Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Effects of land use type on soil organic carbon in different soil types

Shunjie Zhu1, 5*, Liangliang Xu1*, Chengzhong He1, 2*, Yongxing Guo3, Changqun Duan1, Xin Jiang2, Shiyu Li1#, Hailong Yu4#

1 Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments/School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China

2 Kunming General Survey of Natural Resources Center, China Geological Survey, Kunming 650100, China

3 School of Mathematics, Hangzhou Normal University, Hangzhou 311121, China

4 Command Center of Natural Resources Comprehensive Survey, China Geological Survey, Beijing 100055China

5 Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China

 Highlights  l Soil organic carbon (SOC) content in brown and yellow-brown soils exceed those in red, yellow and purple soils. Spring irrigation plays a crucial role in enhancing SOC in farmland. Proper water management facilitates farmland carbon emissions reduction and carbon sink enhancement.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

土壤有机碳动态对生态系统尤其是农业生态系统碳源-汇平衡起决定性作用。然而,目前尚不清楚哪种土地利用类型优化了不同土壤类型的农田碳储存,确定促进碳积累的土地管理措施对于减少农业碳排放和加强碳汇至关重要。本研究以云南东部亚热带高原2132个样点为研究对象,分析了5种土地利用方式(旱地、灌溉地、林地、草地、种植园)5种土壤类型(红壤、黄壤、黄棕壤、棕壤、紫色土)0-20 cm表层土壤的有机碳变化特征。研究土壤有机碳与土壤因子(26种元素)的关系,确定土壤有机碳的影响因素。研究区平均SOC含量为27.78 g kg-1空间异质性表现为东北地区高西南地区低。棕壤有机碳含量最高(P<0.05),其次是黄棕壤,随后依次为、黄、紫色土。灌溉显著提高了土壤有机碳储量,特别是在棕壤中,灌溉地的有机碳含量分别是林地、草地和旱地的2.2倍、2.4倍和1.6倍。在紫色、黄和黄棕壤中也出现了类似的灌溉效益,表明水分限制是土壤有机碳的主要限制因素。土壤有机碳与氮N、硫S、硒(Se)呈显著正相关。施氮具有增强土壤有机碳固存和促进作物硒富集的双重效益,对特色农业具有潜在的支持作用。尽管土地利用方式对土壤有机碳的影响因土壤类型而异(P>0.05),但灌溉始终是碳增汇的最佳管理方式。这些结果表明,有针对性的水分管理可以有效减少水分受限的亚热带高原地区农田碳排放。策略性施氮为土壤肥力和硒生物强化提供了协同效益,为类似生态区域的气候智能型农业提供了切实可行的途径。



Abstract  

Soil organic carbon (SOC) dynamics significantly influence ecosystem carbon source-sink balance, particularly in agroecosystems. However, uncertainty remains regarding optimal land use types for maximizing farmland carbon storage across different soil types, and identifying effective land management practices for enhanced carbon accumulation is essential for reducing agricultural emissions and strengthening carbon sinks. This study examined SOC variations in eastern Yunnan's subtropical highlands (2,132 sites), analyzing topsoil (0-20 cm) across five land uses (dryland, irrigated land, forestland, grassland, plantation) of five soil types (red, yellow, yellow-brown, brown, purple). The investigation explored relationships between SOC and edaphic factors (26 elements) to determine SOC influencing factors. The study area demonstrated a mean SOC content of 27.78 g kg-1, with distinct spatial heterogeneity characterized by lower values in the southwestern sector and higher concentrations in the northeastern region. Brown soils displayed the highest SOC content (P<0.05), followed by yellow-brown then red, yellow, and purple soils. Irrigation significantly enhanced SOC storage, particularly in brown soils where irrigated land contained 2.2-, 2.4-, and 1.6-times higher SOC than forestland, grassland, and dryland, respectively. Similar irrigation benefits occurred in purple, yellow, and yellow-brown soils, indicating moisture limitation as the primary SOC constraint. Notably, SOC exhibited strong positive correlations with nitrogen (N), sulfur (S), and selenium (Se). Nitrogen fertilization demonstrated dual benefits: enhancing SOC sequestration and promoting Se enrichment in crops, potentially supporting specialty agriculture. Although land use impacts on SOC varied across soil types (P>0.05), irrigation consistently emerged as the optimal management for carbon sink enhancement. These findings suggest that targeted water management could effectively reduce farmland carbon emissions in moisture-limited subtropical highlands. Strategic nitrogen application offers co-benefits for soil fertility and selenium biofortification, providing practical pathways for climate-smart agriculture in similar ecoregions.

