Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Peanut-based rotations enhance soil carbon sequestration by improving soil aggregate stability in the Huang-Huai-Hai Plain, China

Jing Li1*, Yanlin Jiao2*, Haorui Chi1, Guangcai Zhang1, Jian Zhao2, Tong Si1, Xiaona Yu1, Xiaojun Zhang1, Xiaoxia Zou1#

1 Qingdao Agricultural University, Qingdao 266109, China

2 Yantai Academy of Agricultural Sciences, Yantai 265500, China

  Highlights  

Ø Peanut-based rotations improved soil aggregate stability and carbon storage.

Ø Carbon effect index increased by 37.5–211.7% compared to wheat–maize rotation.

Ø SOC sequestration was primarily driven by increased labile carbon fractions.

 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

在保障农业生产力的同时提升土壤质量,是实现农业可持续发展的核心科学问题之一。多样化种植体系,尤其是以豆科作物为核心的轮作制度,被认为具有显著潜力,但其对土壤团聚体稳定性及土壤碳固持的影响尚缺乏系统认识。本研究旨在评估花生轮作体系对土壤团聚体稳定性和土壤有机碳库特征的影响,并阐明其促进土壤碳固持的作用机制。研究依托黄淮海平原连续6年的田间定位试验,以传统冬小麦–夏玉米轮作(WM)为对照,设置4种花生轮作模式:冬闲–春花生(CP)、冬小麦–夏花生(WP)、冬小麦–夏玉米→冬闲–春花生(WMP)和冬小麦–夏玉米→冬小麦–夏花生(WMWP)。采集020 cm2040 cm土层土壤样品,测定团聚体粒级分布、平均重量直径(MWD)、几何平均直径(GMD)、土壤有机碳(SOC)组分、SOC储量、碳库管理指数以及碳效应指数(CEI)。结果表明,与CPWM相比,花生轮作模式(WPWMPWMWP)显著提高了土壤结构稳定性和碳储量,在表层土壤(020 cm)中,WP处理的MWDGMD分别显著提高24.89%31.03%18.16%26.85%WMP处理分别显著提高40.10%47.29%26.20%35.48%WMWP处理分别显著提高35.80%42.77%23.18%32.24%。土壤碳固持的提升主要归因于小宏团聚体和微团聚体中有机碳的富集,与WM相比,WPWMPWMWP处理的SOC固持速率和固持效率分别提高0.35倍和1.98倍、1.56倍和3.39倍、2.04倍和2.77倍。此外,与WM相比,WPWMPWMWP处理在020 cm土层的CEI分别提高37.47%194.25%211.66%,在2040 cm土层分别提高84.38%115.17%187.26%,其中WMWP处理的提升幅度最大。偏最小二乘路径模型(PLS-PM)分析表明,SOC固持能力的增强主要受活性有机碳组分增加的驱动,尤其是颗粒有机碳和可溶性有机碳;作物多样性提升和团聚体稳定性增强是促进CEI提高的关键因素。综上,花生轮作通过改善土壤结构稳定性显著提高了土壤碳固持。本研究为优化黄淮海平原及相似农区轮作制度、提升土壤健康水平和促进农业长期可持续发展提供了科学依据。



