Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 11 Issue (2): 176-186    DOI: 10.1016/S1671-2927(00)8535
SECTION 1: THE Bemisia tabaci CRYPTIC SPECIES COMPLEX Advanced Online Publication | Current Issue | Archive | Adv Search |
Species Concepts as Applied to the Whitefly Bemisia tabaci Systematics: How Many Species Are There?
 LIU Shu-sheng, John Colvin , Paul J De Barro
1.Key Laboratory of Agricultural Entomology, Ministry of Agriculture/Institute of Insect Sciences, Zhejiang University, Hangzhou 310058,P.R.China
2.Natural Resources Institute, University of Greenwich, Kent ME4 4TB, United Kingdom
3.CSIRO Ecosystem Sciences, Brisbane QLD 4001, Australia
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  The worldwide distribution and extensive genetic diversity of the whitefly, Bemisia tabaci, has long been recognized. However, the levels of separation within B. tabaci and the nomenclature of the various genetic groups have been a subject of debate. Recent phylogenetic analyses indicate that B. tabaci is a complex composed of 28 morphologically indistinguishable species. In this article, we first review the debate and difficulties associated with B. tabaci’s taxonomy and systematics, and argue for the need to apply the biological species concept in order to elucidate B. tabaci’s systematics. We summarize the accumulated genetic and behavioural data on reproductive incompatibilities evident amongst phylogenetic mtCOI groups of B. tabaci. Crossing studies have been conducted with 14 of the 28 putative species covering 54 reciprocal inter-species pairs, and observations on mating behaviour have been conducted for seven species pairs. Data from both crossing trials and behavioural observations indicate a consistent pattern of reproductive isolation among the putative species. We then discuss the technical and conceptual complexities associated with crossing experiments and behavioural observations designed to reveal reproductive incompatibility. Finally, we elaborate on a strategy for further clarifying the pattern of reproductive isolation between B. tabaci groups and propose future research directions on the systematics of this complex.

Abstract  The worldwide distribution and extensive genetic diversity of the whitefly, Bemisia tabaci, has long been recognized. However, the levels of separation within B. tabaci and the nomenclature of the various genetic groups have been a subject of debate. Recent phylogenetic analyses indicate that B. tabaci is a complex composed of 28 morphologically indistinguishable species. In this article, we first review the debate and difficulties associated with B. tabaci’s taxonomy and systematics, and argue for the need to apply the biological species concept in order to elucidate B. tabaci’s systematics. We summarize the accumulated genetic and behavioural data on reproductive incompatibilities evident amongst phylogenetic mtCOI groups of B. tabaci. Crossing studies have been conducted with 14 of the 28 putative species covering 54 reciprocal inter-species pairs, and observations on mating behaviour have been conducted for seven species pairs. Data from both crossing trials and behavioural observations indicate a consistent pattern of reproductive isolation among the putative species. We then discuss the technical and conceptual complexities associated with crossing experiments and behavioural observations designed to reveal reproductive incompatibility. Finally, we elaborate on a strategy for further clarifying the pattern of reproductive isolation between B. tabaci groups and propose future research directions on the systematics of this complex.
Keywords:  whitefly systematics      biological species      cryptic species      phylogenetic species      reproductive isolation      mating behavior      taxonomy  
Received: 01 March 2011   Accepted:
Fund: 

This study was funded by the National Basic Research Program of China (2009CB119203), the National Natural Science Foundation of China (30730061), and the China Agriculture Research System (CARS-25-B-08).

Corresponding Authors:  Correspondence LIU Shu-sheng, Tel: +86-571-86971505, E-mail: shshliu@zju.edu.cn     E-mail:  shshliu@zju.edu.cn

Cite this article: 

LIU Shu-sheng, John Colvin , Paul J De Barro. 2012. Species Concepts as Applied to the Whitefly Bemisia tabaci Systematics: How Many Species Are There?. Journal of Integrative Agriculture, 11(2): 176-186.

[1]Adler P H. 1988. Ecology of black fly sibling species. In: Kim K C, Merritt R W, eds., Black Flies: Ecology, Population Management, and Annotated World List. Pennsylvania State University Press, University Park, PA. pp. 63-76.

[2]Avise J C. 2000. Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge, Massachusetts. Bedford I D, Briddon R W, Brown J K, Rosell R C, Markham P G. 1994. Geminivirus transmission and biological characterization of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Annals of Applied Biology, 125, 311-325.