Keywords:  soil organic carbon       soil type       land use type       carbon storage       agroecosystems  
Online: 26 September 2025  
Fund: 

This research was funded by the Yunnan Provincial Key Programs for Basic Research Project, China (202301AS070087), the Yunnan Provincial R & D Program, China (202405AF140014 and 202302AO370015), and the National Natural Science Foundation of China (42307058).

About author:  #Correspondence Shiyu Li, E-mail: lisy@ynu.edu.cn; Hailong Yu, E-mail: yhailong@mail.cgs.gov.cn *These authors contributed equally to this study.

Cite this article: 

Shunjie Zhu, Liangliang Xu, Chengzhong He, Yongxing Guo, Changqun Duan, Xin Jiang, Shiyu Li, Hailong Yu. 2025. Effects of land use type on soil organic carbon in different soil types. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.09.030

Amaleviciute-Volunge K, Tripolskaja L, Kazlauskaite-Jadzevice A, Slepetiene A, Baksiene E. 2024. Effect of long-term different land uses on improving stable humic compounds in Arenosol. Agriculture, 14, 250.

Anderson D W, Coleman D C. 1985. The dynamics of organic matter in grassland soils. Journal of Soil and Water Conservation, 40, 211-216.

Angst G, Pokorný J, Mueller C W, Prater I, Preusser S, Kandeler E, Meador T, Straková P, Hájek T, Buiten G V, Angst Š. 2021. Soil texture affects the coupling of litter decomposition and soil organic matter formation. Soil Biology and Biochemistry, 159, 108302.

Arul Suganthi C, Raut V V, Bharti N K, Thakur U K, Sri Renganathan P, Jeyakumar S, Saxena M K. 2023. Separation of fluoride in the presence of large amounts of organic acids by ion chromatography. Separation Science and Technology, 58, 2759-2766.

Bai T S, Wang P, Ye C L, Hu S J. 2021. Form of nitrogen input dominates N effects on root growth and soil aggregation: A meta-analysis. Soil Biology and Biochemistry, 157, 108251.

Bouyoucos G J. 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal, 54, 464-465.

Bremner J M. 1960. Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science, 55, 11-33.

Chadwick K, Asner D, Gregory P. 2016. Tropical soil nutrient distributions determined by biotic and hillslope processes. Biogeochemistry, 127, 273-289.

Chen F. 2022. Spatial distribution characteristics and influencing factors of soil organic carbon in karst region. Ph D thesis, Guizhou University, China. (in Chinese)

Chan K Y, Oates A, Li G D, Conyers M K, Prangnell R J, Poile G, Liu D L, Barchia I M. 2010. Soil carbon stocks under different pastures and pasture management in the higher rainfall areas of south-eastern Australia. Soil Research, 48, 7-15.

Cotrufo M F, Ranalli M G, Haddix M L, Six J, Lugato E. 2019. Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, 12, 989-994.

Don A, Schumacher J, Freibauer A. 2011. Impact of tropical landuse change on soil organic carbon stocksa metaanalysis. Global Change Biology, 17, 1658-1670.

Ebabu K, Tsunekawa A, Haregeweyn N, Adgo E, Meshesha D T, Aklog D, Masunaga T, Tsubo M, Sultan D, Fenta A A, Yibeltal M. 2020. Exploring the variability of soil properties as influenced by land use and management practices: A case study in the Upper Blue Nile basin, Ethiopia. Soil and Tillage Research, 200, 104614.

Eyong M O, Ofem K I. 2020. Soil mechanical composition and texture as indices for on-site and field precise choice of land use type to adopt. Asian Soil Resources Journal, 4, 28-43.

Falciani R, Novaro E, Marchesini M, Gucciardi M. 2000. Multi-element analysis of soil and sediment by ICP-MS after a microwave assisted digestion method. Journal of Analytical Atomic Spectrometry, 15, 561-565.

Fernández R, Belmonte V, Quiroga A, Lobartini C, Noellemeyer E. 2021. Land-use change affects soil hydro-physical properties in Mollisols of semiarid Central Argentina. Geoderma Regional, 25, e00394.