Abstract  

Improving soil quality while maintaining agricultural productivity is a key challenge in sustainable agriculture. Diversified cropping, particularly legume-based rotations, offer a promising strategy, but their effects on aggregates stability and carbon sequestration remain poorly understood. This study aimed to evaluate the effects of peanut-based rotation systems on soil aggregate stability and soil carbon pool characteristics, and to elucidate how these changes contribute to soil carbon sequestration. A six-year field experiment was conducted in the Huang-Huai-Hai Plain of China, four peanut-based rotations were compared with the conventional winter wheat–summer maize mode (WM): winter fallow–spring peanut (CP), winter wheat–summer peanut (WP), winter wheat–summer maize→winter fallow–spring peanut (WMP), and winter wheat–summer maize→winter wheat–summer peanut (WMWP). Soil samples from the 0–20 cm and 20–40 cm layer were analyzed for aggregate size distribution, mean weight diameter (MWD), geometric mean diameter (GMD), soil organic carbon (SOC) fractions, SOC storage, carbon pool management index, and carbon effect index (CEI). Peanut-based rotations (WP, WMP, and WMWP) significantly improved soil structural stability and carbon storage. In the surface soil layer, MWD and GMD increased by 24.89–31.03% and 18.16–26.85% under WP, by 40.10–47.29% and 26.20–35.48% under WMP, and by 35.80–42.77% and 23.18–32.24% under WMWP, respectively, compared with CP and WM. These rotations enhanced carbon sequestration, mainly through small macroaggregates microaggregate. Compared with WM, the rate and efficiency of SOC storage increased by 0.35- and 1.98-fold under WP, by 1.56- and 3.39-fold under WMP, and by 2.04- and 2.77-fold under WMWP, respectively. Compared with WM, the WP, WMP, and WMWP rotations increased the CEI by 37.47, 194.25, and 211.66% in the 0–20 cm layer, and by 84.38, 115.17, and 187.26% in the 20–40 cm layer, respectively, with WMWP exhibiting the greatest enhancement. Partial least squares path modeling (PLS-PM) analysis indicated that the increased SOC sequestration was primarily driven by elevated labile carbon fractions, particularly particulate organic carbon and dissolved organic carbon. Enhanced crop diversity and aggregate stability were the primary drivers of CEI improvement. These findings demonstrate that peanut-based rotations can effectively improve soil structural stability and enhance SOC sequestration. The results provide a scientific basis for optimizing crop rotation strategies to promote soil health and long-term sustainability in the Huang-Huai-Hai Plain and comparable agroecosystems.

Keywords:  peanut-based rotation       soil aggregate       carbon fractions       carbon pool management       carbon storage  
Online: 20 January 2026  
Fund: 

This work was supported by the Earmarked fund for China Agriculture Research System (CARS–13).

About author:  #Correspondence Xiaoxia Zou, E-mail: xxzou@qau.edu.cn *These authors contributed equally to this work.

Cite this article: 

Jing Li, Yanlin Jiao, Haorui Chi, Guangcai Zhang, Jian Zhao, Tong Si, Xiaona Yu, Xiaojun Zhang, Xiaoxia Zou. 2026. Peanut-based rotations enhance soil carbon sequestration by improving soil aggregate stability in the Huang-Huai-Hai Plain, China. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.026

Almeida L F J, Souza I F, Hurtarte L C C, Teixeira P P C, Inagaki T M, Silva I R, Mueller C W. 2021. Forest litter constraints on the pathways controlling soil organic matter formation. Soil Biology & Biochemistry, 163, 108447

Antunes M, De Campos T, Araruna J. 2025. Soil carbon storage and retention: A critical synthesis on concepts, research opportunities and sustainable application in environmental engineering. Revista Brasileira de Ciências Ambientais, 60, e2704.

Atoloye I A, Jacobson A R, Creech J E, Reeve J R. 2022. Soil organic carbon pools and soil quality indicators 3 and 24 years after a one-time compost application in organic dryland wheat systems. Soil & Tillage Research, 224, 105503.

Bach E M, Hofmockel K S. 2014. Soil aggregate isolation method affects measures of intra-aggregate extracellular enzyme activity. Soil Biology and Biochemistry, 69, 54-62.

Bao S D. 1999. Soil Agricultural Chemistry Analysis. Agriculture Press, Beijing. (in Chinese)

Blair G, Lefroy R D B, Lisle L. 1995. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Crop & Pasture Science, 46, 1459–1466.

Chaplot V, Smith P. 2023. Cropping leads to loss of soil organic matter: How can we prevent it? Pedosphere, 33, 8–10.

