Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Root pre-adaptation: adventitious root plasticity from mild priming enhances hypoxia survival in wheat

Yujie He1*, Yi Wang1*, Mei Huang1, Ziru Zhang1, Qing Li1, Qin Zhou1, Yingxin Zhong1, Jian Cai1, Stefania Masci2, Xiao Wang1#, Dong Jiang1 

1 College of Agriculture, Nanjing Agricultural University/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing 210095, China

2 Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo 01100, Italy 

 Highlights 

Post-priming recovery is a critical window for waterlogging stress resilience.

Mild priming shifts adventitious root development toward a persistent, long-root-dominated architecture.

Primed roots co-optimize water transport and radial oxygen loss under hypoxia.

Anticipatory root priming model is proposed for pre-adaptation to recurrent waterlogging.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

土壤渍水导致根系缺氧,严重制约全球小麦生产。尽管研究表明渍水锻炼可减轻胁迫造成的产量损失、提升植株耐渍性,但锻炼后耐渍性获得过程中不定根的发育规律及其生理机制尚不明晰。本研究证实,轻度渍水锻炼(MP)可显著增强小麦对后续渍水胁迫的耐受能力,且锻炼后的恢复阶段是植株进行根系形态与生理重编程的关键窗口。在此期间,经历轻度锻炼的小麦其不定根发育发生显著转变:从胁迫诱导产生的短小、暂时性不定根,转向形成以持久性长不定根为主导的根系构型。与新生不定根相比,这些经重编程的成熟不定根通过协同优化根系水力导度(Lpr)与径向氧损耗(ROL),表现出更优越的生理功能。机制上,Lpr的持续提升与水通道蛋白基因(TaTIP2-1TaTIP2-2TaPIP2-6)的稳定上调表达相一致,而ROL的增强则促进了根际氧环境的改善。结构方程模型进一步明确,恢复阶段长不定根的形成是驱动LprROL协同优化的核心性状。相比之下,重度锻炼导致根系不可逆损伤,未能诱发上述适应性响应。本研究提出“预适应型根系构建”模型,即轻度胁迫利用恢复窗口期,主动调控不定根发育,形成结构持久、功能高效的根系系统,从而将植物逆境应对策略从“被动应急反应”提升为“主动调控的韧性建立”。该研究为基于胁迫锻炼的作物抗逆性改良提供了重要的生理学框架与理论依据



Abstract  

Soil waterlogging threatens global wheat production by inducing root hypoxia. While stress priming can enhance plant resilience, the specific mechanisms underlying this pre-adaptation remain poorly understood. Here, we demonstrate that a single day of mild waterlogging priming (MP) induces a robust primed state in wheat, conferring superior recovery and tolerance to subsequent hypoxic stress. Crucially, we identify the post-priming recovery phase as a decisive window for physiological reprogramming, rather than a mere period of passive repair. During this window, MP plants developmentally reconstruct their adventitious roots (ARs) system, transitioning from transient, short ARs to a persistent architecture dominated by long ARs. This reprogrammed root system exhibits functionally superior through the synergistic co-optimization of root hydraulic conductivity (Lpr) and radial oxygen loss (ROL). Physiological and molecular analyses reveal that enhanced Lpr is accompanied by the sustained upregulation of aquaporin genes (TaTIP2-1, TaTIP2-2and TaPIP2-6), while improved ROL facilitates superior root rhizosphere aeration. Structural equation modeling statistically validates that the formation of long ARs during recovery is the pivotal trait causally driving the optimization of Lpr and ROL. In contrast, severe priming causes irreversible damage and confers no adaptive benefit. Our findings propose a model of “anticipatory root priming”, wherein mild stress leverages the recovery window to pre-construct an energetically efficient root system. This fundamentally shifts the plant's strategy from a reactive emergency response to proactive, regulated resilience, providing a physiological framework for priming-based crop improvement.

Keywords:  wheat       waterlogging priming       adventitious roots       root hydraulic conductivity       radial oxygen loss  
Online: 20 January 2026  
Fund: 

This study was supported by the projects of the National Key Research and Development Program of China (2024YFD2301305), the National Natural Science Foundation of China (32272213), the Key Research and Development Project of Shandong Province, China (2024TZXD070), the China Agriculture Research System (CARS-03), and the Jiangsu Collaborative Innovation Center for Modern Crop Production, China (JCIC-MCP).

About author:  #Correspondence Xiao Wang, E-mail: xiaowang@njau.edu.cn *These authors contributed equally.

Cite this article: 

Yujie He, Yi Wang, Mei Huang, Ziru Zhang, Qing Li, Qin Zhou, Yingxin Zhong, Jian Cai, Stefania Masci, Xiao Wang, Dong Jiang . 2026. Root pre-adaptation: adventitious root plasticity from mild priming enhances hypoxia survival in wheat. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.029

Bester A U, Shimoia E P, Da-Silva C J, Posso D A, Bernardi N D C, Carvalho I R, Correa F M, Oliveira A C B D, Do Amarante L. 2024. Physiological mechanisms of cross-stress and memory in soybean plants subjected to water deficit and waterlogging. Environmental and Experimental Botany, 222, 105749

Bramley H, Turner D W, Tyerman S D, Turner N C. 2007. Water flow in the roots of crop species: The influence of root structure, aquaporin activity, and waterlogging. Advances in Agronomy, 96, 133-196.