Fick S E, Hijmans R. 2017. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315.

Frøseth R B, Thorup-Kristensen K, Hansen S, Bleken M A. 2022. High N relative to C mineralization of clover leaves at low temperatures in two contrasting soils. Geoderma, 406, 115483.

Galindo G G, Appelt H, Schalscha E B. 1969. Sulfur determination in soil extracts by an indirect atomic absorption spectrophotometric method. Soil Science Society of America Journal, 33, 974-975.

Gao Y, Zhang Y, Liu J, An Y, Ma H, Tong S. 2025. Investigating the compensatory effect of legume reseeding on soil organic carbon loss under tillage management in a saline-alkali grassland in the semi-arid region. Ecological Engineering, 210, 107441.

Goldstein S J, Slemmons A K, Canavan H E. 1996. Energy-dispersive X-ray fluorescence methods for environmental characterization of soils. Environmental Science & Technology, 30, 2318-2321.

Guillaume T, Kotowska M M, Hertel D, Knohl A, Krashevska V, Murtilaksono K, Scheu S, Kuzyakov, Y. 2018. Carbon costs and benefits of Indonesian rainforest conversion to plantations. Nature Communications9, 2388.

Harris I, Osborn T J, Jones P, Lister D. 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7, 109.

Han D, Li X, Xiong S, Tu S, Chen Z, Li J, Xie Z. 2013. Selenium uptake, speciation and stressed response of Nicotiana tabacum L. Environmental and Experimental Botany, 95, 6-14.

He S, Zhao Y Y, Liu C P, Li Z H, Zhang Z Y, Li B, Tang X D. 2022. An exploration into the relationship between mineral elements (nitrogen and phosphorus) and nutritional quality in soil-watermelon (Citrullus lanatus) system. Journal of Analytical Science and Technology, 13 48.

Just B S, Marks E A N, Roquer-Beni L, Llenas L, Ponsà S, Vilaplana R. 2024. Biofertilization increases soil organic carbon concentrations: Results of a meta-analysis. International Journal of Agricultural Sustainability, 22, 2361578.

Jiang Y, Zhang S, Gao B, Wei R, Ding X. 2022. Fe (II)-OM complexes formed by straw returning combined with optimized nitrogen fertilizer could be beneficial to nitrogen storage in saline-alkaline paddy soils. Agronomy, 12, 2295.

Jordon M W, Buffet J C, Dungait J A, Galdos M V, Garnett T, Lee M R F, Lynch J, Röös E, Searchinger T D, Smith P, Godfray H C J. 2024. A restatement of the natural science evidence base concerning grassland management, grazing livestock and soil carbon storage. Proceedings of the Royal Society (B: Biological Sciences), 291, 20232669.

Kong W L, Huo R W, Lu Y, Fan Z J, Yue R Q, Ren A X, Li L H, Ding P C, Ren Y K, Gao Z Q, Sun M. 2023. Nitrogen application can optimize form of selenium in soil in selenium-rich areas to affect selenium absorption and accumulation in black wheat. Plants, 12, 4160.

Krauss M, Wiesmeier M, Don A, Cuperus F, Gattinger A, Gruber S, Haagsma W K, Peigné J, Chiodelli Palazzoli M, Schulz F, van der Heijden M G A, Vincent-Caboud L, Wittwer R A, Zikeli S, Steffens M. 2022. Reduced tillage in organic farming affects soil organic carbon stocks in temperate Europe. Soil and Tillage Research, 216, 105262.

Kutova A, Shediei L, Skrylnik I, Mykhaylyn V, Semenenko I. 2024. Soil carbon sequestration and stocks following land-use types change. Scientific Papers. Series A. Agronomy, 67, 129-135.

Lal R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma, 123, 1-22.

Laub M, Corbeels M, Ndungu S M, Mucheru-Muna M W, Mugendi D, Necpalova M, Broek M V D, Waswa W, Vanlauwe B, Six J. 2023. Combining manure with mineral N fertilizer maintains maize yields: Evidence from four long-term experiments in Kenya. Field Crops Research, 291, 108788.

Lehmann J, Hansel C M, Kaiser C, Kleber M, Maher K, Manzoni S, Nunan N, Reichstein M, Schimel J P, Torn M S, Wieder W R, Kögel-Knabner I. 2020. Persistence of soil organic carbon caused by functional complexity. Nature Geoscience, 13, 529-534.

