Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 11 Issue (2): 321-326    DOI: 10.1016/S1671-2927(00)8549
SECTION 4: CONTROL OF WHITEFLY AND WHITEFLY TRANSMITTED VIRUS DISEASES Advanced Online Publication | Current Issue | Archive | Adv Search |
Characterisation of Neonicotinoid and Pymetrozine Resistance in Strains of Bemisia tabaci (Hemiptera: Aleyrodidae) from China
 RAO Qiong, XU Yong-hua, LUO Chen, ZHANG Hong-yu, Christopher M Jones, Greg J Devine, KevinGorman , Ian Denholm
1.College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R.China
2.Institute of Plant and Environmental Protection, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097, P.R.China
3.Plant and Invertebrate Ecology Department, Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
4.Zhejiang Chemical Industry Research Institute, Zhejiang Branch of National Pesticide R&D South Center, Hangzhou 310023, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Four strains of the Q biotype and one of the B biotype of the whitefly Bemisia tabaci collected from China were characterised for resistance to four neonicotinoid insecticides and pymetrozine. Q biotype strains showed moderate to strong resistance to imidacloprid, thiamethoxam and acetamiprid, but little or no cross-resistance to dinotefuron. Resistance to neonicotinoids was consistently associated with resistance to pymetrozine, despite the latter having a distinct (though unresolved) mode of action. The single B biotype strain proved largely susceptible to all the insecticides investigated. Resistance in the Q biotype strains was associated with over-expression of a cytochrome P450 monooxygenase gene, CYP6CM1, whose substrate specificity presumably accounts for the observed cross-resistance profiles.

Abstract  Four strains of the Q biotype and one of the B biotype of the whitefly Bemisia tabaci collected from China were characterised for resistance to four neonicotinoid insecticides and pymetrozine. Q biotype strains showed moderate to strong resistance to imidacloprid, thiamethoxam and acetamiprid, but little or no cross-resistance to dinotefuron. Resistance to neonicotinoids was consistently associated with resistance to pymetrozine, despite the latter having a distinct (though unresolved) mode of action. The single B biotype strain proved largely susceptible to all the insecticides investigated. Resistance in the Q biotype strains was associated with over-expression of a cytochrome P450 monooxygenase gene, CYP6CM1, whose substrate specificity presumably accounts for the observed cross-resistance profiles.
Keywords:  P450      cross-resistance      pymetrozine      imidacloprid      thiamethoxam      acetamiprid      dinotefuran      neonicotinoids  
Received: 01 June 2011   Accepted:
Fund: 

This paper was supported, in part, by grants from the National Basic Research and Development Program of China (2009CB119200) and the National Natural Science Foundation of China (31071683). Rothamsted Research is an institute of the Biotechnology and Biological Sciences Research Council of the United Kingdom.

Corresponding Authors:  Correspondence LUO Chen, E-mail: luochen1010@yahoo.com.cn; Ian Denholm, E-mail: ian.denholm@rothamsted.ac.uk     E-mail:  ian.denholm@rothamsted.ac.uk

Cite this article: 

RAO Qiong, XU Yong-hua, LUO Chen, ZHANG Hong-yu, Christopher M Jones, Greg J Devine, KevinGorman , Ian Denholm. 2012. Characterisation of Neonicotinoid and Pymetrozine Resistance in Strains of Bemisia tabaci (Hemiptera: Aleyrodidae) from China. Journal of Integrative Agriculture, 11(2): 321-326.

[1]De Barro P J, Liu S S, Boykin L M, Dinsdale A. 2011. Bemisia tabaci: a statement of species status. Annual Review of Entomology, 56, 1-19.

[2]Boykin L M, Shatters R G, Rosell R C, McKenzie C L, Bagnall R A, De Barro P, Frohlich D R. 2007. Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Molecular Phylogenetics and Evolution, 44, 1306-1319.

[3]Brown J K, Frohlich D R, Rosell R C. 1995. The sweetpotato or silverleaf whiteflies-biotypes of Bemisia tabaci or a species complex. Annual Review of Entomology, 40, 511-534.