Edlinger A, Garland G, Banerjee S, Degrune F, García–Palacios P, Herzog C, Pescador D S, Romdhane S, Ryo M, Saghaï A, Hallin S, Maestre F T, Philippot L, Rillig M C, van der Heijden M G A. 2023. The impact of agricultural management on soil aggregation and carbon storage is regulated by climatic thresholds across a 3000 km European gradient. Global Change Biologyogy, 29, 3177–3192.

Elliott E T. 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal, 50, 627–633.

Filep T, Zacháry D, Jakab G, Szalai Z. 2022. Chemical composition of labile carbon fractions in Hungarian forest soils: Insight into biogeochemical coupling between DOM and POM. Geoderma, 419, 115867.

Fohrafellner J, Keiblinger K M, Zechmeister-Boltenstern S, Murugan R, Spiegel H, Valkama E, 2024. Cover crops affect pool specific soil organic carbon in cropland-A meta-analysis. European Journal of Soil Science, 75, e13472.

Gaudel G, Xing L, Shrestha S, Poudel M, Sherpa P, Raseduzzaman M, Zhang X. 2024. Microbial mechanisms regulate soil organic carbon mineralization under carbon with varying levels of nitrogen addition in the above-treeline ecosystem. Science of the Total Environment, 917, 170497.

González-Rosado M, Parras-Alcántara L, Aguilera-Huertas J, Lozano-García B. 2023. Land conversion impacts on soil macroaggregation, carbon sequestration and preservation in tree orchards located in Mediterranean environment (Spain). Agriculture Ecosystems & Environment, 354, 108557.

Guo R, Li G, Pan M, Zheng X, Wang Z, He G. 2023. Effects of straw return and nitrogen application on topsoil organic carbon stock, its fractions, and aggregates. Scientia Agricultura Sinica, 56, 4035–4048. (in Chinese)

Huang P, Zhang J B, Zhu A N, Li X P, Ma D H, Xin X L, Zhang C Z, Wu S J, Garland G, Pereira E I P. 2018. Nitrate accumulation and leaching potential reduced by coupled water and nitrogen management in the Huang-Huai-Hai Plain. Science of the Total Environment, 610, 1020–1028.

Huang X L, Li Y Y, Zhang D D, Zhao Y, Wang,Y, Liu Q X, Dong E R, Wang J S, Jiao X Y. 2024. Long-term organic fertilization combined with deep ploughing enhances carbon sequestration in a rainfed sorghum-maize rotation system. Geoderma, 442, 116778.

Jiang W, Li T, Ma J, Wang X, Cheng Y, Gong L, Zhang J, Chen G. 2025. Organic materials input promotes the soil aggregate sequestration through changing soil aggregates structure and stability. Journal of Environmental Management, 393, 127027.

Lal R. 2015. Restoring soil quality to mitigate soil degradation. Sustainability, 7, 5875–5895.

Lal R. 2019. Carbon cycling in global drylands. Current Climate Change Reports, 5, 221–232.

Lessmann M, Ros G H, Young M D, de Vries W. 2022. Global variation in soil carbon sequestration potential through improved cropland management. Global Change Biology, 28, 1162–1177.

Li G R, Tang X Q, Hou Q M, Li T, Xie H X, Lu Z Q, Zhang T S, Liao Y C, Wen X X. 2023. Response of soil organic carbon fractions to legume incorporation into cropping system and the factors affecting it: A global meta-analysis. Agriculture Ecosystems & Environment, 342, 108231.

Li G R, Yu C Y, Shen P F, Hou Y T, Ren Z H, Li N, Liao Y C, Li T, Wen X X. 2024. Crop diversification promotes soil aggregation and carbon accumulation in global agroecosystems: A meta-analysis. Journal of Environmental Management, 350, 119661.

Li J, Shangguan Z, Deng L. 2022. Free particulate organic carbon plays critical roles in carbon accumulations during grassland succession since grazing exclusion. Soil & Tillage Research, 220, 105380.

Li J, Wen Y C, Li X H, Li Y T, Yang X D, Lin Z, Song Z Z, Cooper J M, Zhao B Q. 2018. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China. Plain Soil & Tillage Research, 175, 281–290.

