Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Boll-leaf system photosynthesis reveals systemic chilling responses in cotton

Pei Yang1, Cao Cheng1, Peng Yan1, Fubin Liang1, Jingshan Tian1, Yali Zhang1, Chuangdao Jiang2, Wangfeng Zhang1#

1 Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China

2 Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China

 Highlights 

1. A multidimensional evaluation system was established to assess chilling tolerance in cotton, based on key physiological and biochemical traits.

2. Functional divergence between main stem and sympodial leaves revealed distinct stress response strategies under chilling conditions.

3. The net photosynthetic rate of the boll–leaf system [Pn(BLS)] was proposed as a novel and efficient indicator for rapid screening of chilling-tolerant cultivars.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

低温胁迫是限制棉花(Gossypium hirsutum L.)产量和品质形成的主要非生物因子,尤以花铃期影响最大。建立科学、精准的耐低温性评价体系对选育和筛选抗低温品种具有重要意义。本研究以14个陆地棉品种为试材,在花铃期设置为期三天的低温胁迫处理(15°C/10°C,昼/夜),测定主茎叶和果枝叶的光合色素、气体交换、叶绿素荧光参数、抗氧化酶活性及膜脂过氧化等生理生化指标。通过主成分分析(PCA)和隶属函数法构建综合评价指数(D值),并以整株生物量抗性系数(RCBM)进行验证。同时,结合系统聚类分析对品种耐低温等级进行划分,并采用偏最小二乘回归(PLSR)筛选关键耐低温生理指标。结果显示,低温显著抑制棉花光合作用并诱导氧化损伤,果枝叶对胁迫更为敏感。PCA揭示主茎叶在低温胁迫下主要依赖光合抗氧化协同防御机制,而果枝叶则呈现出以损伤信号驱动为主的响应模式。基于主茎叶生理指标构建的D值与RCBM高度相关(R² = 0.92, P < 0.001),为植株低温耐受性评价的最优方案。PLSR分析确定净光合速率(Pn)和过氧化物酶(POD)为两类叶片共有的核心指标。此外,铃叶系统光合速率[Pn(BLS)]的抗性系数亦与RCBM显著相关(R² = 0.84, P < 0.001),显示出其作为简便高效指标在棉花品种抗性快速筛选中的应用潜力。本研究构建了科学可靠的棉花耐低温性综合评价体系,明确了主茎叶在整株低温耐受性预测中的关键作用,并提出将 Pn(BLS)作为反映低温胁迫下棉花系统性光合响应的机制性指标。



Abstract  

Chilling stress is a major abiotic factor that limits the yield and quality of cotton (Gossypium hirsutum L.), particularly during the flowering and boll-setting stages. Developing a scientific and precise evaluation system for chilling tolerance is important for the screening and breeding of tolerant cultivars. In this study, 14 early maturing upland cotton cultivars were subjected to a three-day chilling stress treatment (15°C/10°C, day/night) during the flowering and boll-setting stages. Physiological and biochemical parameters, including photosynthetic pigments, gas exchange, chlorophyll fluorescence, antioxidant enzyme activities, and membrane lipid peroxidation, were measured in both the main and sympodial leaves. A comprehensive evaluation index (D-value) was constructed based on principal component analysis (PCA) and membership function and validated by the resistance coefficient of whole-plant biomass (RCBM). Systematic cluster analysis was used to classify chilling tolerance levels, and partial least squares regression (PLSR) was applied to identify key physiological indicators. The results showed that chilling stress significantly suppressed photosynthesis and induced oxidative damage, with sympodial leaves being more sensitive than main stem leaves. PCA revealed that main-stem leaves primarily relied on a “photosynthesis–antioxidant coordinated defense” mechanism, while sympodial leaves exhibited a “damage signal-driven” response pattern. The D-value based on main-stem leaf traits was highly correlated with the whole-plant biomass resistance coefficient (R²=0.92, P<0.001), indicating that it is the most effective indicator for assessing plant chilling tolerance. PLSR analysis identified the net photosynthetic rate (Pn) and peroxidase (POD) activity as the core indicators shared by both leaf types. Furthermore, the resistance coefficient of boll–leaf system photosynthesis [Pn(BLS)] was also significantly correlated with RCBM (R²=0.84, P<0.001), suggesting its great potential as a simple and efficient indicator for rapid screening. This study developed a reliable and systematic evaluation strategy for chilling tolerance in cotton, highlighted the predictive value of main stem leaf traits, and proposed Pn(BLS) as a mechanistic indicator reflecting systemic photosynthetic responses under chilling stress.