[4]Byrne F J, Castle S, Prabhaker N, Toscano N C. 2003. Biochemical study of resistance to imidacloprid in B biotype Bemisia tabaci from Guatemala. Pest Management Science, 59, 347-352.

[5]Cahill M, Byrne F J, German K, Denholm I, Devonshire A L. 1995. Pyrethroid and organophosphate resistance in the tobacco whitefly Bemisia tabaci (Homoptera, Aleyrodidae). Bulletin of Entomological Research, 85, 181-187.

[6]Cahill M, Denholm I, Ross G, Gorman K, Johnston D. 1996. Relationship between bioassay data and the simulated field performance of insecticides against susceptible and resistant adult Bemisia tabaci (Homoptera: Aleyrodidae). Bulletin of Entomological Research, 86, 109-116.

[7]Castle S, Palumbo J, Prabhaker N. 2009. Newer insecticides for plant virus disease management. Virus Research, 141, 131-139.

[8]Chu D, Chen G F, Xu B Y, Wu Q J, Zhang Y J. 2007. RAPD analysis of population genetic structure of Bemisia tabaci biotype B and biotype Q. Acta Enotomologica Sinica, 50, 264-270. (in Chinese)

[9]Chu D, Wan F H, Tao Y L, Liu G X, Fan Z X, Bi Y P. 2008. Genetic differentiation of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype Q based on mitochondrial DNA markers. Insect Science, 15, 115- 123.

[10]Denholm I, Horowitz A R, Cahill M, Ishaaya I. 1998. Management of resistance to novel insecticides. In: Ishaaya I, Degheele D, eds., Insecticides with Novel Modes of Action: Mechanisms and Application. Springer Verlag, Berlin. pp. 260-281.

[11]Dennehy T J, Williams L. 1997. Management of resistance in Bemisia in Arizona cotton. Pesticide Science, 51, 398-406.

[12]Gorman K, Slater R, Blande J, Clarke A, Wren J, McCaffery A, Denholm I. 2010. Cross-resistance relationships between neonicotinoids and pymetrozine in Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Management Science, 66, 1186-1190.

[13]Harrewijn P, Kayser H. 1997. Pymetrozine, a fast-acting and selective inhibitor of aphid feeding. In-situ studies with electronic monitoring of feeding behaviour. Pesticide Science, 49, 130-140.

[14]Horowitz A R, Denholm I, Gorman K, Cenis J L, Kontsedalov S, Ishaaya I. 2003. Biotype Q of Bemisia tabaci identified in Israel. Phytoparasitica, 31, 94-98.

[15]Horowitz A R, Kontsedalov S, Khasdan V, Ishaaya I. 2005. Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry and Physiology, 58, 216-225.

[16]Horowitz R, Kontsedalov S, Khasdan V, Breslauer H, Ishaaya I. 2008. The biotypes B and Q of Bemisia tabaci in Israel - Distribution, resistance to insecticides and implications for pest management. Journal of Insect Science, 8, 23-24.

[17]Hsieh C H, Wang C H, Ko C C. 2007. Evidence from molecular markers and population genetic analyses suggests recent invasions of the western north pacific region by biotypes B and Q of Bemisia tabaci (Gennadius). Environmental Entomology, 36, 952-961.

[18]Hu J, De Barro P J, Zhao H, Wang J, Nardi F, Liu S S. 2011. An extensive field survey combined with a phylogenetic analysis reveals rapid and widespread invasion of two alien whiteflies in China. PloS ONE, 6, e16061. Jones C M, Gorman K, Denholm I, Williamson M S. 2008. High-throughput allelic discrimination of B and Q biotypes of the whitefly, Bemisia tabaci, using TaqMan allele-selective PCR. Pest Management Science, 64, 12- 15.

[19]Karunker I, Benting J, Lueke B, Ponge T, Nauen R, Roditakis E, Vontas J, Gorman K, Denholm I, Morin S. 2008. Overexpression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochemistry and Molecular Biology, 38, 634- 644.

[20]Kontsedalov S, Abu-Moch F, Lebedev G, Czosnek H, Horowitz R A, Ghanim M. 2012. Bemisia tabaci biotype dynamics and resistance to insecticides in Israel during the years 2008-2010.