Li P, Jia L, Chen Q Q, Zhang H J, Deng J J, Lu J Y, Xu L, Li H X, Hu F, Jiao J G. 2024. Adaptive evaluation for agricultural sustainability of different fertilizer management options for a green manure-maize rotation system: Impacts on crop yield, soil biochemical properties and organic carbon fractions. Science of the Total Environment, 908, 168170.  

Liao J, Yang X, Dou Y, Wang B, Xue Z, Sun H, Yang Y, An S. 2023. Divergent contribution of particulate and mineral-associated organic matter to soil carbon in grassland. Journal of Environmental Management, 344, 118536.

Liao L, Wang J, Dijkstra F A, Lei S, Zhang L, Wang X, Liu G, Zhang C. 2024. Nitrogen enrichment stimulates rhizosphere multi-element cycling genes via mediating plant biomass and root exudates. Soil Biology & Biochemistry, 190, 109306.

Liu W, He C, Han S, Lin B, Liu W, Dang Y P, Zhao X, Zhang H. 2025. Enhancing soil ecosystem multifunctionality through combined conservation tillage and legume-based crop rotation in the North China Plain. Agriculture Ecosystems & Environment, 379, 109355.

Liu W X, Wei Y X, Li R C, Chen Z, Wang H D, Virk A L, Lal R, Zhao X, Zhang H L. 2022. Improving soil aggregates stability and soil organic carbon sequestration by no-till and legume-based crop rotations in the North China Plain. Science of the Total Environment, 847, 157518.

Ma P P, Nan S Z, Yang X G, Qin Y, Ma T, Li X L, Yu Y, Bodner G. 2022. Macroaggregation is promoted more effectively by organic than inorganic fertilizers in farmland ecosystems of China-A meta-analysis. Soil & Tillage Research, 221, 105394.

Ma T T, Zhan Y B, Chen W J, Hou Z A, Chai S Y, Zhang J L, Zhang X J, Wang R H, Liu R, Wei Y Q. 2024. Microbial traits drive soil priming effect in response to nitrogen addition along an alpine forest elevation gradient. Science of the Total Environment, 907, 167970.

Meng Q F, Sun Y T, Zhao J, Zhou L R, Ma X F, Zhou M, Gao W, Wang G C. 2014. Distribution of carbon and nitrogen in water-stable aggregates and soil stability under long-term manure application in solonetzic soils of the Songnen plain, Northeast China. Journal of Soils and Sediments, 14, 1041–1049.

Nykamp M, Becker F, Hoelzmann P. 2024. Total organic carbon quantification in soils and sediments: Performance test of a modified sample preparation method. MethodsX, 13, 102934.

Peng L I, Shi Q I, Lin Z, Jun H U, Ying T, Dai Z, Yan Z. 2024. Comprehensive evaluation of soil quality of different vegetation restoration types in mountainous areas of Beijing. Journal of Soil and Water Conservation, 38, 337–346, 356.

Prommer J, Walker T W N, Wanek W, Braun J, Zezula D, Hu Y T, Hofhansl F, Richter A. 2020. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Global Change Biology, 26, 669–681.

Qaswar M, Li D C, Huang J, Han T F, Ahmed W, Ali S, Khan M N, Khan Z H, Xu Y M, Li Q, Zhang H M, Wang B R, Tauqeer A. 2022. Dynamics of organic carbon and nitrogen in deep soil profile and crop yields under long-term fertilization in wheat-maize cropping system. Journal of Integrative Agriculture, 21, 826–839.

Qi Y, Darilek J L, Huang B, Zhao Y, Sun W, Gu Z. 2009. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China, Geoderma, 149, 325–334.

Qian Z, Li Y, Du H, Wang K, Li D. 2023. Increasing plant species diversity enhances microbial necromass carbon content but does not alter its contribution to soil organic carbon pool in a subtropical forest. Soil Biology & Biochemistry, 187, 109183.

