole. Pest Management Science, 71, 1030−1036.

Guedes R N, Smagghe G, Stark J D, Desneux N. 2016. Pesticide-Induced stress in arthropod pests for optimized integrated pest management programs. Annual Review of Entomology, 61, 43−62.

Guo L, Liang P, Zhou X, Gao X. 2014. Novel mutations and mutation combinations of ryanodine receptor in a chlorantraniliprole resistant population of Plutella xylostella (L.). Scientific Reports, 4, 6924.

Guo L, Lv H, Tan D, Liang N, Guo C, Chu D. 2020. Resistance to insecticides in the field and baseline susceptibility to cyclaniliprole of whitefly Bemisia tabaci (Gennadius) in China. Crop Protection, 130, 105065.

Guo L, Zhang Z, Xu W, Ma J, Liang N, Li C, Chu D. 2023. Expression profile of CYP402C1 and its role in resistance to imidacloprid in the whitefly, Bemisia tabaci. Insect Science, 30, 146-160.

Kanakala S, Ghanim M. 2019. Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts. PLoS ONE14, 0213946.

Karunker I, Benting J, Lueke B, Ponge T, Nauen R, Roditakis E, Vontas J, Gorman K, Denholm I, Morin S. 2008. Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochemistry and Molecular Biology, 38, 634–644.

Karunker I, Morou E, Nikou D, Nauen R, Sertchook R, Stevenson B J, Paine M J, Morin S, Vontas J. 2009. Structural model and functional characterization of the Bemisia tabaci CYP6CM1vQ, a cytochrome P450 associated with high levels of imidacloprid resistance. Insect Biochemistry and Molecular Biology, 39, 697–706.

Kim D, Langmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12, 357–360.

Lahm G P, Cordova D, Barry J D. 2009. New and selective ryanodine receptor activators for insect control. Bioorganic & Medicinal Chemistry, 17, 4127−4133.

Langmead B, Salzberg S L. 2012. Fast gapped-read alignment with bowtie 2. Nature Methods, 9, 357–359.

Li K, Liu J, Geng Z, Xu W, Zhang Z, Chu D, Guo L. 2023. Resistance to dinotefuran in Bemisia tabaci in China: Status and characteristics. Pest Management Science, 79, 833-844.

Li R, Xie W, Wang S, Wu Q, Yang N, Yang X, Pan H, Zhou X, Bai L, Xu B, Zhou X, Zhang Y. 2013. Reference gene selection for qRT-PCR analysis in the sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). PLoS ONE, 8, e53006.

Li X, Li R, Zhu B, Gao X, Liang P. 2018. Overexpression of cytochrome P450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.). Pest Management Science, 74, 1386–1393.

Mugerwa H, Wang H L, Sseruwagi P, Seal S, Colvin J. 2021. Whole-genome single nucleotide polymorphism and mating compatibility studies reveal the presence of distinct species in sub-Saharan Africa Bemisia tabaci whiteflies. Insect Science, 28, 1553−1566.

Navas-Castillo J, Fiallo-Olivé E, Sánchez-Campos S. 2011. Emerging virus diseases transmitted by whiteflies. Annual Review of Phytopathology, 49, 219−248.

Pakkianathan B C, Kontsedalov S, Lebedev G, Mahadav A, Zeidan M, Czosnek H, Ghanim M. 2015. Replication of tomato yellow leaf curl virus in its whitefly vector, Bemisia tabaci. Journal of Virology89, 9791−9803.

Pfaffl M W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45.

Rauch N, Nauen R. 2003. Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (Hemiptera: Aleyrodidae). Archives of Insect Biochemistry and Physiology, 54, 165–176.

Richardson E B, Troczka B J, Gutbrod O, Davies T G E, Nauen R. 2020. Diamide resistance: 10 years of lessons from lepidopteran pests. Journal of Pest Science, 93, 911–928.

Roberts A, Pachter L. 2013. Streaming fragment assignment for real-time analysis of sequencing experiments. Nature Methods, 10, 71–73.

Robertson J L, Jones M M, Olguin E, Alberts B. 2017. Bioassays with Arthropods. 3rd ed. Chemical Rubber Company Press, America.

Sabourault C, Guzov V M, Koener J F, Claudianos C, Plapp Jr F W, Feyereisen R. 2001. Overproduction of a P450 that metabolizes diazinon is linked to a loss-of-function in the chromosome 2 ali-esterase (MdalphaE7) gene in resistant house flies. Insect Molecular Biology, 10, 609−618.

Sattelle D B, Cordova D, Cheek T R. 2008. Insect ryanodine receptors: Molecular targets for novel pest control chemicals. Invertebrate Neuroscience, 8, 107−119.