[21]Journal of Integrative Agriculture, 11, 312-320.

[22]Liu S S, De Barro P J, Xu J, Luan J B, Zang L S, Ruan Y M, Wan F H. 2007. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science, 318, 1769-1772.

[23]Liu S S, Colvin J, De Barro P J. 2012. Species concepts as applied to the whitefly Bemisia tabaci systematics: how many species are there? Journal of Integrative Agriculture, 11, 176-186.

[24]Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods, 25, 402-408.

[25]Luo C, Jones C M, Zhang F, Denholm I, Gorman K. 2010. Insecticide-resistance in Bemisia tabaci biotype-Q from China. Crop Protection, 29, 429-434.

[26]Luo C, Yao Y, Wang R J, Yan F M, Hu D X, Zhang Z L. 2002. The use of mitochondrial cytochrome oxidase I sequences for identification of Bemisia tabaci (Gennadius) biotypes in China. Acta Entomologica Sinica, 45, 759-763. (in Chinese)

[27]Ma D Y, Gorman K, Devine G, Luo W C, Denholm I. 2007. The biotype and insecticide-resistance status of whiteflies, Bemisia tabaci (Hemiptera: Aleyrodidae), invading cropping systems in Xinjiang Uygur Autonomous Region, northwestern China. Crop Protection, 26, 612-617.

[28]Morin S, Williamson M S, Goodson S J, Brown J K, Tabashnik B E, Dennehy T J. 2002. Mutations in the Bemisia tabaci para sodium channel gene associated with resistance to a pyrethroid plus organophosphate mixture. Insect Biochemistry and Molecular Biology, 32, 1781-1791.

[29]Nauen R, Stumpf N, Elbert A. 2002. Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Management Science, 58, 868-875.

[30]Oliveira M R V, Henneberry T J, Anderson P. 2001. History, current status, and collaborative research projects for Bemisia tabaci. Crop Protection, 20, 709-723.

[31]Peric P, Marcic D. 2007. Pymetrozine - a biorational insecticide for aphid and whitefly control. Biljni Lekar (Plant Doctor), 35, 583-588.

[32]Prabhaker N, Castle S, Henneberry T J, Toscano N C. 2005. Assessment of cross-resistance potential to neonicotinoid insecticides in Bemisia tabaci (Hemiptera:Aleyrodidae). Bulletin of Entomological Research, 95, 535-543.

[33]Rao Q, Luo C, Zhang H Y, Guo X J, Devine J G. 2011. Distribution and dynamics of Bemisia tabaci invasive biotypes in central China. Bulletin of Entomological Research, 10, 81-88.

[34]Rao Q, Luo H G, Wang X Q, Zhou G Z, Zhang H Y, Luo C. 2009. The biotype and damage of Bemisia tabaci (Gennadius) in Wuhan area, Hubei Province. Journal of Huazhong Agricultural University, 28, 535-539. (in Chinese)

[35]Rauch N, Nauen R. 2003. Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (Hemiptera: Aleyrodidae). Archives of Insect Biochemistry and Physiology, 54, 165-176.

[36]Roditakis E, Grispou M, Morou E, Kristoffersen J B, Roditakis N, Nauen R, Vontasb J, Tsagkarakou A. 2009. Current status of insecticide resistance in Q biotype Bemisia tabaci populations from Crete. Pest Management Science, 65, 313-322.

[37]Tomizawa M, Otsuka H, Miyamoto T, Eldefrawi M E, Yamamoto I. 1995. Pharmacological characteristics of insect nicotinic acetylcholine receptor with its ion channel and the comparison of the effect of nicotinoids and neonicotinoids. Journal of Pesticide Science, 20, 57-64.

