Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
CmERFV-2 regulates CmCBF3 and CmMYB44 to inhibit sucrose accumulation in oriental melon fruit at low temperature

Fan Yang1, 2, Ge Gao1, 2, Cheng Wang1, 2, Jingyue Guan1, 2, Hongyan Qi1, 2#

1 College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China

2 Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China

 Highlights 

l Low temperature reduces sucrose accumulation in oriental melon fruit by inhibiting ethylene production.

l CmCBF3 can inhibit ethylene production in melon fruit at low temperature by suppressing CmACO1 expression.

l At low temperature, CmERFV-2 can indirectly affect the ethylene release and sucrose accumulation in melon fruit by regulating the expression of CmCBF3 and CmMYB44.

 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

低温可以参与调节植物生长、发育和品质形成。然而,低温影响甜瓜果实蔗糖积累的机制目前尚不清楚。在此,‘HS’(High Sucrose)甜瓜为研究材料,在乙烯即将释放的阶段,分别在30/18 ℃(昼/夜)和22/10 ℃(昼/夜)的温度下处理进行。低温显著抑制了甜瓜果实的乙烯释放和蔗糖积累,而在低温下进行乙烯利处理部分恢复了甜瓜果实的乙烯产量和蔗糖含量。通过酵母单杂交,GUS活性分析以及荧光素酶检测,我们发现转录因子CmCBF3可以结合在CmACO1ACC氧化酶1)的启动子上并抑制其活性,从而抑制乙烯的产生。在低温下过表达CmCBF3显著抑制了乙烯和蔗糖的合成。进一步的研究表明,低温可以促进CmERFV-2的表达,而CmERFV-2可以与CmCBF3启动子结合,进一步抑制乙烯合成。此外,CmMYB44作为一种负调控果实乙烯产生和蔗糖积累的转录因子,可以抑制CmACO1CmSPS1(蔗糖磷酸合酶1)的表达。CmERFV-2通过与CmMYB44启动子结合进一步影响CmACO1CmSPS1的表达,从而在低温下调节乙烯释放量和蔗糖含量。综上所述,本研究揭示了CmERFV-2影响甜瓜果实乙烯释放和蔗糖积累的作用机制,为低温环境下培育优质甜瓜品种奠定了基础。



Abstract  

Low temperature is involved in regulating plant growth, development, and quality formation. The mechanism by which low temperature affects sucrose accumulation in oriental melon fruit is currently unclear. Here, ‘HS’ (High Sucrose) melons were used as the research material and treated at temperature of 30/18℃ (day/night) and 22/10℃ (day/night) at the stage of ethylene is about to be released. Low temperature significantly inhibited ethylene release and sucrose accumulation in melon fruit, while ethephon treatment at low temperature partially restored the ethylene production and sucrose content. Through Yeast One-Hybrid (Y1H), GUS activity analysis, and Luciferase assay, we found that the transcription factor CmCBF3 could bind to CmACO1 (ACC oxidase 1) promoter and inhibit its activity, thereby suppressing ethylene production. Overexpression CmCBF3 at low temperature significantly inhibited the synthesis of ethylene and sucrose. Further research had shown that low temperature promoted CmERFV-2 expression, and CmERFV-2 could bind to CmCBF3 promoter to further inhibit ethylene synthesis. In addition, CmMYB44, as a transcription factor that negatively regulated fruit ethylene production and sucrose accumulation, could inhibit the expression of CmACO1 and CmSPS1 (sucrose phosphate synthase 1). CmERFV-2 further affected the expression of CmACO1 and CmSPS1 by binding to CmMYB44 promoter, thereby regulating ethylene and sucrose content at low temperature. In summary, this study revealed the mechanism by which CmERFV-2 affects ethylene release and sucrose accumulation in oriental melon fruit, laying the foundation for cultivating high-quality melon varieties in low-temperature environment.

Keywords:  low temperature       ethylene       sucrose       CmACO1       CmSPS1       CmERFV-2  
Online: 11 December 2025  
Fund: 

This work was supported by the National Natural Science Foundation of China (U20A2044), China Agriculture Research System of MOF and MARA (CARS-25) and Liao Ning Scientific and Technology Program (2022JH1/10200004).

