Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
A rapid and highly efficient tobacco ringspot virus (TRSV)-induced gene silencing system based on vacuum infiltration and tenoxicam co-cultivation in melon

Jiyu Wang1*, Xiang Li1, 2*, Xiaoxue Liang1, 4, Yingying Chen1, Lei Cao1, Qiong Li1, Zhiqiang Cheng5, Yan Guo5, Junlong Fan5, Wenwen Mao1, 2, Chen Luo1, 2, Lili Li1, 2, Panqiao Wang1, 2, Luming Yang1, 2, 3, Juan Hou1, 2, 3, #, Jianbin Hu1, 2, 3#

1 College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China

2 Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou 450002, China

3 Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou 450002, China

4 College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China

5 Kaifeng Academy of Agricultural and Forestry, Kaifeng 475001, China

 Highlights 

1. A rapid and high-efficiency TRSV-mediated VIGS method for melon was developed using vacuum infiltration of germinated seeds.

2. This method achieved 95.2% silencing efficiency with 80% transformation frequency, completing the entire process from seed treatment to observable phenotype within just 11 days.

3. Tenoxicam (TNX) supplementation during co-culture significantly improved transformation efficiency by suppressing immune gene expression.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

甜瓜是一种全球重要的葫芦科作物,但其功能基因组学研究因遗传转化效率低而受限。病毒诱导的基因沉默(VIGS)技术能够实现基因的快速验证和高通量筛选。本研究评估了三种病毒载体基于真空侵染和子叶注射两种方法介导的基因沉默效率,开发了一种基于真空侵染的烟草环斑病毒(TRSV)介导的 VIGS 体系。该体系在甜瓜中表现出显著的沉默效率并加速了表型呈现。报告基因 CmPDS(八氢番茄红素脱氢酶)被有效沉默,导致整个叶片表面完全光漂白。该方法实现了95.2%的沉默效率和80%的转化效率,从种子处理到可观察表型显现,整个过程仅需11天。共培养阶段添加替诺昔康(TNX,一种奥昔康类非甾体抗炎药)可显著提高不同基因型甜瓜的转化效率,最高可达93.3%。实时荧光定量 PCR(qRT-PCR)分析显示TNX 可能通过减弱植物免疫反应来促进转化。为验证该体系的广泛适用性,我们沉默了镁螯合酶 H 亚基基因(CmChlH),成功诱导出预期的黄化叶表型。本研究建立的 VIGS 体系为探究甜瓜早期发育阶段的基因功能提供了有力的工具,同时为葫芦科作物 VIGS 体系的构建奠定了基础,加速了其遗传研究进程。



Abstract  

Melon is a globally important cucurbit crop, but its functional genomics are hindered by inefficient genetic transformation. Virus-induced gene silencing (VIGS) enables rapid gene analysis and high-throughput screening. In this study, we evaluated the silencing efficiency of three viral vectors delivered via vacuum infiltration and cotyledon injection. We developed an optimized tobacco ringspot virus (TRSV)-mediated VIGS system using vacuum infiltration, which exhibited remarkable silencing efficiency and accelerated phenotypic manifestation in melon. The reporter gene CmPDS (phytoene desaturase) was effectively silenced, resulting in complete photobleaching across the entire leaf surface. This method achieved 95.2% silencing efficiency with 80% transformation frequency, completing the entire process from seed treatment to observable phenotype within just 11 days. Supplementing with tenoxicam (TNX, oxicam-type nonsteroidal anti-inflammatory drugs NSAIDs) during co-culture significantly enhanced transformation frequency to 93.3% across diverse genotypes. qRT-PCR showed TNX may boost transformation by attenuating plant immunity. To validate the system’s broad applicability, we silenced the Mg-chelatase H subunit (CmChlH) gene, resulting in the expected yellow-leaf phenotype. The VIGS system developed herein provides a powerful tool for investigating gene function during early melon development. Also, this work establishes a foundational framework for VIGS system construction and accelerates genetic research in other cucurbit species.