Qiao M, Sun R, Wang Z, Dumack K, Xie X, Dai C, Wang E, Zhou J, Sun B, Peng X, Bonkowski M, Chen Y. 2024. Legume rhizodeposition promotes nitrogen fixation by soil microbiota under crop diversification. Nature Communications, 15, 2924.

Raiesi F. 2017. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecological Indicators, 75, 307–320.

Sánchez-Navarro V, Zornoza R, Faz Á, Fernández J A. 2019. Comparing legumes for use in multiple cropping to enhance soil organic carbon, soil fertility, aggregates stability and vegetables yields under semi-arid conditions. Horticultural Science, 246, 835–841.

Sun X, Qian L, Cao Y, Wang M, Li N, Pang R, Si T, Yu X, Zhang X, Zuza E J, Zou X. 2024. Exploration of the optimal low-carbon peanut rotation system in South China. Agricultural Systems221, 104145.

Sun Y, Yang X, Elsgaard L, Du T, Siddique K H M, Kang S, Butterbach-Bahl K. 2024. Diversified crop rotations improve soil microbial communities and functions in a six-year field experiment. Journal of Environmental Management, 370, 122604.

Tao F, Huang Y, Hungate B A, Manzoni S, Frey S D, Schmidt M W I, Reichstein M, Carvalhais N, Ciais P, Jiang L, Lehmann J, Wang Y P, Houlton B Z, Ahrens B, Mishra U, Hugelius G, Hocking T D, Lu X, Shi Z, Luo Y. 2023. Microbial carbon use efficiency promotes global soil carbon storage. Nature, 618, 981–985.

Tian S Y, Zhu B J, Yin R, Wang M W, Jiang Y J, Zhang C Z, Li D M, Chen X Y, Kardol P, Liu M Q. 2022. Organic fertilization promotes crop productivity through changes in soil aggregation. Soil Biology & Biochemistry, 165, 108533.

Vance E D, Brookes P C, Jenkinson D S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703–707.

Wang S, Li T, Zheng Z. 2018. Tea plantation age effects on soil aggregate-associated carbon and nitrogen in the hilly region of western Sichuan, China. Soil & Tillage Research, 180, 91–98.

Witcombe A M, Tiemann L K, Chikowo R, Snapp S S. 2023. Diversifying with grain legumes amplifies carbon in management-sensitive soil organic carbon pools on smallholder farms. Agriculture Ecosystems & Environment, 356, 108611.

Wu Q, Jiang X, Lu Q, Li J, Chen J. 2021. Changes in soil organic carbon and aggregate stability following a chronosequence of Liriodendron chinense plantations. JMIR Formative Research, 32, 355–362.

Xu W, Liu W, Song B, Zhang Y, Tahir A, Cao Y, Kuang C, Guo X, Sun R, Zhang X, Yang Q, Wu Z. 2026. Rubber-based agroforestry systems enhancing soil carbon sequestration through improved soil aggregate stability. Soil and Tillage Research, 257, 106943.

Yan Z, Zhou J, Liu C, Jia R, Mganga K Z, Yang L, Yang Y, Peixoto L, Zang H, Zeng Z. 2023. Legume-based crop diversification reinforces soil health and carbon storage driven by microbial biomass and aggregates. Soil & Tillage Research, 234, 105848.

Yang L, Wang L, Chu J, Zhao H, Zhao J, Zang H, Yang Y, Zeng Z. 2024. Improving soil quality and wheat yield through diversified crop rotations in the North China. Plain Soil & Tillage Research, 244, 106231.

Ye Y Q, Wang H, Luan J W, Ma J H, Ming A G, Niu B L, Liu C J, Freedman Z, Wang J X, Liu S R. 2023. Nitrogen-fixing tree species modulate species richness effects on soil aggregate-associated organic carbon fractions. Forest Ecology and Management, 546, 121315.