[3]Benirschke K, Kumamota A T. 1991. Mammalian cytogenetics and conservation of species. Journal of Heredity, 82, 187-191.

[4]Brown J K, Frohlich D R, Rosell R C. 1995. The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annual Review of Entomology, 40, 511-534.

[5]Bush G L. 1993. Host race formation and sympatric speciation in Rhagoletis fruit flies (Diptera: Tephritidae). Psyche, 99, 335-357.

[6]De Barro P J. 2012. The Bemisia tabaci species complex: questions to guide future research. Journal of Integrative Agriculture, 11, 187-196.

[7]De Barro P J, Bourne A. 2010. Oviposition host choice by an invader accelarates displacement of its indigenous competitor. Biological Invasions, 12, 3013-3023.

[8]De Barro P J, Hart P J. 2000. Mating interactions between two biotypes of the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) in Australia. Bulletin of Entomological Research, 90, 103-112.

[9]De Barro P J, Liu S S, Boykin L M, Dinsdale A B. 2011. Bemisia tabaci: a statement of species status. Annual Review of Entomology, 56, 1-19.

[10]De Barro P J, Trueman J W H, Frohlich D R. 2005. Bemisia argentifolii is a race of B. tabaci (Hemiptera: Aleyrodidae): the molecular genetic differentiation of B. tabaci populations around the world. Bulletin of Entomological Research, 95, 193-203.

[11]Caballero R, Brown J K. 2008. Positive evidence for interbreeding and differential gene flow between three well characterized biotypes of the Bemisia tabaci complex (Gennadius) (Hemiptera: Aleyrodidae) excludes geographic and host barriers as isolating factors. Journal of Insect Science, 8, 10-11.

[12]Calvert L A, Cuervo M, Arroyave J A, Constantino L M, Bellotti A, Frohlich D. 2001. Morphological and mitochondrial DNA marker analyses of whiteflies (Homoptera: Aleyrodidae) colonizing cassava and beans in Colombia. Annals of the Entomological Society of America, 94, 512-519.

[13]Chowda-Reddy R V, Kirankumar M, Seal S E, Muniyappa V, Valand G B, Govindappa M R, Colvin J. 2012. Bemisia tabaci phylogenetic groups in India and the relative transmission efficacy of Tomato leaf curl Bangalore virus by an indigenous and an exotic population. Journal of Integrative Agriculture, 11, 235-248.

[14]Chu D, Wan F H, Zhang Y J, Brown J K. 2010. Change in the biotype composition of Bemisia tabaci in Shandong Province of China from 2005 to 2008. Environmental Entomology, 39, 1028-1036.

[15]Colvin J, Omongo C A, Govindappa M R, Stevenson P C, Maruthi M N, Gibson G, Seal S E, Muniyappa V. 2006. Host-plant viral infection effects on arthropod-vector population growth, development and behaviour: management and epidemiological implications. Advances in Virus Research, 67, 419-452.

[16]Costa H S, Brown J K, Sivasupramaniam S, Bird J. 1993. Regional distribution, insecticide resistance and reciprocal crosses between the A and B biotypes of Bemisia tabaci. Insect Science and Its Application, 14, 255-266.

[17]Coyne J A, Orr H A. 1989. Patterns of speciation in Drosophila. Evolution, 43, 362-381.

[18]Crowder D W, Sitvarin M I, Carrière Y. 2010a. Mate discrimination in invasive whitefly species. Journal of Insect Behavior, 23, 364-380.

[19]Crowder D W, Sitvarin M I, Carrière Y. 2010b. Plasticity in mating behavior drives asymmetric reproductive interference in whiteflies. Animal Behavior, 79, 579- 586.

[20]Delatte H, David P, Granier M, Lett J M, Goldbach R, Peterschmit M, Reynaud B. 2006. Microsatellites reveal extensive geographical, ecological and genetic contacts between invasive and indigenous whitefly biotypes in an insular environment. Genetical Research, 87, 109- 124.

[21]Delatte H, Holota H, Warren B H, Becker N, Thierry M, Reynaud B. 2011. Genetic diversity, geographical range and origin of Bemisia tabaci (Hemiptera: Aleyrodidae) Indian Ocean Ms. Bulletin of Entomological Research, 101, 487-497.