Keywords:  Melon       VIGS       TRSV       vacuum infiltration       tenoxicam       silencing efficiency  
Online: 13 January 2026  
Fund: 

This study was supported by grants from the National Natural Science Foundation of China (32472729, 31902038, 32472740 and 32573009), Postgraduate Education Reform and Quality Improvement Project of Henan Province (YJS2024ZX20), Youth Talent Promotion Project of Henan Province (2022HYTP035), Key Scientific Research Project of the Higher Education Institutions of Henan Province (24A210012), and the Key Scientific and Technological Project of Henan Province (242102110164 and 252102111138).

About author:  Jiyu Wang, E-mail: wangjiyu662022@163.com; Xiang Li, E-mail: lixiang0813@henau.edu.cn; #Corresponding authors: Juan Hou, E-mail: houjuan@henau.edu.cn; Jianbin Hu, E-mail: jianbinhu@henau.edu.cn; *These authors contributed equally to this work.

Cite this article: 

Jiyu Wang, Xiang Li, Xiaoxue Liang, Yingying Chen, Lei Cao, Qiong Li, Zhiqiang Cheng, Yan Guo, Junlong Fan, Wenwen Mao, Chen Luo, Lili Li, Panqiao Wang, Luming Yang, Juan Hou, Jianbin Hu. 2026. A rapid and highly efficient tobacco ringspot virus (TRSV)-induced gene silencing system based on vacuum infiltration and tenoxicam co-cultivation in melon. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.014

Baulcomber D C. 1999. Fast forward genetics based on virus-induced gene silencing. Current Opinion in Plant Biology, 2, 409411.

Bu R F, Wang R H, Wei Q C, Hu H Y, Sun H L, Song P W, Yu Y G, Liu Q L, Zheng Z C, Li T, Li D X, Wang L, Chen S J, Wu L L, Wu J Y, Li, C W. 2019. Silencing of glycerol-3-phosphate acyltransferase 6 (GPAT6) gene using a newly established virus induced gene silencing (VIGS) system in cucumber alleviates autotoxicity mimicked by cinnamic acid (CA). Plant Soil, 438, 329346.

Burch-Smith T M, Anderson J C, Martin G B, Dinesh-Kumar S P. 2004. Applications and advantages of virus-induced gene silencing for gene function studies in plants. The Plant Journal, 39, 734–746.

Chen C, Fang Z, Du M, Yang, C, Yang Y, Zhou X, Yang X. 2025. Establishment of efficient Trichosanthes mottle mosaic virus-derived gene silencing in cucurbit plants. Stress Biology, 5, 35.

Chen J, Mohan R, Zhang Y, Li M, Chen H, Palmer IA, Chang M, Qi G, Spoel S H, Mengiste T, Wang D, Liu F, Fu Z Q. 2019. NPR1 promotes its own and target gene expression in plant defense by recruiting CDK81. Plant Physiology, 181, 289–304.

Chen L, Chen Y, Zhang H, Shen Y, Cui Y, Luo P. 2024. ERF54 regulates cold tolerance in Rosa multiflora through DREB/COR signaling pathways. Plant Cell Environment, 47, 1185–1206.

Cheng J, Shao Y, Hu X, Gao L, Zheng X, Tan B, Ye X, Wang W, Zhang H, Wang X, Lian X, Li Z, Feng J, Zhang L. 2024. A simple and efficient gene functional analysis method for studying the growth and development of peach seedlings. Horticulture research, 11, uhae155.

Choi S W, Kumaishi K, Motohashi R, Enoki H, Chacuttayapong W, Takamizo T, Saika H, Endo M, Yamada T, Hirose A, Koizuka N, Kimura S, Kawakatsu Y, Koga H, Ito E, Shirasu K, Ichihashi Y. 2022. Oxicam-type nonsteroidal anti-inflammatory drugs enhance Agrobacterium-mediated transient transformation in plants. Plant Biotechnology, 39, 323–327.

Chovelon V, Restier V, Giovinazzo N, Dogimont C, Aarrouf J. 2011. Histological study of organogenesis in Cucumis melo L. after genetic transformation: why is it difficult to obtain transgenic plants? Plant Cell Reports, 30, 2001–2011.

Dombrovsky A, Tran-Nguyen L T, Jones R A. 2017. Cucumber green mottle mosaic virus: rapidly increasing global distribution, etiology, epidemiology, and management. Annual Review of Phytopathology, 55, 231–256.