About author:  Fan Yang, E-mail: yf2021200103@163.com; #Correspondence Hongyan Qi, E-mail: qihongyan@syau.edu.cn; hyqiaaa@126.com

Cite this article: 

Fan Yang, Ge Gao, Cheng Wang, Jingyue Guan, Hongyan Qi. 2025. CmERFV-2 regulates CmCBF3 and CmMYB44 to inhibit sucrose accumulation in oriental melon fruit at low temperature. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.022

Adams S R, Cockshull K E, Cave C R J. 2001. Effect of temperature on the growth and development of tomato fruit. Ann Bot, 88(5), 869-877.

Albornoz K, Zhou J, Beckles DM. 2023. Chemical induction of the Arabidopsis thaliana CBF1 gene in transgenic tomato fruit to study postharvest chilling injury. Curr Plant Biol, 33, 100275.

Albornoz K, Zhou J, Zakharov F, Grove J, Wang M, Beckles D M. 2024. Ectopic overexpression of ShCBF1 and SlCBF1 in tomato suggests an alternative view of fruit responses to chilling stress postharvest. Front Plant Sci, 15, 1429321.

Archbold D D, Pomper K W. 2003. Ripening pawpaw fruit exhibit respiratory and ethylene climacterics. Postharvest Biol Technol, 30(1), 99-103.

Bai L, Wu Y, Lin H, Su W, Fan Z. 2025. MaERF9 and MaERF113 transcription factors involve in chilling injury development by regulating membrane lipid metabolism of postharvest banana fruit. Postharvest Biol Technol, 219, 113230.

Cai X, Chen Y, Wang Y, Shen Y, Yang J, Jia B, Sun X, Sun M. 2023. A comprehensive investigation of the regulatory roles of OsERF096, an AP2/ERF transcription factor, in rice cold stress response. Plant Cell Rep, 42(12), 2011-2022.

Cao K, Wei Y, Chen Y, Jiang S, Chen X, Wang X, Shao X. 2021. PpCBF6 is a low-temperature-sensitive transcription factor that binds the PpVIN2 promoter in peach fruit and regulates sucrose metabolism and chilling injury. Postharvest Biol Technol, 181, 111681.

Chen S, Xu L, Wang Y, Mao B, Zhang X, Song Q, Cui F, Ma Y, Dong J, Wang K, Bi H. 2025. RsWRKY40 coordinates the cold stress response by integrating RsSPS1-mediated sucrose accumulation and the CBF-dependent pathway in radish (Raphanus sativus L.). Mol Horticulture, 5(1), 14.

Cheng J, Wen S, Xiao S, Lu B, Ma M, Bie Z. 2018. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation. J Exp Bot, 69(3), 511-523.

Cui M, Pham M D, Hwang H, Chun C. 2021. Flower development and fruit malformation in strawberries after short-term exposure to high or low temperature. Sci Hortic, 288, 110308.

Dai N, Cohen S, Portnoy V, Tzuri G, Harel-Beja R, Pompan-Lotan M, Carmi N, Zhang G, Diber, A, Pollock S, Karchi H. 2011. Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation. Plant Mol Biol, 76, 1-18.

Dai N, Petreikov M, Portnoy V, Katzir N, Pharr D M, Schaffer A A. 2006. Cloning and expression analysis of a UDP-galactose/glucose pyrophosphorylase from melon fruit provides evidence for the major metabolic pathway of galactose metabolism in raffinose oligosaccharide metabolizing plants. Plant Physiol, 142(1), 294-304.

Fang T, Li Y, Xie T, Xian H, Bao Y, Zeng L. 2025. The bHLH transcription factor DlbHLH68 positively regulates DlSPS1 expression to promote sucrose biosynthesis in longan. Int J Biol Macromol, 296, 139594.

Fu M, Zheng Y, Zhang J, Deng C, Zhang J, Jia C, Miao H, Wang J, Zheng S, Jin Z, Li X. 2024. The MaEIL4-MaMADS36-MaACS7 module transcriptionally regulates ethylene biosynthesis during banana fruit ripening. Hortic Res, uhae345.

Galli F, Archbold D D, Pomper K W. 2008. Loss of ripening capacity of pawpaw fruit with extended cold storage. J Agric Food Chem, 56(22), 10683-10688.

Gao G, Yang F, Wang C, Duan X Y, Li M, Ma Y, Wang F, Qi H Y. 2023. The transcription factor CmERFI-2 represses CmMYB44 expression to increase sucrose levels in oriental melon fruit. Plant Physiol, 192(2), 1378-1395.

Gao J, Zhang Y, Li Z, Liu M. 2020. Role of ethylene response factors (ERFs) in fruit ripening. Food Qual Saf, m4(1), 15-20.