Selby T P, Lahm G P, Stevenson T M, Hughes K A, Cordova D, Annan I B, Barry J D, Benner E A, Currie M J, Pahutski T F. 2013. Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity. Bioorganic & Medicinal Chemistry, 23, 6341−6345.

Shi Y, Jiang Q, Yang Y, Feyereisen R, Wu Y. 2021. Pyrethroid metabolism by eleven Helicoverpa armigera P450s from the CYP6B and CYP9A subfamilies. Insect Biochemistry and Molecular Biology, 135, 103597.

Stumpf N, Nauen R. 2002. Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pesticide Biochemistry and Physiology72, 111–121.

Wang R, Che W, Qu C, Wang J, Luo C. 2022. Identification and detection of CYP4G68 overexpression associated with cyantraniliprole resistance in Bemisia tabaci from China. Frontiers in Environmental Science, 10, 914636.

Wang R, Che W, Wang J, Luo C. 2020a. Monitoring insecticide resistance and diagnostics of resistance mechanisms in Bemisia tabaci Mediterranean (Q biotype) in China. Pesticide Biochemistry and Physiology, 163, 117−122.

Wang R, Che W, Wang J, Qu C, Luo C. 2020b. Cross-resistance and biochemical mechanism of resistance to cyantraniliprole in a nearisogenic line of whitefly Bemisia tabaci Mediterranean (Q biotype). Pesticide Biochemistry and Physiology, 167, 104590.

Wang R, Wang J, Che W, Luo C. 2018. First report of field resistance to cyantraniliprole, a new anthranilic diamide insecticide, on Bemisia tabaci MED in China. Journal of Integrative Agriculture, 17, 158−163.  

Wang R, Wang J, Che W, Sun Y, Li W, Luo C. 2019. Characterization of field-evolved resistance to cyantraniliprole in Bemisia tabaci MED from China. Journal of Integrative Agriculture, 18, 2571−2578.

Wang X, Chen Y, Gong C, Yao X, Jiang C, Yang Q. 2018. Molecular identification of four novel cytochrome P450 genes related to the development of resistance of Spodoptera exigua (Lepidoptera: Noctuidae) to chlorantraniliprole. Pest Management Science, 74, 1938−1952.

Wang X, Khakame S, Ye C, Yang Y, Wu Y. 2013. Characterisation of field-evolved resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella, from China. Pest Management Science, 69, 661−665.

Wen Z, Li K, Xu W, Zhang Z, Liang N, Chen M, Guo L. 2024. Role of miR-276-3p in the cyantraniliprole resistance mechanism of Bemisia tabaci via CYP6CX3 targeting. International Journal of Biological Macromolecules254 (Pt 2), 127830.

Wheeler M W, Park R M, Bailer A J. 2006. Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environmental Toxicology and Chemistry, 25, 1441-1444.

Xu L, Zhao J, Sun Y, Xu D, Xu G, Xu X, Zhang Y, Huang S, Han Z, Gu Z. 2019. Constitutive overexpression of cytochrome P450 monooxygenase genes contributes to chlorantraniliprole resistance in Chilo suppressalis (Walker). Pest Management Science, 75, 718−725.

Zeng X, Pan Y, Tian F, Li J, Xu H, Liu X, Chen X, Gao X, Peng T, Bi R, Shang Q. 2021. Functional validation of key cytochrome P450 monooxygenase and UDP-glycosyltransferase genes conferring cyantraniliprole resistance in Aphis gossypii Glover. Pesticide Biochemistry and Physiology, 176, 104879.

Zhang L, Liu B, Zheng W, Liu C, Zhang D, Zhao S, Li Z, Xu P, Wilson K, Withers A, Jones C M, Smith J A, Chipabika G, Kachigamba D L, Nam K, d’Alençon E, Liu B, Liang X, Jin M, Wu C, et al. 2020. Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China. Molecular Ecology Resources, 20, 1682−1696.

Zhang Z, Wen Z, Li K, Xu W, Liang N, Yu X, Li C, Chu D, Guo L. 2022. Cytochrome P450 gene, CYP6CX3, is involved in the resistance to cyantraniliprole in Bemisia tabaci. Journal of Agricultural and Food Chemistry, 70, 12398−12407.

Zheng H, Xie W, Fu B, Xiao S, Tan X, Ji Y, Cheng J, Wang R, Liu B, Yang X, Guo Z, Wang S, Wu Q, Xu B, Zhou X, Zhang Y. 2021. Annual analysis of field-evolved insecticide resistance in Bemisia tabaci across China. Pest Management Science, 77, 2990−3001.

