Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Grain yield and nutrient uptake and utilization in spring-sown waxy maize under varying plant densities and fertilization regimes

Zihan Wang1*, Shiduo Niu1*, Xiaoyu Yao1, Guoqing Chen2, Jian Guo1, Guanghao Li1, Dalei Lu1, 3#

1 Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College, Yangzhou University, Yangzhou 225009, China

2 Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226012, China

3 Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou 225009, China

 Highlights 

Increasing plant density and delaying the application of amino acid compound fertilizer enhance grain yield and nitrogen use efficiency.

The combination of 7.5×104 plants ha-¹ with a single application of amino acid compound fertilizer at the six-leaf stage achieves the highest total score and sustainability index.

Greater grain yield is primarily attributed to enhanced post-silking dry matter and nitrogen accumulation.

Elevated grain yield is associated with higher nitrogen agronomic efficiency and nitrogen recovery efficiency.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

增加玉米种植密度是增产的关键措施,缓释肥一次性施用是一种高效且资源节约的栽培措施。然而,糯玉米生产中种植密度与施肥模式之间的互作效应尚不明确。本研究评估了二者对糯玉米干物质和氮素积累、转运及分配的影响,并分析了其与产量和氮素利用效率之间的关系。试验于20212023年进行,以两个糯玉米品种为材料,设置五个密度水平D1–D54.5×10⁴5.25×10⁴6.0×10⁴6.75×10⁴7.5×10⁴·hm⁻2与四种施肥模式(F0:不施肥;F1:播种时施用普通复合肥加六叶期追施尿素;F2:播种时一次性施用氨基酸复合肥;F3:六叶期一次性施用氨基酸复合肥;总投入量N–P₂O₅–K₂O = 225–75–75 kg·hm⁻2。结果表明,增加种植密度降低了单株粒重和粒数,群体增密弥补了粒重和粒数的损失,从而提高群体产量。所有处理中,D5F3处理(7.5×10⁴·hm⁻²结合六叶期一次性施用氨基酸复合肥)的产量、综合得分和可持续性指数最高。这主要得益于吐丝后干物质和氮素积累量的增加、收获指数的提高以及叶片贮藏物质转运能力的增强。在施肥总量一致的条件下,D5F3的高产表现进一步提升了氮素农学效率、氮素内部效率、氮素回收效率和氮素偏生产力。综上,合理增加种植密度并推迟氨基酸复合肥的施用时间,可通过促进吐丝后干物质和氮素累积及提高收获指数来显著提升糯玉米产量并同步改善氮素利用效率。因此,春播糯玉米生产中,田间管理应着重聚焦于促进吐丝后干物质和氮素的吸收与积累,以实现高产与高氮素利用率的协同提升。



Abstract  

Increasing maize plant density (PD) is key to enhancing grain yield (GY), and one-time application of slow-release fertilizers represents an efficient and resource-saving practice.  However, the interaction between PD and fertilization mode (FM) in waxy maize production remains poorly understood.  This study systematically evaluated the interactive effects of PD and FM on dry matter (DM) and nitrogen (N) accumulation, translocation, and distribution, and their relationships with GY and N use efficiency (NUE) in waxy maize.  Two waxy maize varieties were grown across five PD levels (D1-D5: 4.5×104, 5.25×104, 6.0×104, 6.75×104, and 7.5×104 plants ha-1) and four FMs (F0, no fertilization; F1, conventional compound fertilizer at sowing plus urea topdressing at the six-leaf stage; F2, one-time application of amino acid compound fertilizer [Amino acid compound fertilizer (ACF)] at sowing; F3, one-time application of ACF at the six-leaf stage; total N-P2O5-K2O=225-75-75 kg ha-1) during the 2021-2023 growing seasons.  Although higher PD reduced kernel weight and kernels per plant, increased population density compensated for these reductions, resulting in greater GY.  Among all treatments, the D5F3 treatment (7.5×104 plants ha-1 with F3) achieved the highest GY, total score, and sustainability index.  This outcome was driven by greater post-silking DM and N accumulation, an improved harvest index, and enhanced leaf reserve translocation.  Given uniform fertilization rates across treatments, the higher yield under D5F3 led to superior N agronomic efficiency, N internal efficiency, N recovery efficiency, and N partial factor productivity.  In conclusion, increasing PD and postponing ACF application enhance GY primarily by improving post-silking DM and N accumulation and harvest index, while concurrently increasing NUE.  Field management strategies should therefore prioritize maximizing post-silking DM and N uptake to simultaneously improve yield and NUE in spring-sown waxy maize.