Keywords:  cotton       chilling stress       tolerance evaluation       main-stem leaf       sympodial leaf       boll–leaf system photosynthesis  
Online: 22 December 2025  
Fund: 

This study was financially supported by the Research Fund of the National Natural Science Foundation of China (U1803234).

About author:  #Correspondence Wangfeng Zhang, E-mail: zhwf_agr@shzu.edu.cn

Cite this article: 

Pei Yang, Cao Cheng, Peng Yan, Fubin Liang, Jingshan Tian, Yali Zhang, Chuangdao Jiang, Wangfeng Zhang. 2025. Boll-leaf system photosynthesis reveals systemic chilling responses in cotton. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.039

Adhikari L, Baral R, Paudel D, Min D, Makaju S O, Poudel H P, Acharya J P, Missaoui A M. 2022. Cold stress in plants: Strategies to improve cold tolerance in forage species. Plant Stress, 4, 100081.

Airaki M, Leterrier M, Mateos R M, Valderrama R, Chaki M, Barroso J B, Del Rio L A, Palma J M, Corpas F J. 2012. Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant, Cell and Environment, 35, 281-295.

Bao W W, Chen X, Li R N, Li M, Xie C J, Dou M R, Zhang K Z, Huang Y, Zhang Y N, Li Z G, Li G, Hu D Y, Li G J. 2024. Comprehensive assessment of drought resistance and recovery in kiwifruit genotypes using multivariate analysis. The Plant Journal, 119, 100-114.

Bao X, Hou X, Duan W, Yin B, Ren J, Wang Y, Liu X, Gu L, Zhen W. 2023. Screening and evaluation of drought resistance traits of winter wheat in the North China Plain. Frontiers in Plant Science, 14, 1194759.

Boyer J S, Wong S C, Farquhar G D. 1997. CO2 and water vapor exchange across leaf cuticle (epidermis) at various water potentials. Plant Physiology, 114, 185-191.

Cakmak I, Marschner H. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 98, 1222-1227.

Chang T G, Zhu X G. 2017. Source-sink interaction: A century old concept under the light of modern molecular systems biology. Journal of Experimental Botany, 68, 4417-4431.

Chen M, Liang F, Yan Y, Wang Y, Zhang Y, Tian J, Jiang C, Zhang W. 2021a. Boll-leaf system gas exchange and its application in the analysis of cotton photosynthetic function. Photosynthesis Research, 150, 251-262.

Chen M, Zhang Y, Liang F, Tang J, Ma P, Tian J, Jiang C, Zhang W. 2021b. The net photosynthetic rate of the cotton boll-leaf system determines boll weight under various plant densities. European Journal of Agronomy, 125, 126251.

Chen M, Zhu X, Zhang Y, Du Z, Chen X, Kong X, Sun W, Chen C. 2020. Drought stress modify cuticle of tender tea leaf and mature leaf for transpiration barrier enhancement through common and distinct modes. Scientific Reports, 10, 6696.

Dai J, Tian L, Zhang Y, Zhang D, Xu S, Cui Z, Li Z, Li W, Zhan L, Li C, Dong H. 2022. Plant topping effects on growth, yield, and earliness of field-grown cotton as mediated by plant density and ecological conditions. Field Crops Research, 275, 108337.

Ding Y, Shi Y, Yang S. 2019. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytologist, 222, 1690-1704.

Draper H H, Hadley M. 1990. Malondialdehyde determination as index of lipid peroxidation. In: Packer L, Glazer A N, eds., Methods in Enzymology. Academic Press, San Diego. pp. 421-431.

