Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
SlIDL6-SlHSL1/2/3 ligand receptor pairs regulating tomato pedicel abscission

Yanyun Tu1, 2, 3, Lina Cheng1, 2, 3, Xianfeng Liu1, 2, 3, Marta Hammerstad4, Chun-Lin Shi5, Sida Meng1, 2, 3, Mingfang Qi1, 2, 3, Tianlai Li1, 2, 3, Tao Xu1, 2, 3#

1 College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China

2 Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China

3 Modern Protected Horticulture Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China

4 Department of Biosciences, University of Oslo, Oslo 0371, Norway

5 ANGENOVO, Oslo 0753, Norway

 Highlights 

We isolated three HAESA-like homologs, SlHSL1/2/3, which are involved in tomato flower abscission.

SlHSL1/2/3 are the receptors of SlIDL6 in pedicel abscission and flower abscission under low light.

Ethylene action inhibitor 1-methylcyclopropene (1-MCP) can significantly depress the expression of SlHSL1/2/3 and the abscission regulated by SlHSL1/2/3 were partially dependent on ethylene.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

落花落果使作物产量降低,因此减少花果脱落是一个重要的农业问题。HAESA(HAE)和HAESA-like2(HSL2)受体激酶及其配体IDA小肽是调控拟南芥花器官脱落的核心。我们早期研究表明,SlIDL6是番茄中IDA的同源物,其功能与AtIDA相似,可以调控番茄花器官脱落。在本研究中,我们发现三个与番茄花柄脱落相关的HAESA-like同源物SlHSL1/2/3。SlHSL1/2/3在离区(AZ)高表达。Slhsl1Slhsl2Slhsl3的敲除株系花柄外植体脱落显著慢于野生型(WT)。双突变体Slhsl1Slhsl2Slhsl1Sslhsl3Slhsl2Slhsl比单基因敲除株系进一步抑制了花柄脱落,且三突变体Slhsl1sl1Slhsl2Slhsl3的脱落率更低,表明在番茄花柄脱落过程中SlHSL1/2/3的功能是部分冗余的。用SlIDL6小肽处理番茄花柄外植体显著加速了WT的花柄脱落,但对SlHSL1/2/3敲除系的脱落率影响不大,表明在番茄花柄脱落中SlHSL1/2/3作为SlIDL6的受体发挥作用。乙烯抑制剂1-甲基环丙烯(1-MCP)可显著抑制SlHSL1/2/3的表达。在乙烯处理的情况下,乙烯显著加速WT花柄脱落,而SlHSL1/2/3敲除系的脱落率显著低于WT。综上所述,我们的研究结果表明,SlHSL1/2/3可以作为SlIDL6的受体,正调控番茄花柄脱落,且SlHSL1/2/3调控的脱落部分依赖于乙烯。



Abstract  

Flower and fruit abscission reduce crop yield, so decreasing abscission is a significant agricultural issue. HAESA (HAE) and HAESA-like2 (HSL2) kinases and its ligand, INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) peptide, have been confirmed to be the core elements regulating floral organ abscission in Arabidopsis thaliana. Our earlier research revealed that SlIDL6, a homolog of IDA in tomato, functions similarly to AtIDA regulating the abscission of tomato flower organs. Here, we further isolated three HAESA-like homologs, SlHSL1/2/3, which are involved in tomato flower abscission. SlHSL1/2/3 are highly expressed in the abscission zone (AZ). The knockout mutant lines of Slhsl1, Slhsl2, and Slhsl3 showed lower flower pedicel abscission than wildtype (WT). The double mutant of Slhsl1Slhsl2, Slhsl1Slhsl3, and Slhsl2Slhsl3 further depressed abscission than each of the single mutant lines, while triple mutants Slhsl1Slhsl2Slhsl3 exhibited the lowest abscission, indicating that SlHSL1/2/3 mediated abscission is non-redundancy, at least partially. Treating tomato pedicel explants with SlIDL6 peptide significantly accelerated pedicel abscission in WT, but had little effect on the abscission rate of SlHSL1/2/3 knockout lines, indicating that SlHSL1/2/3 are the receptors of SlIDL6 in pedicel abscission. Ethylene action inhibitor 1-methylcyclopropene (1-MCP) can significantly depress the expression of SlHSL1/2/3. Ethylene can significantly accelerate the abscission of WT, while the less abscission was found in SlHSL1/2/3 knockout lines. Taken together, our findings indicate that SlHSL1/2/3 can act as receptors for SlIDL6 to positively regulate tomato pedicel abscission and the abscission regulated by SlHSL1/2/3 were partially dependent on ethylene.