Ezura H, Yuhashi K-I, Yasuta T, Minamisawa K. 2000. Effect of ethylene on Agrobacterium tumefaciens-mediated gene transfer to melon. Plant Breeding, 119, 75–79.

Fang L, Wei X, Liu L, Zhou L, Tian Y, Geng C, Li X. 2021. A tobacco ringspot virus-based vector system for gene and microRNA function studies in cucurbits. Plant Physiology, 186, 853–864.

Feng J, Wang N, Li Y, Wang H, Zhang W, Wang H, Chai S. 2023. Recent progress in genetic transformation and gene editing technology in cucurbit crops. Agronomy, 13, 15.

García-Almodóvar R C, Gosalvez B, Aranda M A, Burgos L. 2017. Production of transgenic diploid Cucumis melo plants. Plant Cell Tissue and Organ Culture, 130, 323–333.

Hiriart J B, Aro E M, Lehto K. 2003. Dynamics of the VIGS-mediated chimeric silencing of the Nicotiana benthamiana CHLH gene and of the tobacco mosaic virus vector. Molecular Plant Microbe Interactions, 16, 99–106.

Hirschberg J. 2001. Carotenoid biosynthesis in flowering plants. Current Opinion in Plant Biology, 4, 210–218.

Hou M, Cao Y, Zhang X, Zhang S, Jia T, Yang J, Han S, Wang L, Li J, Wang H, Zhang L, Wu X, Duan C, Li H. 2023. Genome-wide association study of maize resistance to Pythium aristosporum stalk rot. Frontiers in Plant Science, 14, 1239635. 

Huang C, Qian Y, Li Z, Zhou X. 2012. Virus-induced gene silencing and its application in plant functional genomics. Science China Life Sciences, 55, 99–108.

Igarashi A, Yamagata K, Sugai T, Takahashi Y, Sugawara E, Tamura A, Yaegashi H, Yamagishi N, Takahashi T, Isogai M, Takahashi H, Yoshi-kawa N. 2009. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology, 386, 407–416.

Ishihama N, Choi S W, Noutoshi Y, Saska I, Asai S, Takizawa K, He S Y, Osada H, Shirasu K. 2021. Oxicam-type non-steroidal anti-inflammatory drugs inhibit NPR1-mediated salicylic acid pathway. Nature Communications, 12, 7303.

Ju Z, Wang L, Cao D, Zuo J, Zhu H, Fu D, Luo Y, Zhu B. 2016. A viral satellite DNA vector-induced transcriptional gene silencing via DNA methylation of gene promoter in Nicotiana benthamiana. Virus Research, 223, 99–107.

Kumagai M, Donson J, Della-Cioppa G, Harvey D, Hanley K, Grill L. 1995. Cyto-plasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proceedings of National Academy of Sciences of the United States of America, 92, 1679–1683.

Li L, Li Q, Chen B, Wang J, Ding F, Wang P, Zhang X, Hou J, Luo R, Li X, Zheng J, Yang S, Yang L, Zhu L, Sun S, Ma C, Li Q, Li Y, Hu J. 2023. Identification of candidate genes that regulate the trade-off between seedling cold tolerance and fruit quality in melon (Cucumis melo L.). Horticulture research10, uhad093.

Li L, Zhang X, Ding F, Hou J, Wang J, Luo R, Mao W, Li X, Zhu H, Yang L, Li Y, Hu J. 2024. Genome-wide identification of the melon (Cucumis melo L.) response regulator gene family and functional analysis of CmRR6 and CmPRR3 in response to cold stress. Journal of Plant Physiology, 292, 154160.

Li M, Duan X Y, Gao, G., Liu, T., Qi, H.Y., 2022. CmABF1 and CmCBF4 cooperatively regulate putrescine synthesis to improve cold tolerance of melon seedlings. Horticulture research, 9, 002.

Li X, Cao C, Liu Y, Bolaños-Villegas P, Wang J, Zhou R, Hou J, Li Q, Mao W, Wang P, Li L, Luo C, Fan J, Guo Y, Cheng Z, Hu J. 2025. Enhancing genetic transformation efficiency of melon (Cucumis melo L.) through an extended sucrose-removal co-culture. Plant Cell Reports, 44, 123.