Li A W, Ran M, Song L Y, Xue J L, Zang Y Y, Li C J, Deng Q, Fang H Y, Dai F, Li Q Q2023. Spatial distribution characteristics and influencing factors of cropland topsoil organic carbon content in the Sichuan Basin. Resources and Environment in the Yangtze Basin, 32, 1102-1112. (in Chinese)

Li H Q, Shen Y J, Wang W L, Wang H T, Li H, Su J Q. 2021. Soil pH has a stronger effect than arsenic content on shaping plastisphere bacterial communities in soil. Environmental Pollution, 287, 117339.

Li J, Wen Y C, Li X H, Li Y T, Yang X D, Lin Z A, Song Z Z, Cooper J M, Zhao B Q. 2018. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil and Tillage Research, 175, 281-290.

Li L, Qin F C, Jiang L, Yao X L, Wang X. 2019. Effects of land use type and terrain on soil organic carbon (SOC) content in semi-arid region. Soil, 51, 406-412. (in Chinese)

Li Y, Li Y. 2025. Nitrogen addition enhances soil carbon and nutrient dynamics in Chinese croplands: A machine learning and nationwide synthesis. Carbon Balance and Management, 20, 15.

Li Z, Liang D L, Peng Q, Cui Z W, Huang J, Lin Z Q. 2017. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review. Geoderma, 295, 69-79.

Li Z W, Wang S G, Chen X L, Nie X D, Zhang Y, Liu G P, Zeng W Y. 2014. Effect of Land use type of red soil hilly region on distribution of soil labile organic carbon properties under the condition of soil erosion. Journal of Hunan University (Natural Sciences), 41, 88-93. (in Chinese)

Liddle K, McGonigle T, Koiter A. 2020. Microbe biomass in relation to organic carbon and clay in soil. Soil Systems, 4, 41.

Liu Q, Yu Z Y, Wang X M, Zhao S L. 2022. Organic fertilizer increases soil organic carbon and crop yield in four-year tillage and crop rotations on the Loess Plateau, China. Applied Ecology & Environmental Research, 204271-4282.

Liang K, He X, He B, Guo X, Li T. 2022. Runoff-associated nitrogen and phosphorus losses under natural rainfall events in purple soil area: The role of land disturbance and slope length. Water Supply, 22, 1995-2007.

Luo B L, Li J W, Tang J H, Wei C F, Zhong S Q. 2024. Microtopography effects on pedogenesis in the mudstone-derived soils of the hilly mountainous regions. Scientific Reports, 14, 11998.

Luo X Z, Zhang L L, Lin Y B, Wen D Z, Hou E Q. 2023. Nitrogen availability mediates soil organic carbon cycling in response to phosphorus supply: A global meta-analysis. Soil Biology and Biochemistry, 185, 109158.

Medeiros A D S, Soares A A S, Maia S M F. 2022. Soil carbon stocks and compartments of organic matter under conventional systems in Brazilian semi-arid region. Revista Caatinga, 35, 697-710.

Meng Q Y, Diao T T, Yan L, Sun Y B. 2023. Effects of single and combined contamination of microplastics and cadmium on soil organic carbon and microbial community structural: A comparison with different types of soil. Applied Soil Ecology, 183, 104763.

Ni H, Liu C, Sun B, Liang Y. 2022. Response of global farmland soil organic carbon to nitrogen application over time depends on soil type. Geoderma, 406, 115542.

Nyaupane K, Mishra U, Tao F, Yeo K, Riley W J, Hoffman F M, Gautam S. 2024. Observational benchmarks inform representation of soil organic carbon dynamics in land surface models. Biogeosciences, 21, 5173-5183.

Nuralykyzy B, Nurzhan A, Li N, Huang Q, Zhu Z L, An S S. 2023. Influence of land use types on soil carbon fractions in the Qaidam Basin of the Qinghai-Tibet Plateau. Catena, 231, 107273.

Ortiz A C, Jin L X, Ogrinc N, Kaye J, Krajnc B, Ma L. 2022. Dryland irrigation increases accumulation rates of pedogenic carbonate and releases soil abiotic CO2. Scientific Reports, 12, 464.

Ortner M, Seidel M, Semella S, Udelhoven T, Vohland M, Thiele-Bruhn S. 2022. Content of soil organic carbon and labile fractions depend on local combinations of mineral-phase characteristics. Soil, 8, 113-131.