[22]Demichelis S, Arnò C, Bosco D, Marian D, Caciagli P. 2005. Characterization of biotype T of Bemisia tabaci associated with Euphorbia characias in Sicily. Phytoparasitica, 33, 196-208.

[23]DeSalle R, Egan M G, Siddall M. 2005. The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society of London (Series B: Biological Sciences), 360, 1905-1916.

[24]Dinsdale A, Cook L, Riginos C, Buckley Y M, de Barro P J. 2010. Refined global analysis of Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodoidea) mitochondrial CO1 to identify species level genetic boundaries. Annals of the Entomological Society of America, 103, 196-208.

[25]Downie D A. 2010. Baubles, bangles, and biotypes: A critical review of the use and abuse of the biotype concept. Journal of Insect Science, 10, 176. Elbaz M, Lahav N, Morin S. 2010. Evidence for pre-zygotic reproductive barrier between the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Bulletin of Entomological Research, 100, 581-590.

[26]Gill R J, Brown J K. 2010. Systematics of Bemisia and Bemisia relatives: can molecular techniques solve the Bemisia tabaci complex conundrum-a taxonomist’s viewpoint. In: Stansly P A, Narahjo S E, eds., Bemisia: Bionomics and Management of a Global Pest. Springer, New York, USA. pp. 5-29.

[27]Gullan P J, Cranston P. 2005. The Insects: an Outline of Entomology. Wiley-Blackwell, Oxford, UK. Heraty J M, Woolley J B, Hopper K R, Hawks D L, Kim J W, Buffington M. 2007. Molecular phylogenetics and reproductive incompatibility in a complex of cryptic species of aphid parasitoids. Molecular Phylogenetics and Evolution, 45, 480-493.

[28]Horowitz A R, Kontsedalov S, Khasdan V, Ishaaya I. 2005. Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry and Physiology, 58, 216-225.

[29]Hu J, De Barro P J, Zhao H, Nardi F, Wang J, Liu S S. 2011. An extensive field survey combined with a phylogenetic analysis reveals rapid and widespread invasion of two alien whiteflies in China. PLoS ONE, 6, e16061.

[30]Jiu M, Zhou X P, Tong L, Xu J, Yang X, Wan F H, Liu S S. 2007. Vector-virus mutualism accelerates population increase of an invasive whitefly. PLoS ONE, 2, e182.

[31]King R A, Tibble A L, Symondson W O C. 2008. Opening a can of worms: unprecedented sympatric cryptic diversity within British lumbricid earthworms. Molecular Ecology, 17, 4684-4698.

[32]Li M, Hu J, Xu F C, Liu S S. 2010. Transmission of Tomato yellow leaf curl virus by two invasive biotypes and a Chinese indigenous biotype of the whitefly Bemisia tabaci. International Journal of Pest Management, 56, 275-280.

[33]Li T Y, Vinson S B, Gerling D. 1989. Courtship and mating behaviour of Bemisia tabaci (Homoptera: Aleyrodidae). Environmental Entomology, 18, 800-806.

[34]Li X X, Li S J, Xue X, Ahmed M Z, Ren S X, Guthbertson A G S, Qiu B L. 2012. The effects of space and temperature on the cross mating of three cryptic species of the Bemisia tabaci complex (Homoptera: Aleyrodidae) in China. Journal of Integrative Agriculture, 11, 197-205.

[35]Liu J, Li M, Li J M, Huang C J, Zhou X P, Xu F C, Liu S S. 2010. Viral infection of tobacco plants improves performance of Bemisia tabaci but more so for an invasive than for an indigenous biotype of the whitefly. Journal of Zhejiang University (Science B), 11, 30-40.

[36]Liu J, Zhao H, Jiang K, Zhou X P, Liu S S. 2009. Differential indirect effects of two plant viruses on an invasive and an indigenous whitefly vector: implications for competitive displacement. Annals of Applied Biology, 155, 439-448.

[37]Liu S S, De Barro P J, Xu J, Luan J B, Zang L S, Ruan Y M, Wan F H. 2007. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science, 318, 1769-1772.

[38]Luan J B, Liu S S. 2012. Differences in mating behavior lead to asymmetric mating interactions and consequential changes in sex ratio between an invasive and an indigenous whitefly. Integrative Zoology, 7, doi: 10. 1111/j.1749-4877.2011.00273.

[39]x Luan J B, Ruan Y M, Zhang L, Liu S S. 2008. Pre-copulation intervals, copulation frequencies, and initial progeny sex ratios in two biotypes of whitefly, Bemisia tabaci. Entomologia Experimentalis et Applicata, 129, 316- 324.