Li Y, Feng C, Xing Y, Li M, Wang X, Du Q, Xiao H, Li J, Wang J. 2024. The NIN-LIKE PROTINE1 (CsNLP1) transcription factor is involved in modulating the nitrate response in cucumber seedlings. Environmental Experimental Botany, 217, 105581.

Liao J J, Wang C H, Xing Q J, Li Y P, Liu X F, Qi H Y. 2019. Overexpression and VIGS system for functional gene validation in oriental melon (Cucumis melo var. Makuwa Makino). Plant Cell Tissue and Organ Culture, 137, 275–284.

Liu L, Peng B, Zhang Z, Wu Y, Miras M, Aranda M A, Gu Q. 2017. Exploring different mutations at a single amino acid position of Cucumber green mottle mosaic virus replicase to attain stable symptom attenuation. Phytopathology, 107, 1080–1086.

Liu M, Liang Z, Aranda M A, Hong N, Liu L, Kang B, Gu Q. 2020. A cucumber green mottle mosaic virus vector for virus-induced gene silencing in cucurbit plants. Plant Methods, 16, 9.

Liu Q, Ning Y, Zhang Y, Yu N, Zhao C, Zhan X, Wu W, Chen D, Wei X, Wang G L, Cheng S, Cao L. 2017. OsCUL3a negatively regulates cell death and immunity by degrading OsNPR1 in Rice. The Plant Cell, 29, 345–359.

Liu Q, Xu K, Yi L, Hou Y, Li D, Hu H, Zhou F, Song P, Yu Y, Wei Q, Guan Y, Hu P, Bu R, Chen E, Su X, Li H, Li C. 2021. A rapid, simple, and highly efficient method for VIGS and in vitro-inoculation of plant virus by INABS applied to crops that develop axillary buds and can survive from cuttings. BMC Plant Biology, 21, 545.

Liu W, Zhang Z, Wu Y, Zhang Y, Li X, Li J, Zhu W, Ma Z, Li W. 2024. Terpene synthases GhTPS6 and GhTPS47 participate in resistance to Verticillium dahliae in upland cotton. Plant Physiology Biochemistry, 213, 108798.

Ma L, Wang Q, Zheng Y, Guo J, Yuan S, Fu A, Bai C, Zhao X, Zheng S, Wen C, Guo S, Gao L, Grierson D, Zuo J, Xu Y. 2022. Cucurbitaceae genome evolution, gene function and molecular breeding. Hort. Res. 9, uhab057.

Mackinney G. 1941. Absorption of light by chlorophyll solutions. Journal of Biological Chemistry, 140, 315–322.

Opabode J. 2006. Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnology Molecular Biology Reviews, 1, 12–20.

Pawelkowicz M, Zieniuk B, Staszek P, Przybysz A. 2024. From sequencing to genome editing in cucurbitaceae: application of modern genomic techniques to enhance plant traits. Agriculture, 14, 41.

Qi X, Mo Q, Li J, Zi Z, Xu M, Yue S, Zhao H, Zhu H, Wang G. 2023. Establishment of virus-induced gene silencing (VIGS) system in Luffa acutangula using Phytoene desaturase (PDS) and tendril synthesis related gene (TEN). Plant Methods, 19, 94.

Ramegowda V, Mysore K S, Senthil-Kumar M. 2014. Virus-induced gene silencing is a versatile tool for unraveling the functional relevance of multiple abiotic-stress-responsive genes in crop plants. Frontiers in Plant Science, 5, 323.

Ratcliff F, Martin-Hernandez A M, Baulcombe D C. 2001. Technical advance: tobacco rattle virus as a vector for analysis of gene function by silencing. Plant Journal, 25, 237–245.

Ratcliff F, Martin-Hernandez A M, Baulcombe D C. 2001. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant Journal, 25, 237–245.

Rhee S J, Jang Y J, Park J Y, Ryu J, Lee G P. 2022. Virus-induced gene silencing for in planta validation of gene function in cucurbits. Plant Physiol. 190, 2366–79.

Robertson D. 2004. VIGS vectors for gene silencing: many targets, many tools. Annual Review of Plant Biology, 55, 495–519.