Poeplau C, Don A. 2015. Carbon sequestration in agricultural soils via cultivation of cover crops–A meta-analysis. Agriculture, Ecosystems & Environment, 200, 33-41.

Raza S, Miao N, Wang P Z, Ju X T, Chen Z J, Zhou J B, Kuzyakov Y. 2020. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Global Change Biology26, 3738-3751.

Roe S, Streck C, Beach R, Busch J, Chapman M, Daioglou V, Deppermann A, Doelman J, Emmet-Booth J, Engelmann J, Fricko O, Frischmann C, Funk J, Grassi G, Griscom B, Havlik P, Hanssen S, Humpenöder F, Landholm D, Lomax G, et al. 2021. Land‐based measures to mitigate climate change: Potential and feasibility by country. Global Change Biology, 27, 6025-6058.

Schaetzl R, Anderson S. 2005. Soils: Genesis and Geomorphology. Cambridge University Press, Cambridge.

Shah S A A, Xu M, Abrar M M, Mustafa A, Fahad S, Shah T, Shah S A A, Yan X Y, Zhou W, Zhang S L, Nan S, Shi W Q. 2021. Long-term fertilization affects functional soil organic carbon protection mechanisms in a profile of Chinese Loess Plateau soil. Chemosphere, 267, 128897.

Shen J, Wang X G, Ma H, 2021. Effects of fertilizer application on the process of soil organic carbon loss in a purple soil farmland. Chinese Journal of Ecological Agriculture, 29, 1571-1581. (in Chinese)

Shi T S, Collins S L, Yu K, Peñuelas J, Sardans J, Li H, Ye J S. 2024. A global meta-analysis on the effects of organic and inorganic fertilization on grasslands and croplands. Nature Communications15, 3411.

Si Q T N, Chen K L, Wei B, Zhang Y W, Sun X, Liang J Y. 2024. Dissolved carbon flow to particulate organic carbon enhances soil carbon sequestration. Soil, 10, 441-450.

Six J, Paustian K, Elliott E T, Combrink C. 2000. Soil structure and organic matter I. Distribution of aggregatesize classes and aggregateassociated carbon. Soil Science Society of America Journal, 64, 681-689.

Smith P, Soussana J F, Angers D, Schipper L, Chenu C, Rasse D P, Batjes N H, Egmond F V, McNeill S, Kuhnert M, Arias-Navarro C, Olesen J E, Chirinda N, Fornara D, Wollenberg E, Álvaro-Fuentes J, Sanz-Cobena A, Klumpp K. 2020. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biology, 26, 219-241.

Tang B, Rocci K S, Lehmann A, Rillig M C. 2023. Nitrogen increases soil organic carbon accrual and alters its functionality. Global Change Biology, 29, 1971-1983.

Udom B E, Ogunwole J O. 2015. Soil organic carbon, nitrogen, and phosphorus distribution in stable aggregates of an Ultisol under contrasting land use and management history. Journal of Plant Nutrition and Soil Science, 178, 460-467.

Virto I, Barré P, Chenu C. 2008. Microaggregation and organic matter storage at the silt-size scale. Geoderma, 146, 326-335.

Walkley A J, Black I A. 1934. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38.

Wang H L, Wang J C, Zhang Y, He G X, Wen S Z. 2023. Spatial distribution of soil organic carbon and its response to forest growth and soil layer in Cunninghamia lanceolata plantations in mid-subtropical China. Forest Ecology and Management, 545, 121302.

Wang Q Q, Xu H, Ma C B, Xue Y D, Wang C J, Xu M G, Zhang W J. 2018. Change of soil fertility and productivity of purple soil in Western China in recent 30 years. Journal of Plant Nutrition and Fertilizers, 24, 1492-1499.

Wang T L, Wang G Y, Innes J L, Seely B, Chen B Z. 2017. ClimateAP: An application for dynamic local downscaling of historical and future climate data in Asia Pacific. Frontiers of Agricultural Science and Engineering, 4, 448-458.