Bruce T J A, Matthes M C, Napier J A, Pickett J A. 2007. Stressful "memories" of plants: Evidence and possible mechanisms. Plant Science, 173, 603-608.

Celedonio R P D, Abeledo L G, Mantese A I, Miralles D J. 2017. Differential root and shoot biomass recovery in wheat and barley with transient waterlogging during preflowering. Plant and Soil, 417, 481-498.

Chen Y Y, Huang J F, Song X D, Gao P, Wan S Q, Shi L, Wang X Z. 2018. Spatiotemporal characteristics of winter wheat waterlogging in the middle and lower reaches of the yangtze river, China. Advances in Meteorology, 2018, 3542103.

Ding L, Milhiet T, Parent B, Meziane A, Tardieu F, Chaumont F. 2022. The plasma membrane aquaporin ZmPIP2;5 enhances the sensitivity of stomatal closure to water deficit. Plant Cell and Environment, 45, 1146-1156.

Dong Q. 2008. The method of measuring root system hydraulic conductance of seedling crops of maize and wheat. Agricultural Research in the Arid Areas, 26115-118.

Ejiri M, Fukao T, Miyashita T, Shiono K. 2021. A barrier to radial oxygen loss helps the root system cope with waterlogging-induced hypoxia. Breeding Science, 71, 40-50.

Hilker M, Schwachtje J, Baier M, Balazadeh S, Bäurle I, Geiselhardt S, Hincha D K, Kunze R, Mueller-Roeber B, Rillig M G, Rolff J, Romeis R, Schmülling T, Steppuhn A, Van Dongen J, Whitcomb S J, Wurst S, Zuther E, Kopka J. 2016. Priming and memory of stress responses in organisms lacking a nervous system. Biological Reviews, 91, 1118-1133.

IPCC (Intergovernmental Panel on Climate Change). 2022. Climate Change 2022–Impacts, Adaptation and Vulnerability: Working Group ii Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA, 12851455

Jin N F, Cai Z Y, Ye L Z, Shen Q F, Zhang G P, Xu Z Y. 2025. Improvement of waterlogging tolerance in wheat by the stress priming through inducing aerenchyma formation. Plant Growth Regulation, 105, 245-255.

Kaur G, Singh G, Motavalli P P, Nelson K A, Orlowski J M, Golden B R. 2020. Impacts and management strategies for crop production in waterlogged or flooded soils: A review. Agronomy Journal, 112, 1475-1501.

Kludze H K, Delaune R D, Patrick W H. 1993. Aerenchyma formation and methane and oxygen-exchange in rice. Soil Science Society of America Journal, 57, 386-391.

Kumar A, Verma K, Kashyap R, Joshi V J, Sircar D, Yadav S R. 2024. Auxin-responsive ROS homeostasis genes display dynamic expression pattern during rice crown root primordia morphogenesis. Plant Physiology and Biochemistry, 206, 108307.

Li L L, Dong X N, He M T, Huang M, Cai J, Zhou Q, Zhong Y X, Jiang D, Wang X. 2023. Unravelling the role of adventitious roots under priming-induced tolerance to waterlogging stress in wheat. Environmental and Experimental Botany, 216, 105516.

Liu H J, Wang S F, Yu X B, Yu J, He X W, Zhang S L, Shou H X, Wu P. 2005. ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant Journal, 43, 47-56.

Ogorek L L P, Takahashi H, Nakazono M, Pedersen O. 2023. The barrier to radial oxygen loss protects roots against hydrogen sulphide intrusion and its toxic effect. New Phytologist, 238, 1825-1837.

Pedersen O, Sauter M, Colmer T D, Nakazono M. 2021. Regulation of root adaptive anatomical and morphological traits during low soil oxygen. New Phytologist, 229, 42-49.

Steffens B, Rasmussen A. 2015. The physiology of adventitious roots. Plant Physiology, 170, 603-617.

Sudhakaran S, Thakral V, Padalkar G, Rajora N, Dhiman P, Raturi G, Sharma Y, Tripathi D K, Deshmukh R, Sharma T R, Sonah H. 2021. Significance of solute specificity, expression, and gating mechanism of tonoplast intrinsic protein during development and stress response in plants. Physiologia Plantarum, 172, 258-274.

Sun J Y, Liu X S, Khan I U, Wu X C, Yang Z M. 2021. OsPIP2;3 as an aquaporin contributes to rice resistance to water deficit but not to salt stress. Environmental and Experimental Botany, 183, 104342.