Zhang S, Hu W J, Zhang J T, Yu G J, Liu Y Z, Kong Z Y, Wu L. 2024. Long-term cultivation reduces soil carbon storage by altering microbial network complexity and metabolism activity in macroaggregates. Science of the Total Environment, 930, 172788.

Zhang S T, Ren T, Cong W F, Fang Y T, Zhu J, Zhao J, Cong R H, Li X K, Lu J W. 2024. Oilseed rape-rice rotation with recommended fertilization and straw returning enhances soil organic carbon sequestration through influencing macroaggregates and molecular complexity. Agriculture Ecosystems & Environment, 367, 108960.

Zhang W, Surigaoge S, Yang H, Yu R P, Wu J P, Xing Y, ChenY, Li L. 2024. Diversified cropping systems with complementary root growth strategies improve crop adaptation to and remediation of hostile soils. Plant and Soil, 502, 7–30. 

Zhang X, Lu S X, Wang C G, Zhang A E, Wang X D. 2021. Optimization of tillage rotation and fertilization increased the soil organic carbon pool and crop yield in a semiarid region. Land Degradation & Development, 32, 5241–5252.

Zhao J, Chen J, Beillouin D, Lambers H, Yang Y, Smith P, Zeng Z, Olesen J E, Zang H. 2022. Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers. Nature Communications, 13, 4926.

Zhao X, Hao C, Zhang R, Jiao N, Tian J, Lambers H, Liang C, Cong WF, Zhang F. 2023. Intercropping increases soil macroaggregate carbon through root traits induced microbial necromass accumulation. Soil Biology & Biochemistry, 185, 109146.

Zhao Y, Zhao H, Kang L, Li M, Zhang G, Cao Y. 2024. Beyond monocultures: Optimizing soil carbon sequestration with diverse planting strategies on the Loess Plateau. Catena, 246, 108447.

Zheng F, Liu X, Ding W, Song X, Li S, Wu X. 2023. Positive effects of crop rotation on soil aggregation and associated organic carbon are mainly controlled by climate and initial soil carbon content: A meta-analysis. Agriculture Ecosystems & Environment, 355, 108600.

Zhu S Q, Sainju U M, Zhang S H, Tan G Y, Wen M M, Dou Y, Yang R J, Chen J F, Zhao F Z, Wang J. 2024. Cover cropping promotes soil carbon sequestration by enhancing microaggregate-protected and mineral-associated carbon. Science of the Total Environment, 908, 168330.

Zou X X, Huang M M, Yan L, Si T, Zhang X J, Yu X N, Guo F, Wan S B. 2023. Inclusion of peanut in wheat-maize rotation increases wheat yield and net return and improves soil organic carbon pool by optimizing bacterial community. Journal of Integrative Agriculture, 22, 3430–3443.

Zou X X, Shi P X, Zhang C J, Si T, Wang Y F, Zhang X J, Yu X N, Wang H X, Wang M L. 2021. Rotational strip intercropping of maize and peanuts has multiple benefits for agricultural production in the northern agropastoral ecotone region of China. European Journal of Agronomy, 129, 126304.