Wang X L, Wang A, Shi H H, Liu Z Y, Ma D M. 2014. Soil organic carbon density under different land use types on the Nanchangshan Island of Miaodao Archipelago. Acta Scientiae Circumstantiae, 34, 1009-1015. (in Chinese)

Wen W, Peng Y G, Tan YF, Shi Z J. 2018. Characteristics of organic carbon distribution of major types of forest soils in Shenzhen. Journal of Southwest Forestry University (Natural Science), 38, 106-113. (in Chinese)

Wiesmeier M, Spörlein P, Geuß U, Hangen E, Haug S, Reischl A, Schilling B, Lützow M V, Kögel-Knabner I. 2012. Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Global Change Biology, 18, 22332245.

Xiao T, Ran F W, Li Z W, Wang S L, Nie X D, Liu Y J, Yang C R, Tan M, Feng S R. 2023. Sediment organic carbon dynamics response to land use change in diverse watershed anthropogenic activities. Environment International, 172, 107788.

Xu Y N, Sheng J, Zhang L P, Sun G F, Zheng J C. 2025. Organic fertilizer substitution increased soil organic carbon through the association of microbial necromass C with iron oxides. Soil and Tillage Research, 248, 106402.

Yang L, Jia W X, Shi Y, Zhang Z Y, Xiong H, Zhu G F. 2020. Spatiotemporal differentiation of soil organic carbon of grassland and its relationship with soil physicochemical properties on the northern slope of Qilian mountains, China. Sustainability, 12, 9396.

Yang Y, Dou Y, Wang B, Wang Y, Liang C, An S, Soromotin A, Kuzyakov Y. 2022. Increasing contribution of microbial residues to soil organic carbon in grassland restoration chronosequence. Soil Biology and Biochemistry, 170, 108688.

Yang Y H, Shi Y, Sun W J, Chang J F, Zhu J X, Chen L Y. Fang J Y. 2022. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science in China (Life Sciences)52, 534-574. (in Chinese)

Ye X H, Li J Q, Ma J H, Fan Q F, Yu N, Zhang Y L, Zou H T, Zhang Y L. 2023. Drip irrigation at a soil water suction of 30 kPa Helps AMF and GRSP to enhance greenhouse macro-aggregates. Agronomy, 13, 522.

Yi T F, Xiang Y, Jiang J J, Peng L M2023. Determination of total boron in soil and deposit by inductively coupled plasma optical emission spectroscopy with four acids-microwave digestion. Chinese Journal of Inorganic Analytical Chemistry13, 576-581. (in Chinese)

Yu M Z, Zhang L L, Xu X X, Feger K H, Wang Y H, Liu W Z, Schwaerzel K. 2015. Impact of land-use changes on soil hydraulic properties of Calcaric Regosols on the Loess Plateau, NW China. Journal of Plant Nutrition and Soil Science, 178, 486-498.

Zenda T, Liu S T, Dong A Y, Duan H J. 2021. Revisiting sulphur-The once neglected nutrient: It’s roles in plant growth, metabolism, stress tolerance and crop production. Agriculture, 11, 626.

Zhou W, Wen S L, Zhang Y L, Gregory A S, Xu M G, Shah S A A, Zhang W J, Wu H H, Hartley I P. 2022. Long-term fertilization enhances soil carbon stability by increasing the ratio of passive carbon: Evidence from four typical croplands. Plant and Soil, 478, 579-595.

Zhou Y, Wu W L, Meng F Q, Liu Y Y, Li H F2014. Review on the Content, Specification of Selenium and Its Availability in Soils. Journal of Agricultural Resources and Environment, 31, 527-532.

Zhou Y C, Li D Y, Li Z L, Guo S B, Chen Z M, Wu L L, Zhao Y. 2023. Greenhouse gas emissions from soils amended with cornstalk biochar at different addition ratios. International Journal of Environmental Research and Public Health, 20, 927.

[1] Yulu Chen, Li Huang, Jusheng Gao, Zhen Zhou, Muhammad Mehran, Mingjian Geng, Yangbo He, Huimin Zhang, Jing Huang. Long-term Chinese milk vetch incorporation promotes soil aggregate stability by affecting mineralogy and organic carbon[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2371-2388.
[2] Chao Ma, Zhifeng He, Jiang Xiang, Kexin Ding, Zhen Zhang, Chenglong Ye, Jianfei Wang, Yusef Kianpoor Kalkhajeh. A meta-analysis to explore the impact of straw decomposing microorganism inoculant-amended straw on soil organic carbon stocks[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1577-1587.
[3] Hongyu Lin, Jing Zheng, Minghua Zhou, Peng Xu, Ting Lan, Fuhong Kuang, Ziyang Li, Zhisheng Yao, Bo Zhu. Crop straw incorporation increases the soil carbon stock by improving the soil aggregate structure without stimulating soil heterotrophic respiration[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1542-1561.
[4] Lijun Ren, Han Yang, Jin Li, Nan Zhang, Yanyu Han, Hongtao Zou, Yulong Zhang. Organic fertilizer enhances soil aggregate stability by altering greenhouse soil content of iron oxide and organic carbon[J]. >Journal of Integrative Agriculture, 2025, 24(1): 306-321.
[5] Jialin Yang, Liangqi Ren, Nanhai Zhang, Enke Liu, Shikun Sun, Xiaolong Ren, Zhikuan Jia, Ting Wei, Peng Zhang.