Equiza M A, Miravé J P, Tognetti J. 2001. Morphological, anatomical and physiological responses related to differential shoot vs. root growth inhibition at low temperature in spring and winter wheat. Annals of Botany, 87, 67-76.

Feng L, Wan S, Zhang Y, Dong H. 2024. Xinjiang cotton: Achieving super-high yield through efficient utilization of light, heat, water, and fertilizer by three generations of cultivation technology systems. Field Crops Research, 312, 109401.

Feng Y, Chen Z, Chen L, Han M, Liu J, Liu Y, Chai R, Wang J, Sun S, Fan J, Yan X, Guo Y. 2025. Comprehensive evaluation of physio-morphological traits of alfalfa (Medicago sativa L.) varieties under salt stress. Physiologia Plantarum, 177, e70044.

Gao H, Li N, Li J, Khan A, Ahmad I, Wang Y, Wang F, Luo H. 2021. Improving boll capsule wall, subtending leaves anatomy and photosynthetic capacity can increase seed cotton yield under limited drip irrigation systems. Industrial Crops and Products, 161, 113214.

Gao X B, Wang Y H, Chen B L, Li J, Zhou Z G. 2012. Effect of nitrogen concentration in the subtending leaves of cotton bolls on the strength of source and sink during boll development. Acta Ecologica Sinica, 32, 238-246.

Garen J C, Michaletz S T. 2024. Temperature governs the relative contributions of cuticle and stomata to leaf minimum conductance. New Phytologist, 245, 1911-1923.

Giannopolitis C N, Ries S K. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59, 309-314.

Ghatak A, Chaturvedi P, Weckwerth W. 2017. Cereal crop proteomics: Systemic analysis of crop drought stress responses towards marker-assisted selection breeding. Frontiers in Plant Science, 8, 757.

Guo C, Zhu L, Sun H, Han Q, Wang S, Zhu J, Zhang Y, Zhang K, Bai Z, Li A, Liu L, Li C. 2024. Evaluation of drought-tolerant varieties based on root system architecture in cotton (Gossypium hirsutum L.). BMC Plant Biology, 24, 127.

Han W, Liu S, Wang J, Lei Y, Zhang Y, Han Y, Wang G, Feng L, Li X, Li Y, Wang Z. 2022. Climate variation explains more than half of cotton yield variability in China. Industrial Crops and Products, 190, 115905.

Hassan M A, Xiang C, Farooq M, Muhammad N, Zhang Y, Xu H, Yu K, Attiogbe K B, Zhang L, Li J. 2021. Cold stress in wheat: Plant acclimation responses and management strategies. Frontiers in Plant Science, 12, 676884.

Jans Y, von Bloh W, Schaphoff S, Müller C. 2021. Global cotton production under climate change–Implications for yield and water consumption. Hydrology and Earth System Sciences, 25, 2027-2044.

Liang F, Chen M, Shi Y, Tian J, Zhang Y, Gou L, Zhang W, Jiang C. 2021. Single boll weight depends on photosynthetic function of boll-leaf system in field-grown cotton plants under water stress. Photosynthesis Research, 150, 227-237.

Liang Y, Xie W, Yang C, Yu B, Qin Q, Wang Y, Gan Y, Liu R, Qiu Z, Cao B, Yan S. 2024. A quick and effective method for thermostability differentiation in cucumber (Cucumis sativus L.). Physiologia Plantarum, 176, e14215.

Lichtenthaler H K, Buschmann C. 2001. Extraction of photosynthetic tissues: Chlorophylls and carotenoids. Current Protocols in Food Analytical Chemistry, 1, F4.2.1-F4.2.6.

Liu J, Meng Y, Lv F, Chen J, Ma Y, Wang Y, Chen B, Zhang L, Zhou Z. 2015. Photosynthetic characteristics of the subtending leaf of cotton boll at different fruiting branch nodes and their relationships with lint yield and fiber quality. Frontiers in Plant Science, 6, 747.