Tan X, Xu H, Khan S, Equiza M A, Lee S H, Vaziriyeganeh M, Zwiazek J J. 2018. Plant water transport and aquaporins in oxygen-deprived environments. Journal of Plant Physiology, 227, 20-30.

Tran-Nguyen N, Pham Anh T, Mukherjee S, Son S, Ayele B T. 2018. Hormonal regulation in adventitious roots and during their emergence under waterlogged conditions in wheat. Journal of Experimental Botany, 69, 4065-4082.

Voesenek L, Bailey-Serres J. 2015. Flood adaptive traits and processes: An overview. New Phytologist, 206, 57-73.

Xu Z Y, Ye L Z, Shen Q F, Zhang G P. 2024. Advances in the study of waterlogging tolerance in plants. Journal of Integrative Agriculture, 23, 2877-2897.

Yamauchi T, Colmer T D, Pedersen O, Nakazono M. 2018. Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress. Plant Physiology, 176, 1118-1130.

Yang P H, Tian Y, Ma J W, Han W H, Sun C, Yin J L, Zhu Y X, Li G. 2025. SiNPs improve the waterlogging tolerance of ginger by increasing water absorption in the root system. Environmental Science-Nano, 12, 3975-3989. 

Yuan L B, Chen M X, Wang L N, Sasidharan R, Voesenek L, Xiao S. 2023. Multi-stress resilience in plants recovering from submergence. Plant Biotechnology Journal, 21, 466-481.

[1] Lin Wang, Fei Liu, Yumeng Bian, Mudi Sun, Zhensheng Kang, Jie Zhao. Revealing inheritance of a Xinjiang isolate BGTB-1 of Puccinia striiformis f. sp. tritici and the shift of pathogenicity from avirulence to virulence at heterozygous AvrYr5 locus[J]. >Journal of Integrative Agriculture, 2026, 25(2): 744-755.
[2] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[3] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[4] Zimeng Liang, Juan Li, Jingyi Feng, Zhiyuan Li, Vinay Nangia, Fei Mo, Yang Liu. Brassinosteroids improve the redox state of wheat florets under low-nitrogen stress and alleviate degeneration[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2920-2939.
[5] Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2902-2919.
[6] Liulong Li, Zhiqiang Mao, Pei Wang, Jian Cai, Qin Zhou, Yingxin Zhong, Dong Jiang, Xiao Wang. Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2888-2901.
[7] Xinhu Guo, Jinpeng Chu, Yifan Hua, Yuanjie Dong, Feina Zheng, Mingrong He, Xinglong Dai. Long-term integrated agronomic optimization maximizes soil quality and synergistically improves wheat yield and nitrogen use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2940-2953.
[8] Jinpeng Li, Siqi Wang, Zhongwei Li, Kaiyi Xing, Xuefeng Tao, Zhimin Wang, Yinghua Zhang, Chunsheng Yao, Jincai Li. Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2974-2988.
[9] Baohua Liu, Ganqiong Li, Yongen Zhang, Ling Zhang, Dianjun Lu, Peng Yan, Shanchao Yue, Gerrit Hoogenboom, Qingfeng Meng, Xinping Chen. Optimizing management strategies to enhance wheat productivity in the North China Plain under climate change[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2989-3003.
[10] Ziqiang Che, Shuting Bie, Rongrong Wang, Yilin Ma, Yaoyuan Zhang, Fangfang He, Guiying Jiang. Mild deficit irrigation delays flag leaf senescence and increases yield in drip-irrigated spring wheat by regulating endogenous hormones[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2954-2973.
[11] Xianhong Zhang, Zhiling Wang, Danmei Gao, Yaping Duan, Xin Li, Xingang Zhou. Wheat cover crop accelerates the decomposition of cucumber root litter by altering the soil microbial community[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2857-2868.
[12] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[13] Abdoul Kader Mounkaila Hamani, Sunusi Amin Abubakar, Yuanyuan Fu, Djifa Fidele Kpalari, Guangshuai Wang, Aiwang Duan, Yang Gao, Xiaotang Ju. The coupled effects of various irrigation schedules and split nitrogen fertilization modes on post-anthesis grain weight variation, yield, and grain quality of drip-irrigated winter wheat (Triticum aestivum L.) in the North China Plain[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2123-2137.
[14] Wei Liu, Xueling Huang, Meng Ju, Mudi Sun, Zhimin Du, Zhensheng Kang, Jie Zhao. Molecular evidence of the west-to-east dispersal of Puccinia striiformis f. sp. tritici in central Shaanxi and the migration of the inoculum from Gansu[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2251-2265.
[15] Tao Liu, Jianliang Wang, Jiayi Wang, Yuanyuan Zhao, Hui Wang, Weijun Zhang, Zhaosheng Yao, Shengping Liu, Xiaochun Zhong, Chengming Sun. Research on the estimation of wheat AGB at the entire growth stage based on improved convolutional features[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1403-1423.
No Suggested Reading articles found!