Rössner C, Lotz D, Becker A. 2022. VIGS Goes Viral: How VIGS transforms our understanding of plant science. Annual Review of Plant Biology, 73, 703–728.

Ruiz M T, Voinnet O, Baulcombe D C. 1998. Initiation and maintenance of virus-induced gene silencing. The Plant Cell, 10, 937–946.

Shi G, Hao M, Tian B, Cao G, Wei F, Xie Z. 2021. A methodological advance of tobacco rattle virus-induced gene silencing for functional genomics in plants. Frontiers in Plant Science, 12, 671091.

Tian Y, Fang Y, Zhang K, Zhai Z, Yang Y, He M, Cao X. 2024. Applications of Virus-Induced Gene Silencing in Cotton. Plants, 13, 272. 

Tsuda K, Mine A, Bethke G, Igarashi D, Botanga C J, Tsuda Y, Glazebrook J, Sato M, Katagiri F. 2013. Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in Arabidopsis thaliana. PLoS Genetics, 9, e1004015.

Wildermuth M C, Dewdney J, Wu G, Ausubel F M. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature, 414, 562–565.

Yamagishi N, Yoshikawa N. 2022. Efficient virus-induced gene silencing system in pumpkin (Cucurbita maxima) using apple latent spherical virus vector. Journal of Virological Methods, 301, 114456.

Yan H X, Fu D Q, Zhu B Z, Liu H P, Shen X Y, Luo Y B. 2012. Sprout vacuum-infiltration: A simple and efficient agroinoculation method for virus-induced gene silencing in diverse solanaceous species. Plant Cell Reports, 31, 1713–1722.

Yang F, Li G, Felix G, Albert M, Guo M. 2023. Engineered Agrobacterium improves transformation by mitigating plant immunity detection. New Phytologist, 237, 2493–2504.

Yang W, Lou X, Li J, Pu M, Mirbahar A A, Liu D, Sun J, Zhan K, He L, Zhang A. 2017. Cloning and Functional Analysis of MADS-box Genes, TaAG-A and TaAG-B, from a Wheat K-type Cytoplasmic Male Sterile Line. Frontiers in Plant Science, 8, 1081.

Yu J, Wu S, Sun H, Wang X, Tang X, Guo S, Zhang Z, Huang S, Xu Y, Weng Y, Mazourek M, McGregor C, Renner S S, Branham S, Kousik C, Wechter W P, Levi A, Grumet R, Zheng Y, Fei Z. 2023. CuGenDBv2: an updated database for cucurbit genomics. Nucleic Acids Research, 51, D1457–D1464.

Zhang J, Yu D, Zhang Y, Liu K, Xu K, Zhang F, Wang J, Tan G, Nie X, Ji Q, Zhao L, Li C. 2017. Vacuum and co-cultivation agroinfiltration of (germinated) seeds results in tobacco rattle virus (TRV) mediated whole-plant virus-induced gene silencing (VIGS) in wheat and maize. Frontiers in Plant Science, 8, 393.

Zhang T, Cui H, Luan F, Liu H, Ding Z, Amanullah S, Zhang M, Ma T, Gao P. 2023. A recessive gene Cmpmr2F confers powdery mildew resistance in melon (Cucumis melo L.). Theoretical and Applied Genetics, 136, 4.

Zhang J, Tian J, Tai D Q, Li K T, Zhu Y J, Yao Y C. 2016. An optimized TRV-based virus-induced gene silencing protocol for Malus crabapple. Plant Cell Tissue and Organ Culture, 126, 499–509.

Zhao F, Lim S, Igori D, Yoo R H, Kwon S Y, Moon J S. 2016. Development of tobacco ringspot virus-based vectors for foreign gene expression and virus-induced gene silencing in a variety of plants. Virology, 492, 166–178.

Zhou T, Dong L, Jiang T, Fan Z. 2022. Silencing specific genes in plants using virus-induced gene silencing (VIGS) vectors. Methods in Molecular Biology, 2400, 149–161.

Ziemienowicz A. 2014. Agrobacterium-mediated plant transformation: factors, applications and recent advances. Biocatalysis and Agricultural Biotechnology, 3, 95–102.