Keywords:  waxy maize       plant density       fertilization mode       grain yield       nitrogen use efficiency  
Online: 08 December 2025  
Fund: 

This study was supported by the Jiangsu Agriculture Science and Technology Innovation Fund, China (CX(23)1043), the Jiangsu Agricultural Industry Technology System, China (JATS [2023]454), the Jiangsu Modern Agricultural Machinery Equipment and Technology Demonstration and Promotion, China (NJ2023-05), and the Priority Academic Pro-gram Development of Jiangsu Higher Education Institutions, China (PAPD).

About author:  #Correspondence Dalei Lu, E-mail: dllu@yzu.edu.cn * These contributed equally to this work.

Cite this article: 

Zihan Wang, Shiduo Niu, Xiaoyu Yao, Guoqing Chen, Jian Guo, Guanghao Li, Dalei Lu. 2025. Grain yield and nutrient uptake and utilization in spring-sown waxy maize under varying plant densities and fertilization regimes. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.006

Bertrand R, Holmes W, Orgeron C, Mcintyre C, Hernandez R, Revellame E D. 2019. Rapid estimation of parameters for gelatinization of waxy corn starch. Foods, 8, 556.

Bo Q F, Ma T, Wei X X, Chen J, Zhang Z H, Li Y, Tang A, Goa J R, Zhang J, Wei Y N, Li S Q, Cai Y H, Shen Y F, Yue S C. 2024. Improvement of maize post-silking agronomic traits contributes to high grain yield under N-efficient cultivars. Field Crops Research, 313, 109417.

Boomsma C R, Santini J B, Tollenaar M, Vyn T J. 2009. Maize morphophysiological responses to intense crowding and low nitrogen availability: An analysis and review. Agronomy Journal, 101, 1426–1452.

Cao Y J, Wang L C, Gu W R, Wang Y J, Zhang J H, 2021. Increasing photosynthetic performance and post-silking N uptake by moderate decreasing leaf source of maize under high planting density. Journal of Integrative Agriculture, 20, 494–510.

Chen J, Ren B Z, Zhao B, Liu P, Zhang J W. 2024. The environment, especially the minimum temperature, affects summer maize grain yield by regulating ear differentiation and grain development. Journal of Integrative Agriculture, 23, 2227–2241.

Chen K R, Camberato J J, Tuinstra M R, Kumudini S V, Tollenaar M, Vyn T J. 2016. Genetic improvement in density and nitrogen stress tolerance traits over 38 years of commercial maize hybrid release. Field Crops Research, 196, 438–451.

Chibane N, Revilla P, Yannam V R R, Marcet P, Covelo E F, Ordás B. 2024. Impact of irrigation, nitrogen fertilization, and plant density on stay-green and its effects on agronomic traits in maize. Frontiers in Plant Science, 15, 1399072.

Ciampitti I A, Vyn T J. 2011. A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages. Field Crops Research, 121, 2–18.

Ciampitti I A, Vyn T J. 2012. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crops Research, 133, 48–67

Cole M B, Augustin M A, Robertson M J, Manners J M. 2018. The science of food security. NPJ Science of Food, 2, 14.

Congreves K A, Otchere O, Ferland D, Farzadfar S, Williams S, Arcand M M. 2021. Nitrogen use efficiency definitions of today and tomorrow. Frontiers in Plant Science, 12, 637108.

Djafaripetroudy S, Fatehi P, El Idrissi A, Kang K, Abidi N, McLaren B. 2025. Advancing agricultural efficiency and sustainability: Bio-inspired superabsorbent hydrogels for slow and controlled release fertilizers. Science of the Total Environment, 977, 179366.