Keywords:  Tomato       abscission       SlHSL       SlIDL6       Ethylene  
Online: 22 March 2025  
Fund: 
This work was supported by the Liaoning Science and Technology Innovation Team Project (JYTTD2024007).
About author:  # Correspondence Tao Xu, E-mail: syauxutao@syau.edu.cn

Cite this article: 

Yanyun Tu, Lina Cheng, Xianfeng Liu, Marta Hammerstad, Chun-Lin Shi, Sida Meng, Mingfang Qi, Tianlai Li, Tao Xu. 2025. SlIDL6-SlHSL1/2/3 ligand receptor pairs regulating tomato pedicel abscission. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.03.018

Botton A, Ruperti B. 2019. The yes and no of the ethylene involvement in abscission. Plants, 8, 187.

Butenko MA, Patterson SE, Grini PE, Stenvik G, Amundsen SS, Mandal A, Aalen RB. 2003. Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. The Plant Cell, 15, 2296-2307.

Butenko MA, Stenvik G, Alm V, Sæther B, Patterson SE, Aalen RB. 2006. Ethylene-dependent and-independent pathways controlling floral abscission are revealed to converge using promoter::reporter gene constructs in the ida abscission mutant. Journal of Experimental Botany, 57, 3627-3637.

Butenko MA, Wildhagen M, Albert M, Jehle A, Kalbacher H, Aalen RB, Felix G. 2014. Tools and strategies to match peptide-ligand receptor pairs. The Plant Cell, 26, 1838-1847.

Cheng L, Li R, Wang X, Ge S, Wang S, Liu X, He J, Jiang C, Qi M, Xu T. 2022. A SlCLV3-SlWUS module regulates auxin and ethylene homeostasis in low light-induced tomato flower abscission. The Plant cell, 34, 4388-4408.

Cho SK, Larue CT, Chevalier D, Wang H, Jinn T, Zhang S, Walker JC. 2008. Regulation of floral organ abscission in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 105, 15629-15634.

Cui Y, Lu X, Gou X. 2022. Receptor-like protein kinases in plant reproduction: Current understanding and future perspectives. Plant Communications, 3, 100273.

Domingos S, Scafidi P, Cardoso V, Leitao AE, Di Lorenzo R, Oliveira CM, Goulao LF. 2015. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways. Frontiers in plant science, 6, 457.

Estornell LH, Agustí J, Merelo P, Talón M, Tadeo FR. 2013. Elucidating mechanisms underlying organ abscission. Plant Science, 199-200, 48-60.

Estornell LH, Wildhagen M, Pérez-Amador MA, Talón M, Tadeo FR, Butenko MA. 2015. The IDA peptide controls abscission in Arabidopsis and Citrus. Frontiers in plant science, 6, 1003.

Fu X, Li R, Liu X, Cheng L, Ge S, Wang S, Cai Y, Zhang T, Shi C, Meng S. 2024. Kinase CPK10 regulates low light-induced tomato flower drop downstream of IDL6 in a calcium-dependent manner. Plant Physiology, 196, 2014-2029.

Gou X, Li J. 2020. Paired receptor and coreceptor kinases perceive extracellular signals to control plant development. Plant physiology, 182, 1667-1681.

Hohmann U, Lau K, Hothorn M. 2017. The structural basis of ligand perception and signal activation by receptor kinases. Annual review of plant biology, 68, 109-137.

Jinn T, Stone JM, Walker JC. 2000. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes & development, 14, 108-117.

Kobe B, Kajava AV. 2001. The leucine-rich repeat as a protein recognition motif. Current opinion in structural biology, 11, 725-732.

Li R, Shi C, Wang X, Meng Y, Cheng L, Jiang C, Qi M, Xu T, Li T. 2021. Inflorescence abscission protein SlIDL6 promotes low light intensity-induced tomato flower abscission. Plant Physiology, 186, 1288-1301.

Li X, Zhang J, Shi H, Li B, Li J. 2022. Rapid responses: Receptor‐like kinases directly regulate the functions of membrane transport proteins in plants. Journal of Integrative Plant Biology, 64, 1303-1309.

Liu Y, Schiff M, Dinesh Kumar SP. 2002. Virus‐induced gene silencing in tomato. The Plant Journal, 31, 777-786.

Lu L, Arif S, Yu JM, Lee JW, Park YH, Tucker ML, Kim J. 2023. Involvement of IDA-HAE Module in Natural Development of Tomato Flower Abscission. Plants, 12,185.

Meir S, Philosoph-Hadas S, Riov J, Tucker ML, Patterson SE, Roberts JA. 2019. Re-evaluation of the ethylene-dependent and-independent pathways in the regulation of floral and organ abscission. Journal of experimental botany, 70, 1461-1467.

Meir S, Philosoph-Hadas S, Sundaresan S, Selvaraj KV, Burd S, Ophir R, Kochanek B, Reid MS, Jiang C, Lers A. 2010. Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion. Plant Physiology, 154, 1929-1956.