Can soil organic carbon sequestration and the carbon management index be improved by changing the film mulching methods in the semiarid region? [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1541-1556.

[6] CHANG Fang-di, WANG Xi-quan, SONG Jia-shen, ZHANG Hong-yuan, YU Ru, WANG Jing, LIU Jian, WANG Shang, JI Hong-jie, LI Yu-yi. Maize straw application as an interlayer improves organic carbon and total nitrogen concentrations in the soil profile: A four-year experiment in a saline soil[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1870-1882.
[7] SUN Tao, TONG Wen-jie, CHANG Nai-jie, DENG Ai-xing, LIN Zhong-long, FENG Xing-bing, LI Jun-ying, SONG Zhen-wei. Estimation of soil organic carbon stock and its controlling factors in cropland of Yunnan Province, China[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1475-1487.
[8] ZHANG Wen-zhao, CHEN Xiao-qin, WANG Huo-yan, WEI Wen-xue, ZHOU Jian-min. Long-term straw return influenced ammonium ion retention at the soil aggregate scale in an Anthrosol with rice-wheat rotations in China[J]. >Journal of Integrative Agriculture, 2022, 21(2): 521-531.
[9] LI Teng-teng, ZHANG Jiang-zhou, ZHANG Hong-yan, Chrisite PHRISITE, ZHANG Jun-ling. Fractionation of soil organic carbon in a calcareous soil after long-term tillage and straw residue management[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3611-3625.
[10] ZHOU Lei, XU Sheng-tao, Carlos M. MONREAL, Neil B. MCLAUGHLIN, ZHAO Bao-ping, LIU Jing-hui, HAO Guo-cheng. Bentonite-humic acid improves soil organic carbon, microbial biomass, enzyme activities and grain quality in a sandy soil cropped to maize (Zea mays L.) in a semi-arid region[J]. >Journal of Integrative Agriculture, 2022, 21(1): 208-221.
[11] LIU Kai-lou, HAN Tian-fu, HUANG Jing, ZHANG Shui-qing, GAO Hong-jun, ZHANG Lu, Asad SHAH, HUANG Shao-min, ZHU Ping, GAO Su-duan, MA Chang-bao, XUE Yan-dong, ZHANG Hui-min.
Change of soil productivity in three different soils after long-term field fertilization treatments
[J]. >Journal of Integrative Agriculture, 2020, 19(3): 848-858.
[12] GUAN Song, LIU Si-jia, LIU Ri-yue, ZHANG Jin-jing, REN Jun, CAI Hong-guang, LIN Xin-xin. Soil organic carbon associated with aggregate-size and density fractions in a Mollisol amended with charred and uncharred maize straw[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1496-1507.
[13] CHEN Xu, HAN Xiao-zeng, YOU Meng-yang, YAN Jun, LU Xin-chun, William R. Horwath, ZOU Wen-xiu . Soil macroaggregates and organic-matter content regulate microbial communities and enzymatic activity in a Chinese Mollisol[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2605-2618.
[14] WANG Shi-chao, ZHAO Ya-wen, WANG Jin-zhou, ZHU Ping, CUI Xian, HAN Xiao-zeng, XU Ming-gang, LU Chang-ai . The efficiency of long-term straw return to sequester organic carbon in Northeast China's cropland[J]. >Journal of Integrative Agriculture, 2018, 17(2): 436-448.
[15] LIN Er-da, GUO Li-ping, JU Hui. Challenges to increasing the soil carbon pool of agro-ecosystems in China[J]. >Journal of Integrative Agriculture, 2018, 17(04): 723-725.
No Suggested Reading articles found!