Dong S X, Zhang J, Zha T, Dai X L, He M R. 2019. Increased plant density with reduced nitrogen input can improve nitrogen use efficiency in winter wheat while maintaining grain yield. Archives of Agronomy and Soil Science, 66, 1707–1720.

Du X B, Wang Z, Lei W X, Kong L C. 2021. Increased planting density combined with reduced nitrogen rate to achieve high yield in maize. Scientific Reports, 11, 358.

Duan F Y, Wei Z, Soualiou S, Zhou W B. 2023. Nitrogen partitioning in maize organs and underlined mechanisms from different plant density levels and N application rate in China. Field Crops Research, 294, 108874.

Feng W J, Xue W W, Zhao Z Q, Shi Z L, Wang W J, Bai Y, Wang H X, Qiu P, Xue J F, Chen B G. 2024. Nitrogen fertilizer application rate affects the dynamic metabolism of nitrogen and carbohydrates in kernels of waxy maize. Frontiers in Plant Science, 15, 1416397.

Foley J A, Ramankutty N, Brauman K A, Cassidy E S, Gerber J S, Johnston M, MuellerN D, O’Connell C, Ray D K, West P C, Balzer C, Bennett E M, Carpenter S R, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, et al. 2011. Solutions for a cultivated planet. Nature, 478, 337–342.

Grant C A, Wu R, Selles F, Harker K N, Clayton G W, Bittman S, Zebarth B J, Lupwayi N Z. 2012. Crop yield and nitrogen concentration with controlled release urea and split applications of nitrogen as compared to non-coated urea applied at seeding. Field Crops Research, 127, 170–180.

Guo J J, Fan J L, Xiang Y Z, Zhang F C, Yan S C, Zhang X Y, Zheng J, Li Y P, Tang Z J, Li Z J. 2022. Coupling effects of irrigation amount and nitrogen fertilizer type on grain yield, water productivity and nitrogen use efficiency of drip-irrigated maize. Agricultural Water Management, 261, 107389.

Guo J J, Fan J L, Xiang Y Z, Zhang F C, Zheng J, Yan S C, Yan F L, Hou X H, Li Y P, Yang L. 2021. Effects of nitrogen type on rained maize nutrient uptake and grain yield. Agronomy Journal, 113, 5454–5471.

Guo X, Ren H, Ren B Z, Zhang J W, Liu P, Shah S, Zhao B. 2024. Long-term application of controlled-release urea reduced ammonia volatilization, raising the risk of N2O emissions and improved summer maize yield. Field Crops Research, 306, 109227.

Han Y L, Guo D, Ma W, Ge J Z, Li X L, Mehmood A N, Zhao M Zhou B Y. 2022. Strip deep rotary tillage combined with controlled-release urea improves the grain yield and nitrogen use efficiency of maize in the North China Plain. Journal of Integrative Agriculture, 21, 2559–2576.

Hou P, Liu Y E, Liu W M, Liu G Z, Xie R Z, Wang K R, Ming B, Wang Y H, Zhao R L, Zhang W J, Wang Y J, Bian S F, Ren H, Zhao X Y, Liu P, Chang J Z, Zhang G H, Liu J Y, Yuan L Z, Zhao H Y, et al. 2020. How to increase maize production without extra nitrogen input. Resources, Conservation and Recycling, 160, 104913.

Lai Z L, Fan J L, Yang R, Xu X Y, Liu L J, Li S E, Zhang F C, Li Z J. 2022. Interactive effects of plant density and nitrogen rate on grain yield, economic benefit, water productivity and nitrogen use efficiency of drip-fertigated maize in northwest China. Agricultural Water Management, 263, 107453.

Lai Z L, Liao Z Q, Liu Y Y, Kou H T, Li Z J, Fan J L. 2025. Optimized planting density and nitrogen rate improved grain yield of drip-fertigated maize by enhancing canopy structure and photosynthetic capacity. Journal of Agriculture and Food Research, 21, 101813.