Gu J, Liu P, Nie W, Wang Z, Cui X, Fu H, Wang F, Qi M, Sun Z, Li T, Liu Y. 2025. Abscisic acid alleviates photosynthetic damage in the tomato ABA-deficient mutant sitiens and protects photosystem II from damage via the WRKY22–PsbA complex under low-temperature stress. J Integr Agric, 24(2), 546-563.

Gu S, Jing M, Li D, Ma Z, Duan Y, Wang L, Dai X, Chen Z, Zhang X, Chen J. 2024. The effects of different temperature and humidity conditions on the ripening and cracking of Annona atemoya fruit during storage by regulating the conversion of starch into soluble sugars. LWT, 208, 116703.

Guo C, Saren Q, Hao J, Guan X, Niu Y, Hasi A. 2019. In silico and expression profile analyses of the ERF subfamily in melon. Russ J Genet, 55(5), 557-570.

Guo N, Yan Y, Li Q, Yang Y. 2025. Pyruvic acid improves cold-storage quality of plum fruit by stimulating cyanide-resistant respiration and regulating sugar metabolism. Sci Hortic, 340, 113926.

Guo T, Li J, Guo M, Yang Q, Dai X, Qiao X, Song Z, Tian C, Li Y, Ge H, Cheng J. 2023. Low temperature inhibits pectin degradation by PpCBFs to prolong peach storage time. J Food Sci, 88(9), 3725-3736.

Hao J H, Yang R, Fang K F, Wang J L, Zhang Q, Shen Y Y, Li T L. 2014. Low night temperature inhibit galactinol synthase gene expression and phloem loading in melon leaves during fruit development. Russ J Plant Physiol, 61, 178-187.

Iraqi D, Tremblay FM. 2001. Analysis of carbohydrate metabolism enzymes and cellular contents of sugars and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo development. J Exp Bot, 52(365), 2301-2311.

Jia X, Wang W, Du Y, Wei T, Wang Z, Gul H. 2018. Optimal storage temperature and 1-MCP treatment combinations for different marketing times of Korla Xiang pears. J Integr Agric, 17(3), 693-703.

Kano Y. 2006. Effect of heating fruit on cell size and sugar accumulation in melon fruit (Cucumis melo L.). Hort Sci, 41(6), 1431-1434.

Khan M, Hu J, Dahro B, Ming R, Zhang Y, Wang Y, Alhag A, Li C, Liu J H. 2021. ERF108 from Poncirus trifoliata (L.) Raf. functions in cold tolerance by modulating raffinose synthesis through transcriptional regulation of PtrRafS. Plant J, 108(3), 705-724.

Lang X, Zhao X, Zhao J, Ren T, Nie L, Zhao W. 2024. MicroRNA Profiling Revealed the Mechanism of Enhanced Cold Resistance by Grafting in Melon (Cucumis melo L.). Plants, 13(7), 1016.

Li A, Zhang Z, Wang X C, Huang R. 2009. Ethylene response factor TERF1 enhances glucose sensitivity in tobacco through activating the expression of sugar‐related genes. J Integr Plant Biol, 51(2), 184-193.

Li B, Qu S, Kang J, Peng Y, Yang N, Ma B, Ruan Y L, Ma F, Li M, Zhu L. 2024. The MdCBF1/2‐MdTST1/2 module regulates sugar accumulation in response to low temperature in apple. Plant J, 118(3), 787-801.

Li L, Li Q, Chen B, Wang J, Ding F, Wang P, Zhang X, Hou J, Luo R, Li X, Zheng J. 2023. Identification of candidate genes that regulate the trade-off between seedling cold tolerance and fruit quality in melon (Cucumis melo L.). Hortic Res, 10(7), uhad093.

Li M, Duan X, Gao G, Liu T, Qi H. 2022. CmABF1 and CmCBF4 cooperatively regulate putrescine synthesis to improve cold tolerance of melon seedlings. Hortic Res, 9, uhac002.

Li S, Wu P, Yu X, Cao J, Chen X, Gao L, Chen K, Grierson D. 2022. Contrasting roles of ethylene response factors in pathogen response and ripening in fleshy fruit. Cells, 11(16), 2484.

Li X, Guo W, Li J, Yue P, Bu H, Jiang J, Liu W, Xu Y, Yuan H, Li T, Wang A. 2020. Histone acetylation at the promoter for the transcription factor PuWRKY31 affects sucrose accumulation in pear fruit. Plant Physiol, 182(4), 2035-2046.