Liu L, Wang X, Chang C. 2022. Toward a smart skin: Harnessing cuticle biosynthesis for crop adaptation to drought, salinity, temperature, and ultraviolet stress. Frontiers in Plant Science, 13, 961829.

Lokhande S, Reddy K R. 2014. Quantifying temperature effects on cotton reproductive efficiency and fiber quality. Agronomy Journal, 106, 1275-1282.

Meacham-Hensold K, Fu P, Wu J, Serbin S, Montes C M, Ainsworth E, Guan K, Dracup E, Pederson T, Driever S, Bernacchi C. 2020. Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging. Journal of Experimental Botany, 71, 2312-2328.

Morales M, Munné-Bosch S. 2019. Malondialdehyde: Facts and artifacts. Plant Physiology, 180, 1246-1250.

Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880.

Poorter H, Niklas K J, Reich P B, Oleksyn J, Poot P, Mommer L. 2012. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50.

Qian Z, He L, Li F. 2024. Understanding cold stress response mechanisms in plants: An overview. Frontiers in Plant Science, 15, 1443317.

Quamruzzaman M, Manik S N, Livermore M, Johnson P, Zhou M, Shabala S. 2022. Multidimensional screening and evaluation of morpho-physiological indices for salinity stress tolerance in wheat. Journal of Agronomy and Crop Science, 208, 454-471.

Raj S R G, Nadarajah K. 2022. QTL and candidate genes: Techniques and advancement in abiotic stress resistance breeding of major cereals. International Journal of Molecular Sciences, 24, 6.

Rajput V D, Harish, Singh R K, Verma K K, Sharma L, Quiroz-Figueroa F R, Meena M, Gour V S, Minkina T, Sushkova S, Mandzhieva S. 2021. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology, 10, 267.

Read S M, Northcote D H. 1981. Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein. Analytical Biochemistry, 116, 53-64.

Riederer M, Schreiber L. 2001. Protecting against water loss: Analysis of the barrier properties of plant cuticles. Journal of Experimental Botany, 52, 2023-2032.

Rymen B, Fiorani F, Kartal F, Vandepoele K, Inzé D, Beemster G T. 2007. Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. Plant Physiology, 143, 1429-1438.

Soualiou S, Duan F, Li X, Zhou W. 2022. Crop production under cold stress: An understanding of plant responses, acclimation processes, and management strategies. Plant Physiology and Biochemistry, 190, 47-61.

Steduto P, Çetinkökü Ö, Albrizio R, Kanber R. 2002. Automated closed-system canopy-chamber for continuous field-crop monitoring of CO2 and H2O fluxes. Agricultural and Forest Meteorology, 111, 171-186.

Stirbet A, Govindjee. 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology (B: Biology), 104, 236-257.

Strasser R J, Tsimilli-Michael M, Srivastava A. 2004. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G C, Govindjee eds., Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer Netherlands, Dordrecht. pp. 321-362.

Theocharis A, Clément C, Barka E A. 2012. Physiological and molecular changes in plants grown at low temperatures. Planta, 235, 1091-1105.

Wold S, Sjöström M, Eriksson L. 2001. PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109-130.

Wullschleger S D, Oosterhuis D M. 1990a. Photosynthetic carbon production and use by developing cotton leaves and bolls. Crop Science, 30, 1259-1264.

Wullschleger S D, Oosterhuis D M. 1990b. Photosynthesis of individual field-grown cotton leaves during ontogeny. Photosynthesis Research, 23, 163-170.

Wullschleger S D, Oosterhuis D M. 1990c. Photosynthetic and respiratory activity of fruiting forms within the cotton canopy. Plant Physiology, 94, 463-469.

Xiao F, Yang Y L, Wang Y T, Ma H, Zhang W F. 2017. Effects of low temperature on PSI and PSII photoinhibition in cotton leaf at boll stage. Acta Agronomica Sinica, 43, 1057-1070. (in Chinese)

Xu C, Wang Y, Yang H, Tang Y, Liu B, Hu X, Hu Z. 2023. Cold acclimation alleviates photosynthetic inhibition and oxidative damage induced by cold stress in citrus seedlings. Plant Signaling and Behavior, 18, 2285169.