Lan T Q, Du L J, Wang X L, Zhan X X, Liu Q L, Wei G, Lyu C C, Liu F, Gao J X, Feng D J, Kong F L, Yuan J C. 2024. Synergistic effects of planting density and nitrogen fertilization on chlorophyll degradation and leaf senescence after silking in maize. The Crop Journal, 12, 605–613.

Li C L, Wang Y, Li Y X, Zhu L, Cao Y Q, Zhao X H, Feng G Z, Gao Q. 2020. Mixture of controlled-release and normal urea to improve nitrogen management for maize across contrasting soil types. Agronomy Journal, 112, 3101–3113.

Li G H, Cheng G G, Li L, Lu D L, Lu W P. 2020a. Effects of slow-released fertilizer on maize yield, biomass production, and source-sink ratio at different densities. Journal of Plant Nutrition, 43, 725-738.

Li G H, Cheng Q, Li L, Lu D L, Lu W P. 2021. N, P and K use efficiency and maize yield responses to fertilization modes and densities. Journal of Integrative Agriculture, 20, 78–86.

Li G H, Fu P X, Cheng G G, Lu W P, Lu D L. 2022. Delaying application time of slow-release fertilizer increases soil rhizosphere nitrogen content, root activity, and grain yield of spring maize. The Crop Journal, 10, 1798–1806.

Li G H, Wang L F, Li L, Lu D L, Lu W P. 2020b. Effects of fertilizer management strategies on maize yield and nitrogen use efficiencies under different densities. Agronomy Journal, 112, 368–381.

Li X, Li Z. 2024. Global trends and current advances in slow/controlled-release fertilizers: A bibliometric analysis from 1990 to 2023. Agriculture, 14, 1502.

Liu G Z, Yang Y S, Guo X X, Liu W M, Xie R Z, Ming B, Xue J, Wang K R, Li S K, Hou P. 2023. A global analysis of dry matter accumulation and allocation for maize yield breakthrough from 1.0 to 25.0 Mg ha-1. Resources, Conservation and Recycling, 188, 106656.

Liu W M, Hou P, Liu G Z, Yang Y S, Guo X X, Ming B, Xie R Z, Wang K R, Liu Y E, Li S K. 2020. Contribution of total dry matter and harvest index to maize grain yield-a multisource data analysis. Food Energy Security, 9, e256.

Liu Z, Gao J, Gao F, Liu P, Zhao B, Zhang J W. 2019. Late harvest improves yield and nitrogen utilization efficiency of summer maize. Field Crops Research, 232, 88–94.

Ma D L, Yu X F, Ming B, Li S K, Xie R Z, Gao J L. 2020. Maize nitrogen use efficiency improved due to density tolerance increase since the 1950s. Agronomy Journal, 112, 1537–1548.

Maltese N E, Melchiori R J M, Maddonni G A, Ferreyra J M, Caviglia O P. 2019. Nitrogen economy of early and late-sown maize crops. Field Crops Research, 231, 40–50.

Meng Q F, Yue S C, Hou P, Cui Z L, Chen X P. 2016. Improving yield and nitrogen use efficiency simultaneously for maize and wheat in China: A review. Pedosphere, 26, 137–147.

Nasielski J, Deen B. 2019. Nitrogen applications made close to silking: Implications for yield formation in maize. Field Crops Research, 243, 107621.

Nasielski J, Earl H, Deen B. 2019. Luxury vegetative nitrogen uptake in maize buffers grain yield under post-silking water and nitrogen stress: A mechanistic understanding. Frontiers in Plant Science, 10, 318.

Ning P, Yang L, Li C, Fritschi F B. 2018. Post-silking carbon partitioning under nitrogen deficiency revealed sink limitation of grain yield in maize. Journal of Experimental Botany, 69, 1707–1719.

Ocwa A, Harsányi E, Széles A, Holb I J, Szabó S, Rátonyi T, Mohammed S. 2023. A bibliographic review of climate change and fertilization as the main drivers of maize yield: Implications for food security. Agriculture & Food Security, 12, 14.

Ren H, Cheng Y, Li R F, Yang Q L, Liu P, Dong S T, Zhang J W, Zhao B. 2020. Integrating density and fertilizer management to optimize the accumulation, remobilization, and distribution of biomass and nutrients in summer maize. Scientific Reports, 10, 11777.