[38]Zhang L P, Zhang Y J, Zhang W J, Wu Q J, Xu B Y, Chu D. 2005. Analysis of genetic diversity among different geographical populations and determination of biotypes of Bemisia tabaci in China. Journal of Applied Entomology, 129, 121-128.
[1] LIU Jiao, ZHANG Xue-yao, WU Hai-hua, MA Wen, ZHU Wen-ya, Kun-Yan ZHU, MA En-bo, ZHANG Jian-zhen . Characteristics and roles of cytochrome b5 in cytochrome P450-mediated oxidative reactions in Locusta migratoria[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1512-1521.
[2] YUAN Wan-ling, XU Bo, RAN Gang-chao, CHEN Hui-ping, ZHAO Peng-yue, HUANG Qi-liang. Application of imidacloprid controlled-release granules to enhance the utilization rate and control wheat aphid on winter wheat[J]. >Journal of Integrative Agriculture, 2020, 19(12): 3045-3053.
[3] ZHU Jun, SUN Wen-qing, LI Yao, GE Lin-quan, YANG Guo-qing, XU Jian-xiang, LIU Fang. Effects of a novel mesoionic insecticide, triflumezopyrim, on the feeding behavior of rice planthoppers, Nilaparvata lugens and Sogatella furcifera (Hemiptera: Delphacidae)[J]. >Journal of Integrative Agriculture, 2020, 19(10): 2488-2449.
[4] WANG Ran, WANG Jin-da, CHE Wu-nan, SUN Yan, LI Wen-xiang, LUO Chen .
Characterization of field-evolved resistance to cyantraniliprole in Bemisia tabaci MED from China
[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2571-2578.
[5] WANG Jing-jing, LI Xiang-ju, LI Dan, HAN Yu-jiao, LI Zheng, YU Hui-lin, CUI Hai-lan. Non-target-site and target-site resistance to AHAS inhibitors in American sloughgrass (Beckmannia syzigachne)[J]. >Journal of Integrative Agriculture, 2018, 17(12): 2714-2723.
[6] LIU Xiao-min, XU Xian, LI Bing-hua, YAO Xiao-xia, ZHANG Huan-huan, WANG Gui-qi, HAN Yu-jun. Genomic and transcriptomic insights into cytochrome P450 monooxygenase genes involved in nicosulfuron tolerance in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2018, 17(08): 1790-1799.
[7] DENG Wei, YANG Qian, JIAO Hong-tao, ZHANG Yong-zhi, LI Xue-feng, ZHENG Ming-qi. Cross-resistance pattern to four AHAS-inhibiting herbicides of tribenuron-methyl-resistant flixweed (Descurainia sophia) conferred by Asp-376-Glu mutation in AHAS[J]. >Journal of Integrative Agriculture, 2016, 15(11): 2563-2570.
[8] ZHANG Bai-zhong, KONG Fan-chao, WANG Hua-tang, GAO Xi-wu, ZENG Xin-nian, SHI Xue-yan. Insecticide induction of O-demethylase activity and expression of cytochrome P450 genes in the red imported fire ant (Solenopsis invicta Buren)[J]. >Journal of Integrative Agriculture, 2016, 15(1): 135-144.
[9] XU Jun, WANG Xin-yu, GUO Wang-zhen. The cytochrome P450 superfamily: Key players in plant development and defense[J]. >Journal of Integrative Agriculture, 2015, 14(9): 1673-1686.
[10] ZHANG Qian, CHEN Li-zhen, LU Qiong, ZHANG Yan, LIANG Ge-mei. Toxicity and binding analyses of Bacillus thuringiensis toxin Vip3A in Cry1Ac-resistant and -susceptible strains of Helicoverpa armigera (Hübner)[J]. >Journal of Integrative Agriculture, 2015, 14(2): 347-354.
[11] HUANG Liang, ZHAO Chun-lin, HUANG Fang, BAI Run-e, Lü Yao-bin, YAN Feng-ming, HAO Zhong-ping. Effects of imidacloprid and thiamethoxam as seed treatments on the early seedling characteristics and aphid-resistance of oilseed rape[J]. >Journal of Integrative Agriculture, 2015, 14(12): 2581-2589.
[12] WU Shao-ying, SHI Xue-yan, WANG Yi , GAO Xi-wu. Response of Cytochrome P450 Expression to Maize Volatiles in Helicoverpa armigera (Hübner)[J]. >Journal of Integrative Agriculture, 2013, 12(4): 646-652.
No Suggested Reading articles found!