Xue D, Zhang X, Lu X, Chen G, Chen Z H. 2017. Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Frontiers in Plant Science, 8, 621.

Yang L, Liu X, Duan J, Du K, Wang Y, Liang X, Liu Y, Hu W, Zhou Z, Zhang L, Zhao W. 2024. Comprehensive evaluation and screening identification indexes of heat‐resistance indices in cotton (Gossypium hirsutum L.). Journal of Agronomy and Crop Science, 210, e12697.

Yang P, Lv S, Liang F, Tian J, Zhang Y, Jiang C, Zhang W. 2025. Photoprotective responses of cotton non-leaf green tissues to short-term low-temperature stress. Physiologia Plantarum, 177, e70246.

Yeats T H, Rose J K. 2013. The formation and function of plant cuticles. Plant Physiology, 163, 5-20.

Yi X P, Zhang Y L, Yao H S, Luo H H, Gou L, Chow W S, Zhang W F. 2016. Rapid recovery of photosynthetic rate following soil water deficit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems. Journal of Plant Physiology, 194, 23-34.

Yu M, Luobu Z, Zhuoga D, Wei X, Tang Y. 2025. Advances in plant response to low-temperature stress. Plant Growth Regulation, 105, 167-185.

Zhao W, Wang R, Hu W, Zhou Z. 2019. Spatial difference of drought effect on photosynthesis of leaf subtending to cotton boll and its relationship with boll biomass. Journal of Agronomy and Crop Science, 205, 263-273.

Zhao Y, Zhu Y, Feng S, Zhao T, Wang L, Zheng Z, Ai N, Guan X. 2024. The impact of temperature on cotton yield and production in Xinjiang, China. NPJ Sustainable Agriculture, 2, 33.

Zhou J, Hua Z, Zhang Y, Li Z, Xu S, Tian X, Dong H, Li Z. 2025. Light-hormone crosstalk modulates vegetative branching and yield stability in dual-planting cotton systems. Field Crops Research, 333, 110103.

Zou J, Hu W, Li Y X, He J Q, Zhu H H, Zhou Z G. 2020. Screening of drought resistance indices and evaluation of drought resistance in cotton (Gossypium hirsutum L.). Journal of Integrative Agriculture, 19, 495-508.

Zou J, Hu W, Loka D A, Snider J L, Zhu H, Li Y, He J, Wang Y, Zhou Z. 2022. Carbon assimilation and distribution in cotton photosynthetic organs is a limiting factor affecting boll weight formation under drought. Frontiers in Plant Science, 13, 1001940.

[1] Mohan K. Bista, Purushothaman Ramamoorthy, Ranadheer Reddy Vennam, Sadikshya Poudel, K. Raja Reddy, Raju Bheemanahalli. Impacts of abiotic stresses on cotton physiology and vigor under current and future CO2 levels[J]. >Journal of Integrative Agriculture, 2026, 25(1): 105-117.
[2] Teame Gereziher Mehari, Marijana Skorić, Hui Fang, Kai Wang, Fang Liu, Tesfay Araya, Branislav Šiler, Dengbing Yao, Baohua Wang. Insights into the role of GhCYP and GhTPS in the gossypol biosynthesis pathway via a multiomics and functional-based approach in cotton[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1671-1687.
[3] Jianmin Zhou, Yu Fu, Uchechukwu Edna Obianwuna, Jing Wang, Haijun Zhang, Xiubo Li, Guanghai Qi, Shugeng Wu. Supplementation of serine in low-gossypol cottonseed meal-based diet improved egg white gelling and rheological properties by regulating ovomucin synthesis and magnum physiological function in laying hens[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1152-1166.
[4] Yongshui Hao, Xueying Liu, Qianqian Wang, Shuxin Wang, Qingqing Li, Yaqing Wang, Zhongni Guo, Tiantian Wu, Qing Yang, Yuting Bai, Yuru Cui, Peng Yang, Wenwen Wang, Zhonghua Teng, Dexin Liu, Kai Guo, Dajun Liu, Jian Zhang, Zhengsheng Zhang. Mapping QTLs for fiber- and seed-related traits in Gossypium tomentosum CSSLs with a G. hirsutum background [J]. >Journal of Integrative Agriculture, 2025, 24(2): 467-479.
[5] Qiushuang Yao, Huihan Wang, Ze Zhang, Shizhe Qin, Lulu Ma, Xiangyu Chen, Hongyu Wang, Lu Wang, Xin Lü. Estimation model of potassium content in cotton leaves based on hyperspectral information of multi-leaf position[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4225-4241.
[6] Congcong Guo, Hongchun Sun, Xiaoyuan Bao, Lingxiao Zhu, Yongjiang Zhang, Ke Zhang, Anchang Li, Zhiying Bai, Liantao Liu, Cundong Li. Increasing root-lower characteristics improves drought tolerance in cotton cultivars at the seedling stage[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2242-2254.
[7] Yuting Liu, Hanjia Li, Yuan Chen, Tambel Leila. I. M., Zhenyu Liu, Shujuan Wu, Siqi Sun, Xiang Zhang, Dehua Chen.