 

Figure Legends

Fig. 1. Systemic infection analysis of TRSV, TRV and CGMMV in melon (HH14) plants. A-C, Structures of the pTRSV-CmPDS (A), pTRV-CmPDS (B) and pV190-CmPDS (C) vectors used in this study. D-F, Detection of pTRSV-CmPDS (D), pTRV-CmPDS (E) and pV190-CmPDS (F) recombinant vector fragments after cotyledon injection. Lane 1: Marker, Lane 2: Empty pTRSV (D), pTRV (E), and pV190 (F) negative control, respectively. Lanes 3-7: TRSV RNA (D), TRV RNA (E), and CGMMV RNA (F) detected in the first true leaf, respectively.


Fig. 2. Evaluation of infiltration methods for CGMMV-, TRSV-, and TRV-mediated CmPDS silencing in melon (HH14). A, Vacuum infiltration-induced CmPDS silencing in germinated melon seeds. Phenotypic images were captured at 20 dpi, scale bars in the first column = 3.5 cm, scale bars in columns 2-4 = 2 cm. B, Cotyledon injection-induced CmPDS silencing in melon seedlings. Phenotypic images were captured at 30 dpi, scale bars in the first column = 3.5 cm, scale bars in columns 2-6 = 4 cm. C, Vacuum infiltration-mediated pTRSV-CmPDS VIGS phenotypes in melon at multiple time points post-inoculation. Scale bars, 3.5 cm. D, Phenotypic characterization and chlorophyll fluorescence analysis of pTRSV-CmPDS-inoculated melon at 21 days post vacuum infiltration. E, Chlorophyll content in melon leaves of pTRSV-CmPDS at 21 days post vacuum infiltration. F-H, Relative expression levels of CmPDS in VIGS-silenced plants at 20 days post vacuum infiltration. I-K, Relative expression levels of CmPDS in VIGS-silenced plants at 20 days post cotyledon injection. The columns represent the mean values ± SD (n =3) (*P <0.05, **P <0.01by Student’s t test, ns = nonsignificant).


Fig. 3. Effect of TNX supplementation during co-culture on transformation efficiency of TRSV-mediated VIGS via vacuum infiltration in different melon genotypes. A-D, Comparative analysis of pTRSV-CmPDS transformation efficiency in melon genotypes (HH14, H906, VED, and XZM) under differential infection pressures with/without TNX. E, Silencing phenotypes in pTRSV-CmPDS-inoculated melon genotypes at 14 dpi. Scale bars, 3.5 cm. F, Quantitative analysis of TRSV accumulation in pTRSV-CmPDS-inoculated melon 'HH14' under TNX-supplemented co-culture conditions (1-3 days). G-K, Expression analysis of defense response markers (CmMAPK4, CmPR1, CmFRK1, CmNPR1, and CmICS1) in pTRSV-CmPDS-inoculated melon 'HH14' under TNX-supplemented co-culture for 3 days. The columns represent the mean values ± SD (n =3) (*P <0.05, **P <0.01by Student’s t test).


Fig. 4. Evaluation of TRSV-, CGMMV-mediated VIGS via vacuum infiltration in melon using CmChlH as a reporter gene. A, Silencing phenotypes of pTRSV-CmChlH and pV190-CmChlH-inoculated melon via vacuum infiltration. Column 2 displays enlarged images of regions marked by red dashed boxes in column 1. Scale bars, 3.5 cm. B-C, Relative expression levels of CmChlH in VIGS-silenced plants. The columns represent the mean values ± SD (n =3) (*P <0.05, **P <0.01by Student’s t test).