Liu M, Pirrello J, Chervin C, Roustan J P, Bouzayen M. 2015. Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation. Plant Physiol, 169(4), 2380-2390.

Liu Y, He D, Wu Y, Zhao K, Yang C, Zhong Y, Yang L, Niu H, Liu S. 2025. Identification and Analysis of Melon (Cucumis melo L.) SHMT Gene Family Members and Their Functional Studies on Tolerance to Low-Temperature Stress. Agronomy, 15(1), 203.

Magnani E, Sjölander K, Hake S. 2004. From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. Plant Cell, 16(9), 2265-2277.

Mao W, Han Y, Chen Y, Sun M, Feng Q, Li L, Liu L, Zhang K, Wei L, Han Z, Li B. 2022. Low temperature inhibits anthocyanin accumulation in strawberry fruit by activating FvMAPK3-induced phosphorylation of FvMYB10 and degradation of Chalcone Synthase 1. Plant Cell, 34(4), 1226-1249.

Mata C I, Hertog M L, Van Raemdonck G, Baggerman G, Tran D, Nicolai B M. 2019. Omics analysis of the ethylene signal transduction in tomato as a function of storage temperature. Postharvest Biol Technol, 155, 1-10.

Musacchi S, Serra S. 2018. Apple fruit quality: Overview on pre-harvest factors. Sci Hortic, 234, 409-430.

Nakano T, Suzuki K, Fujimura T, Shinshi H. 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 140(2), .411-432.

Pardossi A, Giacomet P, Malorgio F, Albini F M, Murelli C, Serra G, Vernieri P. 2000. The influence of growing season on fruit yield and quality of greenhouse melon (Cucumis melo L.) grown in nutrient film technique in a Mediterranean climate. J Hort Sci Biotechn, 75(4), 488–493. .

Paris H S, Amar Z, Lev E. 2012. Medieval emergence of sweet melons, Cucumis melo (Cucurbitaceae). Ann Bot, 110(1), 23-33. https://doi.org/10.1093/aob/mcs098.

Pech J C, Bouzayen M, Latché A J P S. 2008. Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci, 175(1-2), 114-120.

Pujol M and Garcia-Mas J. 2023. Regulation of climacteric fruit ripening in melon: recent advances and future challenges. J Exp Bot, 74(20), 6224-6236.

Ren Y, Liao S, Xu Y. 2023. An update on sugar allocation and accumulation in fruit. Plant Physiol, 193(2), 888-899.

Roy Choudhury S, Roy S, Das R, Sengupta D N. 2008. Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter. Planta, 229, 207-223.

Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yan, S. 2012. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell, 24(6), 2578-2595.

Tacken E, Ireland H, Gunaseelan K, Karunairetnam S, Wang D, Schultz K, Bowen J, Atkinson R G, Johnston J W, Putterill J, Hellens R P. 2010. The role of ethylene and cold temperature in the regulation of the apple POLYGALACTURONASE1 gene and fruit softening. Plant Physiol, 153(1), 294-305.

Tian H, Ma L, Zhao C, Hao H, Gong B, Yu X, Wang X. 2010. Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development. Biochem bioph res co, 393(3), 365-370.

Wang K L C, Li H, Ecker J R. 2002. Ethylene biosynthesis and signaling networks. Plant Cell, 14 (suppl_1), S131-S151.

Wang S Y, Camp M J. 2000. temperature after bloom affect plant growth and fruit quality of strawberry. Sci Hortic, 85(3), 183-199.

Wu X, Yu M, Huan C, Ma R, Yu Z. 2018. Regulation of the protein and gene expressions of ethylene biosynthesis enzymes under different temperature during peach fruit ripening. Acta Physiol Plant, 40, 1-9.

Xiao G, Qin H, Zhou J, Quan R, Lu X, Huang R, Zhang H. 2016. OsERF2 controls rice root growth and hormone responses through tuning expression of key genes involved in hormone signaling and sucrose metabolism. Plant Mol Biol, 90, 293-302.

Xiao X M, Si J, Wei W, Yang Y Y, Shan W, Kuang J F, Lu W J, Chen J Y, Chen J W. 2023. Banana ERF transcription factor MaERF110 is involved in ethylene-induced chilling tolerance by regulating ROS accumulation. Postharvest Biol Technol, 197, 112218.