Inhibition of protein degradation increases the Bt protein concentration in Bt cotton [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1897-1909.

[8] Yunze Wen, Peng He, Xiaohan Bai, Huizhi Zhang, Yunfeng Zhang, Jianing Yu.

Strigolactones modulate cotton fiber elongation and secondary cell wall thickening [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1850-1863.

[9] Changqin Yang, Xiaojing Wang, Jianan Li, Guowei Zhang, Hongmei Shu, Wei Hu, Huanyong Han, Ruixian Liu, Zichun Guo.

Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system [J]. >Journal of Integrative Agriculture, 2024, 23(2): 669-679.

[10] Dian Jin, Yuting Liu, Zhenyu Liu, Yuyang Dai, Jianing Du, Run He, Tianfan Wu, Yuan Chen, Dehua Chen, Xiang Zhang. Mepiquat chloride increases the Cry1Ac protein content of Bt cotton under high temperature and drought stress by regulating carbon and amino acid metabolism[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4032-4045.
[11] Wenwen Wang, Lei Chen, Yan Wu, Xin Guo, Jinming Yang, Dexin Liu, Xueying Liu, Kai Guo, Dajun Liu, Zhonghua Teng, Yuehua Xiao, Zhengsheng Zhang. Map-based cloning of qLPA01.1, a favorable allele from Gossypium tomentosum chromosome segment line[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3283-3293.
[12] Zhenyu Liu, Shu Dong, Yuting Liu, Hanjia Li, Fuqin Zhou, Junfeng Ding, Zixu Zhao, Yinglong Chen, Xiang Zhang, Yuan Chen, Dehua Chen. Optimizing the Bacillus thuringiensis (Bt) protein concentration in cotton: Coordinated application of exogenous amino acids and EDTA to reduce spatiotemporal variability in boll and leaf toxins[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3419-3436.
[13] Huaxiang Wu, Xiaohui Song, Muhammad Waqas-Amjid, Chuan Chen, Dayong Zhang, Wangzhen Guo. Mining elite loci and candidate genes for root morphology-related traits at the seedling stage by genome-wide association studies in upland cotton (Gossypium hirsutum L.) [J]. >Journal of Integrative Agriculture, 2024, 23(10): 3406-3418.
[14] Lingxiao Zhu, Hongchun Sun, Ranran Wang, Congcong Guo, Liantao Liu, Yongjiang Zhang, Ke Zhang, Zhiying Bai, Anchang Li, Jiehua Zhu, Cundong Li. Exogenous melatonin improves cotton yield under drought stress by enhancing root development and reducing root damage[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3387-3405.
[15] Liang Ma, Tingli Hu, Meng Kang, Xiaokang Fu, Pengyun Chen, Fei Wei, Hongliang Jian, Xiaoyan Lü, Meng Zhang, Yonglin Yang. Identification of candidate genes for early-maturity traits by combining BSA-seq and QTL mapping in upland cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3472-3486.
No Suggested Reading articles found!