[40]Luo C, Jones C M, Devine G, Zhang F, Denholm I, Gorman K. 2010. Insecticide resistance in Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) from China. Crop Protection, 29, 429-434.

[41]Mallet J. 2005. Hybridization as an invasion of the genome. Trends in Ecology and Evolution, 20, 229-237.

[42]Maruthi M N, Colvin J, Seal S E. 2001. Mating compatibility, life-history traits and RAPD-PCR variation in Bemisia tabaci associated with the cassava mosaic disease pandemic in East Africa. Entomologia Experimentalis et Applicata, 99, 13-23.

[43]Maruthi M N, Colvin J, Thwaites R M, Banks G K, Gibson G, Seal S E. 2004. Reproductive incompatibility and cytochrome oxidase I gene sequence variability amongst host-adapted and geographically separate Bemisia tabaci populations. Systematic Entomology, 29, 560-568.

[44]Mayr E. 2002. Species. In: Brenner S, Miller J H, eds., Encyclopedia of Genetics. Academic Press, San Diego, California. pp. 1684-1689.

[45]Merrell D J. 1981. Ecological Genetics. Longman, London. Mound L A, Halsey S H. 1978. Whitefly of the World: A Systematic Catalogue of the Aleyrodidae (Homoptera) with Host Plant and Natural Enemy Data. John Wiley & Sons, Chichester. Mound L A. 1963. Host-correlated variation in Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Proceedings of the Royal Entomological Society of London (Series A), 38, 171-180.

[46]Moya A, Guirao P, Cifuentes D, Beitia F, Cenis J L. 2001. Genetic diversity of Iberian populations of Bemisia tabaci (Hemiptera: Aleyrodidae) based on random amplified polymorphic DNA-polymerase chain reaction. Molecular Ecology, 10, 891-897.

[47]Perring T M, Cooper A D, Rodriguez R J, Farrar C A, Bellows T S. 1993. Identification of a whitefly species by genomic and behavioural studies. Science, 259, 74-77.

[48]Perring T M, Symmes E J. 2006. Courtship behaviour of Bemisia argentifolii (Hemiptera: Aleyrodidae) and whitefly mate recognition. Annals of the Entomological Society of America, 99, 598-606.

[49]Perring T M. 1996. Biological differences of two species of Bemisia that contribute to adaptive advantage. In: Gerling D, Mayer R T, eds., Bemisia 1995: Taxonomy, Biology, Damage, Control and Management. Intercept, Andover. pp. 3-16.

[50]Rao Q, Luo C, Zhang H, Guo X, Devine G J. 2011. Distribution and dynamics of Bemisia tabaci invasive biotypes in central China. Bulletin of Entomological Research, 101, 81-88.

[51]Roditakis E, Kleidoniari J, Couzin I D, Tsagkarakou A, Roditakis N E. 2009. Studies on Bemisia tabaci behaviour using an automated tracking system. In: Janssen D, ed., Abstracts-3rd European Whitefly Symposium, Aguadulce, Spain. p. 40. Rosell R C, Bedford I D, Frohlich D R, Gill R J, Brown J K, Markham P G. 1997. Analysis of morphological variation in distinct populations of Bemisia tabaci (Homoptera: Aleyrodidae). Annals of the Entomological Society of America, 90, 575-589.

[52]Rosen D. 1977. The importance of cryptic species and specific identifications as related to biological control. In: Romberger J A, ed., Biosystematics in Agriculture. Beltsville Symposia in Agricultural Research. vol. 2. Allanheld, Osmun, Montclair, NJ, USA. pp. 23-35.

[53]Ruan Y M, Luan J B, Zang L S, Liu S S. 2007. Observing and recording copulation events of whiteflies on plants using a video camera. Entomologia Experimentalis et Applicata, 124, 229-233.

[54]Russell L M. 1958. Synonyms of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Bulletin of the Brooklyn Entomological Society, 52, 122-123.

[55]Sites Jr J W, Marshall J C. 2004. Operational criteria for delimiting species. Annual Review of Ecology, Evolution and Systematics, 35, 199-227.

[56]Suatoni E, Vicario S, Rice S, Snell T, Caccone A. 2006. An analysis of species boundaries and biogeographic patterns in a cryptic species complex: The rotifer- Brachionus plicatilis. Molecular Phylogenetics and Evolution, 41, 86-98.