Xu P Y, Xu L, Xu H F, He X W, He P, Chang Y S, Wang S, Zheng W Y, Wang C Z, Chen X, Li L G. 2023. MdWRKY40 is directly promotes anthocyanin accumulation and blocks MdMYB15L, the repressor of MdCBF2, which improves cold tolerance in apple. J Integr Agr, 22(6), 1704-1719.

Yang F, Gao G, Wang C, Guan J, Chen J, Qi H. 2025. CmERFⅠ-5 and CmERFⅤ-2 affect ethylene synthesis and sucrose accumulation in postharvest oriental melon fruit at low temperature. Postharvest Biol Technol, 219, 113295.

Yamada H, Hamamoto K, Sugiura A, Tomana T. 1988. Effect of controlled fruit temperature on maturation of apple fruit. J Jpn Soc Hortic Sci, 57(2), 173-177.

Yu W, Ma P, Sheng J, Shen L. 2023. Postharvest fruit quality of tomatoes influenced by an ethylene signaling component during long-term cold storage. Food Chem, 422, 136087.

Yu W, Shen L, Sheng J. 2024. Synergistic effects of SlCBF1 and ethylene signaling on the maintenance of tomatoes quality during long-term cold storage. Postharvest Biol Technol, 217, 113090.

Yu W, Sheng J, Zhao R, Wang Q, Ma P, Shen L. 2019. Ethylene biosynthesis is involved in regulating chilling tolerance and SlCBF1 gene expression in tomato fruit. Postharvest Biol Technol, 149, 139-147.

Yun Z E, Jin S, Ding Y, Wang Z, Gao H, Pan Z, Xu J, Cheng Y, Deng X. 2012. Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage. J Exp Bot, 63(8), 2873-2893.

Zhang B, Xi W P, Wei W W, Shen J Y, Ferguson I, Chen K S. 2011. Changes in aroma-related volatiles and gene expression during low temperature storage and subsequent shelf-life of peach fruit. Postharvest Biol Technol, 60(1), 7-16.

Zhang J, Yin X R, Li H, Xu M, Zhang M X, Li S J, Liu X F, Shi Y N, Grierson D, Chen K S. 2020. ETHYLENE RESPONSE FACTOR39–MYB8 complex regulates low-temperature-induced lignification of loquat fruit. J Exp Bot, 71(10), 3172-3184.

Zhang T, Zhang Q, Pan Y, Che F, Wang Q, Meng X, Rao J. 2017. Changes of polyamines and CBFs expressions of two Hami melon (Cucumis melo L.) cultivars during low temperature storage. Sci Hortic, 224, 8-16.

Zhang Z, Qi L, Zang N, Yang Y, Wang B, Liu X, Yin Z, Wang A. 2025. Jasmonate activated PuCBF5 to increasing ester accumulation in cold-stored ‘Nanguo’pear fruit. Plant Physiol Bioch, 109722.

Zhao D, Shen L, Fan B, Yu M, Zheng Y, Lv S, Sheng J. 2009. Ethylene and cold participate in the regulation of LeCBF1 gene expression in postharvest tomato fruit. FEBS Lett, 583(20), 3329-3334.

Zhu Y, Wu C, Wei W, Shan W, Kuang J, Chen J, Zhou E, Lu W, Yang Y. 2024. MaWRKY147-MaMADS68 transcriptional cascade module regulates low-temperature-affected banana fruit ripening. Postharvest Biol Technol, 207, 112625. 