Ou Y, Kui H, Li J. 2021. Receptor-like kinases in root development: current progress and future directions. Molecular Plant, 14, 166-185.

Patharkar OR, Walker JC. 2016. Core Mechanisms Regulating Developmentally Timed and Environmentally Triggered Abscission. Plant physiology, 172, 510-520.

Rai AC, Halon E, Zemach H, Zviran T, Sisai I, Philosoph-Hadas S, Meir S, Cohen Y, Irihimovitch V. 2021. Characterization of two ethephon-induced IDA-like genes from mango, and elucidation of their involvement in regulating organ abscission. Genes, 12, 439.

Reichardt S, Piepho H, Stintzi A, Schaller A. 2020. Peptide signaling for drought-induced tomato flower drop. Science, 367, 1482-1485.

Santiago J, Brandt B, Wildhagen M, Hohmann U, Hothorn LA, Butenko MA, Hothorn M. 2016. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission. Elife, 5, e15075.

Shi C, Alling RM, Hammerstad M, Aalen RB. 2019. Control of organ abscission and other cell separation processes by evolutionary conserved peptide signaling. Plants, 8, 225.

Shi C, Stenvik G, Vie AK, Bones AM, Pautot V, Proveniers M, Aalen RB, Butenko MA. 2011. Arabidopsis class I KNOTTED-like homeobox proteins act downstream in the IDA-HAE/HSL2 floral abscission signaling pathway. The Plant Cell, 23, 2553-2567.

Shiu S, Bleecker AB. 2001. Plant receptor-like kinase gene family: diversity, function, and signaling. Science's STKE, 2001, re22.

Stenvik G, Tandstad NM, Guo Y, Shi C, Kristiansen W, Holmgren A, Clark SE, Aalen RB, Butenko MA. 2008. The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in Arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2. The Plant Cell, 20, 1805-1817.

Stø IM, Orr RJ, Fooyontphanich K, Jin X, Knutsen JM, Fischer U, Tranbarger TJ, Nordal I, Aalen RB. 2015. Conservation of the abscission signaling peptide IDA during Angiosperm evolution: withstanding genome duplications and gain and loss of the receptors HAE/HSL2. Frontiers in Plant Science, 6, 931.

Taylor JE, Whitelaw CA. 2001. Signals in abscission. New Phytologist, 151, 323-340.

Tucker ML, Yang R. 2012. IDA-like gene expression in soybean and tomato leaf abscission and requirement for a diffusible stelar abscission signal. AoB plants, 2012, pls35.

Ventimilla D, Velázquez K, Ruiz-Ruiz S, Terol J, Pérez-Amador MA, Vives MC, Guerri J, Talon M, Tadeo FR. 2021. IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like peptides and HAE (HAESA)-like receptors regulate corolla abscission in Nicotiana benthamiana flowers. BMC plant biology, 21, 226.

Vie AK, Najafi J, Liu B, Winge P, Butenko MA, Hornslien KS, Kumpf R, Aalen RB, Bones AM, Brembu T. 2015. The IDA/IDA-LIKE and PIP/PIP-LIKE gene families in Arabidopsis: phylogenetic relationship, expression patterns, and transcriptional effect of the PIPL3 peptide. Journal of Experimental Botany, 66, 5351-5365.

Wang F, Zheng Z, Yuan Y, Li J, Zhao M. 2019. Identification and characterization of HAESA-like genes involved in the fruitlet abscission in litchi. International journal of molecular sciences, 20, 5945.

Wang Y, Wu Y, Zhang H, Wang P, Xia Y. 2022. Arabidopsis MAPKK kinases YODA, MAPKKK3, and MAPKKK5 are functionally redundant in development and immunity. Plant Physiology, 190, 206-210.

Wilmowicz E, Kućko A, Ostrowski M, Panek K. 2018. INFLORESCENCE DEFICIENT IN ABSCISSION-like is an abscission-associated and phytohormone-regulated gene in flower separation of Lupinus luteus. Plant Growth Regulation, 85, 91-100.

Wilson ZA, Song J, Taylor B, Yang C. 2011. The final split: the regulation of anther dehiscence. Journal of experimental botany, 62, 1633-1649.

Zhu H, Dardick CD, Beers EP, Callanhan AM, Xia R, Yuan R. 2011. Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk. BMC plant biology, 11, 1-20.

Zhu Q, Shao Y, Ge S, Zhang M, Zhang T, Hu X, Liu Y, Walker J, Zhang S, Xu J. 2019. A MAPK cascade downstream of IDA–HAE/HSL2 ligand–receptor pair in lateral root emergence. Nature Plants, 5, 414-423.

No related articles found!
No Suggested Reading articles found!