Rizzo G, Monzon J P, Tenorio F A, Howard R, Cassman K G, Grassini P. 2022. Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments. Proceedings of the National Academy of Sciences of the United States of America, 119, e2113629119.

Rossini M A, Maddonni G A, Otegui M E. 2011. Inter-plant competition for resources in maize crops grown under contrasting nitrogen supply and density: Variability in plant and ear growth. Field Crops Research, 121, 373–380.

Shao H, Wu X B, Chi H H, Zhu F B, Liu J H, Duan J H, Shi W J, Xu Y, Mi G H. 2024a. How does increasing planting density affect nitrogen use efficiency of maize: A global meta-analysis. Field Crops Research, 311, 109369.

Shao H, Wu X B, Duan J H, Zhu F B, Chi H H, Liu J H, Shi W J, Xu Y, Wei Z B, Mi G H. 2024b. How does increasing planting density regulate biomass production, allocation, and remobilization of maize temporally and spatially: A global meta-analysis. Field Crops Research, 315, 109430.

Shangguan L S, Ye Z J, Hou D K, Zhai W L, Feng Z Z, Zhang R, Xie Y X, Ma G, Wang C Y, Ma D Y, Guo T C, Zhao X. 2024. Successive application of controlled-loss urea improves grain yield and economic benefit in maize-wheat cropping systems. European Journal of Agronomy, 159, 127285.

Shi D Y, Li Y H, Zhang J W, Liu P, Zhao B, Dong S T. 2016. Increased plant density and reduced N rate lead to more grain yield and higher resource utilization in summer maize. Journal of Integrative Agriculture, 15, 2515–2528.

Shi Y, Xu L, Zhao J, Lu B, Fan Y. 2019. Waxy maize industry advantages in China and opportunities in the development of the belt and road. The Crop Journal, 35, 15–19.

Șimon A, Moraru P I, Ceclan A, Russu F, Chețan F, Bărdaș M, Popa A, Rusu T, Pop AI, Bogdan I. 2023. The impact of climatic factors on the development stages of maize crop in the Transylvanian plain. Agronomy, 13, 1612. 

Song L, Jin J. 2020. Effects of sunshine hours and daily maximum temperature declines and cultivar replacements on maize growth and yields. Agronomy, 10, 1862.

Tian P Y, Liu J M, Zhao Y N, Huang Y F, Lian Y H, Wang Y, Ye Y L. 2022. Nitrogen rates and plant density interactions enhance radiation interception, yield, and nitrogen use efficiencies of maize. Frontier in Plant Science, 13, 974714.

Wang J, Fu P X, Lu W P, Lu D L. 2020. Application of moderate nitrogen levels alleviates yield loss and grain quality deterioration in fresh waxy maize caused by post-silking heat stress. The Crop Journal, 8, 1081–1092.

Wang S J, Luo S S, Yue S C, Shen Y F, Li S Q. 2016. Fate of 15N fertilizer under different nitrogen split applications to plastic mulched maize in semiarid farmland. Nutrient Cycling in Agroecosystems, 105, 129–140.

Wang X K, Wang G, Turner N C, Xing Y Y, Li M T, Guo T. 2020. Determining optimal mulching, planting density, and nitrogen application to increase maize grain yield and nitrogen translocation efficiency in Northwest China. BMC Plant Biology, 20, 282.

Wen Z R, Li G H, Wang J, Zhang S B, Gu X T, Ding M Q, Lu W P, Lu D L. 2020. Research and analysis of current situation of fertilizer and pesticide application in fresh maize production in Jiangsu Province. Jiangsu Agricultural Sciences, 48, 91–96. (in Chinese)

Wesolowska M, Rymarczyk J, Gora R, Baranowski P, Slawinski C, Klimczyk M, Supryn G, Schimmelpfennig L. 2021. New slow-release fertilizers—Economic, legal and practical aspects: A review. International Agrophysics, 35, 11–24.