[57]Sun D B, Luan J B, Liu S S. 2011a. Leaf substrates determine oviposition and in turn the frequency of copulation in the whitefly Bemisia tabaci. Entomologia Experimentalis et Applicata, 139, 180-185.

[58]Sun D B, Xu J, Luan J B, Liu S S. 2011b. Reproductive incompatibility between the B and Q biotypes of the whitefly Bemisia tabaci: genetic and behavioural evidence. Bulletin of Entomological Research, 101, 211-220.

[59]Thierry M, Becker N, Hajri A, Reynaud B, Lett J M, Delatte H. 2011. Symbiont diversity and non-random hybridization among indigenous (Ms) and invasive (B) biotypes of Bemisia tabaci. Molecular Ecology, 20, 2172-2187.

[60]Wang C Z. 2007. Interpretation of the biological species concept from interspecific hybridization of two Helicoverpa species. Chinese Science Bulletin, 52, 284-286.

[61]Wang C Z, Dong J F. 2001. Interspecific hybridization of Helicoverpa armigera and H. assulta (Lepidoptera: Noctuidae). Chinese Science Bulletin, 46, 489-491.

[62]Wang P, Ruan Y M, Liu S S. 2010. Crossing experiments and behavioral observations reveal reproductive incompatibility among three putative species of the whitefly Bemisia tabaci. Insect Science, 17, 508-516.

[63]Wang P, Sun D B, Qiu B L, Liu S S. 2011. The presence of six cryptic species of the whitefly Bemisia tabaci complex in China as revealed by crossing experiments. Insect Science, 18, 67-77.

[64]Xu J, De Barro P J, Liu S S. 2010. Reproductive incompatibility among genetic groups of Bemisia tabaci supports the proposition that the whitefly is a cryptic species complex. Bulletin of Entomological Research, 100, 359-366.

[65]Xu J, Lin K K, Liu S S. 2011. Performance on different host plants of an alien and an indigenous Bemisia tabaci from China. Journal of Applied Entomology, 135, 771- 779.

[66]Zang L S, Chen W Q, Liu S S. 2006. Comparison of performance on different host plants between the B biotype and a non-B biotype of Bemisia tabaci from Zhejiang, China. Entomologia Experimentalis et Applicata, 121, 221-227.

[67]Zang L S, Liu S S. 2007. A comparative study on mating behaviour between the B Biotype and a non-B biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) from Zhejiang, China. Journal of Insect Behaviour, 20, 157- 171.
[1] LIU Zhen-zhong, LI Zhong-xing, GAO Hua, BAO Cha-na. A new species of Malus in China, Malus shizongensis Liu sp. nov[J]. >Journal of Integrative Agriculture, 2020, 19(10): 2451-2457.
[2] ZHANG Gui-quan . Prospects of utilization of inter-subspecific heterosis between indica and japonica rice[J]. >Journal of Integrative Agriculture, 2020, 19(1): 1-10.
[3] Daniel Bravo-Pérez, Ma. Teresa Santillán-Galicia, Roberto M. Johansen-Naime, Héctor González- Hernández, Obdulia L. Segura-León, Daniel L. Ochoa-Martínez, Stephanie Guzman-Valencia. Species diversity of thrips (Thysanoptera) in selected avocado orchards from Mexico based on morphology and molecular data[J]. >Journal of Integrative Agriculture, 2018, 17(11): 2509-2517.
[4] GU Shou-qin, YANG Yang, LI Po, ZHANG Chang-zhi, FAN Yu, ZHANG Xiao-yu, TIAN Lan. Stk2, a Mitogen-Activated Protein Kinase from Setosphaeria turcica, Specifically Complements the Functions of the Fus3 and Kss1 of Saccharomyces cerevisiae in Filamentation, Invasive Growth, and Mating Behavior[J]. >Journal of Integrative Agriculture, 2013, 12(12): 2209-2216.
[5] LI Xiao-xi, LI Shao-jian, XUE Xia, Muhammad Z Ahmed, REN Shun-xiang, rew G S Cuthbertson , QIU Bao-li. The Effects of Space Dimension and Temperature on the Cross Mating of Three Cryptic Species of the Bemisia tabaci Complex in China[J]. >Journal of Integrative Agriculture, 2012, 11(2): 197-205.
No Suggested Reading articles found!