[1] Xin Wan, Dangjun Wang, Junya Li, Shuaiwen Zhang, Linyang Li, Minghui He, Zhiguo Li, Hao Jiang, Peng Chen, Yi Liu. Land use type shapes carbon pathways in Tibetan alpine ecosystems: Characterization of 13C abundance in aggregates and density fractions[J]. >Journal of Integrative Agriculture, 2026, 25(2): 448-459.
[2] Shunjie Zhu, Liangliang Xu, Chengzhong He, Yongxing Guo, Changqun Duan, Xin Jiang, Shiyu Li, Hailong Yu. Effects of land use type on soil organic carbon in different soil types[J]. >Journal of Integrative Agriculture, 2026, 25(2): 540-552.
[3] Xiaohui Xu, Qiang Chai, Falong Hu, Wen Yin, Zhilong Fan, Hanting Li, Zhipeng Liu, Qiming Wang. Intercropping grain crops with green manure under reduced chemical nitrogen improves the soil carbon stocks by optimizing aggregates in an oasis irrigation area[J]. >Journal of Integrative Agriculture, 2026, 25(1): 326-338.
[4] Xinhu Guo, Jinpeng Chu, Yifan Hua, Yuanjie Dong, Feina Zheng, Mingrong He, Xinglong Dai. Long-term integrated agronomic optimization maximizes soil quality and synergistically improves wheat yield and nitrogen use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2940-2953.
[5] Hongyu Lin, Jing Zheng, Minghua Zhou, Peng Xu, Ting Lan, Fuhong Kuang, Ziyang Li, Zhisheng Yao, Bo Zhu. Crop straw incorporation increases the soil carbon stock by improving the soil aggregate structure without stimulating soil heterotrophic respiration[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1542-1561.
[6] Lijun Ren, Han Yang, Jin Li, Nan Zhang, Yanyu Han, Hongtao Zou, Yulong Zhang. Organic fertilizer enhances soil aggregate stability by altering greenhouse soil content of iron oxide and organic carbon[J]. >Journal of Integrative Agriculture, 2025, 24(1): 306-321.
[7] Sainan Geng, Lantao Li, Yuhong Miao, Yinjie Zhang, Xiaona Yu, Duo Zhang, Qirui Yang, Xiao Zhang, Yilun Wang. Nitrogen rhizodeposition from corn and soybean, and its contribution to the subsequent wheat crops[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2446-2457.
[8] Jialin Yang, Liangqi Ren, Nanhai Zhang, Enke Liu, Shikun Sun, Xiaolong Ren, Zhikuan Jia, Ting Wei, Peng Zhang.

Can soil organic carbon sequestration and the carbon management index be improved by changing the film mulching methods in the semiarid region? [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1541-1556.

[9] Junyu Xie, Jianyong Gao, Hanbing Cao, Jiahui Li, Xiang Wang, Jie Zhang, Huisheng Meng, Jianping Hong, Tingliang Li, Minggang Xu. Calcium carbonate promotes the formation and stability of soil macroaggregates in mining areas of China[J]. >Journal of Integrative Agriculture, 2024, 23(3): 1034-1047.
[10] Changqin Yang, Xiaojing Wang, Jianan Li, Guowei Zhang, Hongmei Shu, Wei Hu, Huanyong Han, Ruixian Liu, Zichun Guo.

Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system [J]. >Journal of Integrative Agriculture, 2024, 23(2): 669-679.

[11] Qiuyan Yan, Linjia Wu, Fei Dong, Shuangdui Yan, Feng Li, Yaqin Jia, Jiancheng Zhang, Ruifu Zhang, Xiao Huang.

Subsoil tillage enhances wheat productivity, soil organic carbon and available nutrient status in dryland fields [J]. >Journal of Integrative Agriculture, 2024, 23(1): 251-266.

[12] BAI Jin-shun, ZHANG Shui-qing, HUANG Shao-min, XU Xin-peng, ZHAO Shi-cheng, QIU Shao-jun, HE Ping, ZHOU Wei. Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen: A 30-year study[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3517-3534.
[13] JI Bing-yi, ZHAO Chi-peng, WU Yue, HAN Wei, SONG Ji-qing, BAI Wen-bo. Effects of super-absorbent polymers on the soil structure and hydro-physical properties following continuous wetting and drying cycles[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3368-3381.
[14] LUAN Hao-an, YUAN Shuo, GAO Wei, TANG Ji-wei, LI Ruo-nan, ZHANG Huai-zhi, HUANG Shao-wen. Changes in organic C stability within soil aggregates under different fertilization patterns in a greenhouse vegetable field[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2758-2771.
[15] WANG Jun-guang, YU Bing, NI Shi-min, GUO Zhong-lu, CAI Chong-fa. Effects of sediment load on the abrasion of soil aggregate and hydraulic parameters in experimental overland flow[J]. >Journal of Integrative Agriculture, 2020, 19(4): 1117-1126.
No Suggested Reading articles found!