Wu X R, Li Z M, Li W J, Xue X K, Yang L C, Xu J, Yang B P, Ding R X, Jia Z K, Zhang X D, Han Q F. 2024. Reducing fertilization with high planting density increases maize yield stability and nitrogen use efficiency in semi-arid areas. European Journal of Agronomy, 159, 127223.

Wu X Y, Tong L, Kang S Z, Du T S, Ding R S, Li S E, Chen Y. 2023. Combination of suitable planting density and nitrogen rate for high yield maize and their source–sink relationship in Northwest China. Journal of the Science of Food and Agriculture, 103, 5300–5311.

Yang H, Gu X T, Ding M Q, Lu W P, Lu D L. 2020. Weakened carbon and nitrogen metabolisms under post-silking heat stress reduce the yield and dry matter accumulation in waxy maize. Journal of Integrative Agriculture, 19, 78–88.

Xin Y Y, Mi F Y, Wang X K. 2022. Effects of different nitrogen fertilizer types and application rates on maize yield and nitrogen use efficiency in Loess Plateau of China. Journal of Soils and Sediments, 22, 1938–1958.

Yin R, Gu X B, Cheng Z K, Li W L, Wang Y M, Zhao T T, Cai W J, Du Y D, Cai H J. 2024. Optimizing nitrogen application patterns and amounts to improve maize yield and water-nitrogen use efficiencies in the Loess Plateau of China: A meta-analysis. Field Crops Research, 318, 109599.

Yu X, Keitel C, Zhang Y, Wangeci A N, Dijkstra F A. 2022. Global meta-analysis of nitrogen fertilizer use efficiency in rice, wheat and maize. Agriculture, Ecosystems & Environment, 338, 108089.

Yuan C, Wang S Y, Lu D L. 2022. Fertilization time of slow-release fertilizer affects the physicochemical properties of starch from spring-sown waxy maize. Journal of the Science of Food and Agriculture, 102, 1012–1020.

Zhai J, Zhang Y M, Zhang G Q, Xu W Q, Xie R Z, Ming B, Hou P, Wang K R, Xue J, Li S K. 2022. Nitrogen application and dense planting to obtain high yields from maize. Agronomy, 12, 1308.

Zhang J J, Zhao G, Dang Y, Fan T L, Wang L, Li S Z, Zhou G, Fudjoe S K, Wang L L, Palta J A. 2023. Enhancing maize yield and resource efficiency through controlled-release nitrogen fertilization on the semiarid loess plateau. Agronomy, 13, 2320.

Zhang T T, Liu J, Zhang H C, Lian A, Gao F, Zhang Z D, Guo Z Y. 2023. The impact of fertilizer type on dry matter, nitrogen partitioning, and yield of spring maize with film-side sowing. Agronomy, 13, 2999.

Zhang W Q , Fan Y L, Zhang S, Lu B S, Duan L S, Li Z H, Tan W M. 2019. Waxy maize yield in response to a novel plant growth regulator and plant density. International Journal of Agriculture and Biology, 22, 304–312.

Zhang W Q , Wang H, Pei Z C, Sun P D, Wei J H, Shi B, Zheng H J, Xu L N, Wu L F, Guan Y. 2020. Water limited stress at jointing stage on fresh waxy maize yield and its interactions with plant density under field conditions. Desalination and Water Treatment, 188, 406–414.

Zheng B, Li Y T, Wu Q, Zhao W, Ren T, Zhang X, Li G, Ning T, Zhang Z. 2023. Maize (Zea mays L.) planted at higher density utilizes dynamic light more efficiently. Plant Cell & Environment, 46, 3305–3322.

Zhou B Y, Yue Y, Sun X F, Wang X B, Wang Z M, Ma W, Zhao M. 2016. Maize grain yield and dry matter production responses to variations in weather conditions. Agronomy Journal, 108, 196–204.