[1] Jian Ma, Guoliang Yuan, Xinyang Xu, Haijun Zhang, Yanhong Qiu, Congcong Li, Huijun Zhang. Identification and molecular marker development for peel color gene in melon (Cucumis melo L.)[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2589-2600.
[2] Ming Ma, Tingting Hao, Xipeng Ren, Chang Liu, Gela A, Agula Hasi, Gen Che. NAC family gene CmNAC34 positively regulates fruit ripening through interaction with CmNAC-NOR in Cucumis melo[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2601-2618.
[3] Martín Flores-Saavedra, Pietro Gramazio, Santiago Vilanova, Diana M. Mircea, Mario X. Ruiz-González, Óscar Vicente, Jaime Prohens, Mariola Plazas. Introgressed eggplant lines with the wild Solanum incanum evaluated under drought stress conditions[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2203-2216.
[4] Jin Wang, Minghua Wei, Haiyan Wang, Changjuan Mo, Yingchun Zhu, Qiusheng Kong. A time-course transcriptome reveals the response of watermelon to low-temperature stress[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1786-1799.
[5] Yong Yang, Rong Fan, Xuejun Zhang, Meihua Li, Yongbing Zhang, Hongping Yi, Manrui Ma, Yun Yang, Bin Liu, Xingwang Liu, Huazhong Ren. Mutation in CmGhc1 confers the white hypocotyl phenotype in melon (Cucumis melo L.)[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4242-4254.
[6] Dongming Liu, Jinfang Liang, Quanquan Liu, Yaxin Chen, Shixiang Duan, Dongling Sun, Huayu Zhu, Junling Dou, Huanhuan Niu, Sen Yang, Shouru Sun, Jianbin Hu, Luming Yang. The pseudo-type response regulator gene Clsc regulates rind stripe coloration in watermelon[J]. >Journal of Integrative Agriculture, 2025, 24(1): 147-160.
[7] Shuang Pei, Zexu Wu, Ziqiao Ji, Zheng Liu, Zicheng Zhu, Feishi Luan, Shi Liu. Quantitative trait loci identification reveals zinc finger protein CONSTANS-LIKE 4 as the key candidate gene of stigma color in watermelon (Citrullus lanatus)[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2292-2305.
[8] Jiali Ying, Yan Wang, Liang Xu, Tiaojiao Qin, Kai Xia, Peng Zhang, Yinbo Ma, Keyun Zhang, Lun Wang, Junhui Dong, Lianxue Fan, Yuelin Zhu, Liwang Liu.

Establishing VIGS and CRISPR/Cas9 techniques to verify RsPDS function in radish [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1557-1567.

[9] Hu Wang, Lihong Cao, Yalu Guo, Zheng Li, Huanhuan Niu. Enhancer of Shoot Regeneration 2 (ESR2) regulates pollen maturation and vitality in watermelon (Citrullus lanatus)[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3506-3521.
[10] Xiaoxue Liang, Jiyu Wang, Lei Cao, Xuanyu Du, Junhao Qiang, Wenlong Li, Panqiao Wang, Juan Hou, Xiang Li, Wenwen Mao, Huayu Zhu, Luming Yang, Qiong Li, Jianbin Hu. An allelic variation in the promoter of the LRR-RLK gene, qSS6.1, is associated with melon seed size[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3522-3536.
[11] Caixiang Wang, Meili Li, Dingguo Zhang, Xueli Zhang, Juanjuan Liu, Junji Su. Knockdown of the atypical protein kinase genes GhABC1K2-A05 and GhABC1K12-A07 make cotton more sensitive to salt and PEG stress[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3370-3386.
[12] CHEN Ke-xin, DAI Dong-yang, WANG Ling, YANG Li-min, LI Dan-dan, WANG Chao, JI Peng, SHENG Yun-yan. SLAF marker based QTL mapping of fruit-related traits reveals a major-effect candidate locus ff2.1 for flesh firmness in melon[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3331-3345.
[13] WU Jia-xing, ZHANG Song, LIANG Xiao-fei, XING Fei, Sagheer ATTA, WANG Xue-feng, CAO Meng-ji. Development and pathogenicity analysis of full-length infectious cDNA clones of citrus yellow mottle-associated virus in citrus plants[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3034-3041.
[14] ZHU Ying-chun, YUAN Gao-peng, JIA Sheng-feng, AN Guo-lin, LI Wei-hua, SUN De-xi, LIU Jun-pu. Transcriptomic profiling of watermelon (Citrullus lanatus) provides insights into male flowers development[J]. >Journal of Integrative Agriculture, 2022, 21(2): 407-421.
[15] WANG Chao-nan, LUAN Fei-shi, LIU Hong-yu, Angela R. DAVIS, ZHANG Qi-an, DAI Zu-yun, LIU Shi. Mapping and predicting a candidate gene for flesh color in watermelon[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2100-2111.
No Suggested Reading articles found!