 


[1] Lijun Ma, Juan Tang, Qinghe Zhang, Bingli Gao, Cheng Qu, Ran Wang, Chen Luo. Involvement of the cytochrome P450 genes CYP6DW3 and CYP4C64 in afidopyropen resistance in Bemisia tabaci Mediterranean (Q biotype)[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1905-1915.
[2] LIU Jiao, ZHANG Xue-yao, WU Hai-hua, MA Wen, ZHU Wen-ya, Kun-Yan ZHU, MA En-bo, ZHANG Jian-zhen . Characteristics and roles of cytochrome b5 in cytochrome P450-mediated oxidative reactions in Locusta migratoria[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1512-1521.
[3] LIU Xiao-min, XU Xian, LI Bing-hua, YAO Xiao-xia, ZHANG Huan-huan, WANG Gui-qi, HAN Yu-jun. Genomic and transcriptomic insights into cytochrome P450 monooxygenase genes involved in nicosulfuron tolerance in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2018, 17(08): 1790-1799.
[4] LI Jun-xing, RAO Lin-li, XIE Hui, Monika Schreiner, CHEN Li-ping, LIU Yin-quan. Morphology and glucosinolate profiles of chimeric Brassica and the responses of Bemisia tabaci in host selection, oviposition and development[J]. >Journal of Integrative Agriculture, 2017, 16(09): 2009-2018.
[5] ZHANG Bai-zhong, KONG Fan-chao, WANG Hua-tang, GAO Xi-wu, ZENG Xin-nian, SHI Xue-yan. Insecticide induction of O-demethylase activity and expression of cytochrome P450 genes in the red imported fire ant (Solenopsis invicta Buren)[J]. >Journal of Integrative Agriculture, 2016, 15(1): 135-144.
[6] XU Jun, WANG Xin-yu, GUO Wang-zhen. The cytochrome P450 superfamily: Key players in plant development and defense[J]. >Journal of Integrative Agriculture, 2015, 14(9): 1673-1686.
[7] Prasanna H C, Kanakala S, Archana K, Jyothsna P, Varma R K, Malathi V G. Cryptic species composition and genetic diversity within Bemisia tabaci complex in soybean in India revealed by mtCOI DNA sequence[J]. >Journal of Integrative Agriculture, 2015, 14(9): 1786-1795.
[8] ZHANG Xiao-ming, YANG Nian-wan, WAN Fang-hao , Gabor L L?vei. Density and Seasonal Dynamics of Bemisia tabaci (Gennadius) Mediterranean on Common Crops and Weeds Around Cotton Fields in Northern China[J]. >Journal of Integrative Agriculture, 2014, 13(10): 2211-2220.
[9] WU Shao-ying, SHI Xue-yan, WANG Yi , GAO Xi-wu. Response of Cytochrome P450 Expression to Maize Volatiles in Helicoverpa armigera (Hübner)[J]. >Journal of Integrative Agriculture, 2013, 12(4): 646-652.
[10] LIU Shu-sheng, John Colvin , Paul J De Barro. Species Concepts as Applied to the Whitefly Bemisia tabaci Systematics: How Many Species Are There?[J]. >Journal of Integrative Agriculture, 2012, 11(2): 176-186.
[11] GUO Xiao-jun, RAO Qiong, ZHANG Fan, LUO Chen, ZHANG Hong-yu , GAO Xi-wu. Diversity and Genetic Differentiation of the Whitefly Bemisia tabaci Species Complex in China Based on mtCOI and cDNA-AFLP Analysis[J]. >Journal of Integrative Agriculture, 2012, 11(2): 206-214.
[12] R V Chowda-Reddy, M Kirankumar, Susan E Seal, V Muniyappa, Girish B Val, M R Govindappa, John Colvin. Bemisia tabaci Phylogenetic Groups in India and the Relative Transmission Efficacy of Tomato leaf curl Bangalore virus by an Indigenous and an Exotic Population[J]. >Journal of Integrative Agriculture, 2012, 11(2): 235-248.
[13] Michelle Cilia, Michael Bereman, Tara Fish, Michael J MacCoss , Stewart Gray. Homopteran Vector Biomarkers for Efficient Circulative Plant Virus Transmission are Conserved in Multiple Aphid Species and the Whitefly Bemisia tabaci[J]. >Journal of Integrative Agriculture, 2012, 11(2): 249-262.
[14] Susan Seal, Mitulkumar V Patel, Carl Collins, John Colvin , David Bailey. Next Generation Transcriptome Sequencing and Quantitative Real-Time PCR Technologies for Characterisation of the Bemisia tabaci Asia 1 mtCOI Phylogenetic Clade[J]. >Journal of Integrative Agriculture, 2012, 11(2): 281-292.
[15] RAO Qiong, XU Yong-hua, LUO Chen, ZHANG Hong-yu, Christopher M Jones, Greg J Devine, KevinGorman , Ian Denholm. Characterisation of Neonicotinoid and Pymetrozine Resistance in Strains of Bemisia tabaci (Hemiptera: Aleyrodidae) from China[J]. >Journal of Integrative Agriculture, 2012, 11(2): 321-326.
No Suggested Reading articles found!