[1] Ligong Peng, Wentao Yi, Yizhu Wu, Yingying Zhang, Xiangbin Yao, Pipeng Xing, Baoling Cui, Xiangru Tang. Partial organic fertilizer substitution and water-saving irrigation can reduce greenhouse gas emissions in aromatic rice paddy by regulating soil microorganisms while increasing yield and aroma[J]. >Journal of Integrative Agriculture, 2026, 25(1): 0-.
[2] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[3] Xiaoqing Wang, Wenjiao Shi, Qiangyi Yu, Xiangzheng Deng, Lijun Zuo, Xiaoli Shi, Minglei Wang, Jun Li. Well-facilitated farmland improves nitrogen use efficiency and reduces environmental impacts in the Huang-Huai-Hai Region, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3264-3281.
[4] Jinpeng Li, Siqi Wang, Zhongwei Li, Kaiyi Xing, Xuefeng Tao, Zhimin Wang, Yinghua Zhang, Chunsheng Yao, Jincai Li. Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2974-2988.
[5] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[6] Kuanyu Zhu, Yuemei Xu, Zhiwei Sun, Yajun Zhang, Weiyang Zhang, Yunji Xu, Junfei Gu, Hao Zhang, Zhiqin Wang, Lijun Liu, Jianhua Zhang, Jianchang Yang. Post-anthesis dry matter production and leaf nitrogen distribution are associated with root-derived cytokinins gradient in rice[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2106-2122.
[7] Rumeng Wang, Jinsong Luo, Jian Zeng, Yingying Xiong, Tianchu Shu, Dawei He, Zhongsong Liu, Zhenhua Zhang. BjuB05.GS1.4 promotes nitrogen assimilation and participates in the domestication of shoot nitrogen use efficiency in Brassica juncea[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1800-1812.
[8] Lanjie Zheng, Qianlong Zhang, Huiying Liu, Xiaoqing Wang, Xiangge Zhang, Zhiwei Hu, Shi Li, Li Ji, Manchun Ji, Yong Gu, Jiaheng Yang, Yong Shi, Yubi Huang, Xu Zheng. Fine mapping and discovery of MIR172e, a candidate gene required for inflorescence development and lower floret abortion in maize ear[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1372-1389.
[9] Qingyun Tang, Guodong Wang, Lei Zhao, Zhiwen Song, Yuxiang Li.
Responses of yield, root traits and their plasticity to the nitrogen environment in nitrogen-efficient cultivars of drip-irrigated rice
[J]. >Journal of Integrative Agriculture, 2025, 24(2): 480-496.
[10] Guanghao Li, Qijian Zhang, Weiping Lu, Dalei Lu. Response of nutrient accumulation, remobilization and yield to combined application of nitrogen and potassium in waxy maize[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4561-4572.
[11] Hong Ren, Zheng Liu, Xinbing Wang, Wenbin Zhou, Baoyuan Zhou, Ming Zhao, Congfeng Li. Long-term excessive nitrogen application decreases spring maize nitrogen use efficiency via suppressing root physiological characteristics[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4195-4210.
[12] Yulong Wang, Aizhong Yu, Pengfei Wang, Yongpan Shang, Feng Wang, Hanqiang Lü, Xiaoneng Pang, Yue Li, Yalong Liu, Bo Yin, Dongling Zhang, Jianzhe Huo, Keqiang Jiang, Qiang Chai. No-tillage with total green manure mulching increases maize yield through improved soil moisture and temperature environment and enhanced maize root structure and photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4211-4224.
[13] Zijuan Ding, Ren Hu, Yuxian Cao, Jintao Li, Dakang Xiao, Jun Hou, Xuexia Wang. Integrated assessment of yield, nitrogen use efficiency and ecosystem economic benefits of use of controlled-release and common urea in ratoon rice production[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3186-3199.
[14] Hanzhu Gu, Xian Wang, Minhao Zhang, Wenjiang Jing, Hao Wu, Zhilin Xiao, Weiyang Zhang, Junfei Gu, Lijun Liu, Zhiqin Wang, Jianhua Zhang, Jianchang Yang, Hao Zhang.

The response of roots and the rhizosphere environment to integrative cultivation practices in paddy rice [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1879-1896.

[15] Shuang Cheng, Zhipeng Xing, Chao Tian, Mengzhu Liu, Yuan Feng, Hongcheng Zhang.

Optimized tillage methods increase mechanically transplanted rice yield and reduce the greenhouse gas emissions [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1150-1163.

No Suggested Reading articles found!