[1] Yanyun Tu, Lina Cheng, Xianfeng Liu, Marta Hammerstad, Chunlin Shi, Sida Meng, Mingfang Qi, Tianlai Li, Tao Xu. SlIDL6–SlHSL1/2/3 ligand-receptor pairs regulate tomato pedicel abscission[J]. >Journal of Integrative Agriculture, 2026, 25(1): 118-126.
[2] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[3] Xinyue Zhang, Xinhua Zhang, Wenwen Sun, Meng Lv, Yefei Gu, Sarfaraz Hussain, Xiaoan Li, Maratab Ali, Fujun Li. MdERF2 regulates cuticle wax formation by directly activating MdLACS2, MdCER1 and MdCER6 of apple fruit during postharvest[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2229-2239.
[4] Jin Wang, Minghua Wei, Haiyan Wang, Changjuan Mo, Yingchun Zhu, Qiusheng Kong. A time-course transcriptome reveals the response of watermelon to low-temperature stress[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1786-1799.
[5] Zimeng Liang, Xidan Cao, Rong Gao, Nian Guo, Yangyang Tang, Vinay Nangia, Yang Liu. Brassinosteroids alleviate wheat floret degeneration under low nitrogen stress by promoting the redistribution of sucrose from stems to spikes[J]. >Journal of Integrative Agriculture, 2025, 24(2): 497-516.
[6] Fuli Gao, Zidong Wang, Wankun Liu, Min Liu, Baoyi Wang, Yingjie Yang, Jiankun Song, Zhenhua Cui, Chenglin Liang, Dingli Li, Ran Wang, Jianlong Liu. Dehydrin PbDHN3 regulates ethylene synthesis and signal transduction to improve salt tolerance in pear[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3838-3850.
[7] Anmin Zhang, Zihong Li, Qirui Zhou, Jiawen Zhao, Yan Zhao, Mengting Zhao, Shangyu Ma, Yonghui Fan, Zhenglai Huang, Wenjing Zhang. An integrated physiology and proteomics analysis reveals the response of wheat grain to low temperature stress during booting[J]. >Journal of Integrative Agriculture, 2025, 24(1): 114-131.
[8] Chaoyue Pang, Ling Jin, Haoyu Zang, Damalk Saint-Claire S. Koklannou, Jiazhi Sun, Jiawei Yang, Yongxing Wang, Liang Xu, Chunyan Gu, Yang Sun, Xing Chen, Yu Chen. Establishment of a system for screening and identification of novel bactericide targets in the plant pathogenic bacterium Xanthomonas oryzae pv. oryzae using Tn-seq and SPR[J]. >Journal of Integrative Agriculture, 2024, 23(5): 1580-1592.
[9] Yanmei Gao, Maoya Jing, Meng Zhang, Zhen Zhang, Yuqing Liu, Zhimin Wang, Yinghua Zhang. Transcriptomic and metabolomic analysis of changes in grain weight potential induced by water stress in wheat[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3706-3722.
[10] ZHANG Li-hua, ZHU Ling-cheng, XU Yu, LÜ Long, LI Xing-guo, LI Wen-hui, LIU Wan-da, MA Feng-wang, LI Ming-jun, HAN De-guo. Genome-wide identification and function analysis of the sucrose phosphate synthase MdSPS gene family in apple[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2080-2093.
[11] XU Hui, HOU Kuo-yang, FANG Hao, LIU Qian-qian, WU Qiu, LIN Fei-fei, DENG Rui, ZHANG Lin-jie, CHEN Xiang, LI Jin-cai. Twice-split phosphorus application alleviates low-temperature impacts on wheat by improved spikelet development and setting[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3667-3680.
[12] WANG Jie, LI Shuai, CHEN Chen, ZHANG Qi-qi, ZHANG Hui-min, CUI Qing-zhi, CAI Guang-hua, ZHANG Xiao-peng, CHAI Sen, WAN Li, YANG Xue-yong, ZHANG Zhong-hua, HUANG San-wen, CHEN Hui-ming, SUN Jin-jing. A novel mutation in ACS11 leads to androecy in cucumber[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3312-3320.
[13] LIU Xiao-min, GAO Teng-teng, ZHANG Zhi-jun, TAN ke-xin, JIN Yi-bo, ZHAO Yong-juan, MA Feng-wang, LI Chao. The mitigation effects of exogenous dopamine on low nitrogen stress in Malus hupehensis[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2709-2724.
[14] YANG Wei-bing, QIN Zhi-lie, SUN Hui, LIAO Xiang-zheng, GAO Jian-gang, WANG Yong-bo, HOU Qi-ling, CHEN Xian-chao, TIAN Li-ping, ZHANG li-ping, MA Jin-xiu, CHEN Zhao-bo, ZHANG Feng-ting, ZHAO Chang-ping. Yield-related agronomic traits evaluation for hybrid wheat and relations of ethylene and polyamines biosynthesis to filling at the mid-grain filling stage[J]. >Journal of Integrative Agriculture, 2020, 19(10): 2407-2418.
[15] YU Xiao-fang, BORJIGIN Qinggeer, GAO Ju-lin, WANG Zhi-gang, HU Shu-ping, BORJIGIN Naoganchaolu, WANG Zhen, SUN Ji-ying, HAN Sheng-cai.
Exploration of the key microbes and composition stability of microbial consortium GF-20 with efficiently decomposes corn stover at low temperatures
[J]. >Journal of Integrative Agriculture, 2019, 18(8): 1893-1904.
No Suggested Reading articles found!