Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Inheritance, virulence variation, and genetic heterozygosity of sexual recombination between races of Puccinia striiformis f. sp. tritic

Maxinzhi Liu*, Xinyao Ma*, Bingbing Zhang, Xinyu Kong, Mudi Sun, Zhensheng Kang#, Jie Zhao#

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, China

 Highlights 

ž Sexual recombination between races were demonstrated and illustrated complicated inheritance.

ž Sexual recombination between races is responsible for accounting for a high level of virulence variation and the generation of new races.

ž Sexual recombination between races contribute to evolution of the stripe rust pathogen due to a wide range of genetic heterozygosity. 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

新小种的产生和快速累积是条锈病抗病性丧失的和后续流行的根本原因。然而,有关小麦条锈菌的小种间有性遗传重组与毒性变异尚无研究报道。因此,本研究构建了小麦条锈菌的两个小种间有性杂交,获得其F1F2后代群体,通过Yr单基因系及载体品种对亲本及其后代进行表型鉴定,分析后代毒性变异及其在不同抗病位点的遗传特征,明确其遗传规律;利用20K- SNP 芯片鉴定并明确群体基因型,明确后代群体的遗传多样性、杂合度的水平,明确有性重组对群体遗传多样性丰富度的影。研究结果揭示小种间进行有性重组并导致后代毒性变异产生新小种,是小种毒性变异的新途径。

研究结果表明F2后代群体在 Yr 单基因及载体品种上鉴定为 57 种致病类型,毒性变异率为98.3-100%F2后代群体中测试的26Yr位点中的 13  Yr 位点上发生了无毒性/毒性分离,表现出一个显性或隐性,或两个基因相互作用控制。所有的F2后代表现出高的遗传杂合度(0.07-0.64),基因型分布存在差异性,显示为来自有性重组的丰富的遗传多样性。遗传变异主要发生在个体间。同时,F2后代群体显示出表型与基因型的相关性低。研究结果为深入了解小种间有性重组在新小种的来源和群体遗传多样性进化中的作用提供重要科学依据。

创新点:

1. 小麦条锈菌小种间有性重组遗传规律复杂。

2.小种间有性重组是小麦条锈菌高度毒性变异和新小种产生的重要途径。

3. 小种间有性重组导致群体丰富的遗传杂合度,有利于小麦条锈菌进化。

结论:

本研究首次表明小麦条锈菌小种间有性遗传重组导致新小种产生,是小麦条锈菌毒性变异的新途径;为揭示小麦条锈菌新小种产生、群体遗传多样性高提供了科学依据,也为阐释中国小麦条锈菌西北越夏易变区新小种策源地的形成与群体多样性高提供了理论依据,具有重要的学术价值。



Abstract  

New races are responsible for the breakdown of stripe rust-resistant wheat cultivars. Sexual reproduction of Puccinia striiformis f. sp. tritici, the cause of wheat strip rust, can generate new races with virulence variation. However, the role of inter-racial hybridization in generating new races and population genetic diversity has remained unknown. So, we hybridized two single-urediospore P. striiformis f. sp. tritici isolates, 4-14 and b-5, on barberry (Berberis aggregata) seedlings to establish single-aeciospore F1 progenies, and selfed the F1 progeny 1-2 to establish 85 single-aeciospore F2 progenies. All isolates were phenotyped on 26 Yr-single gene lines as differentials, and genotyped with the 20K genotyping-by-target sequencing (GBTS) chip for P. striiformis f. sp. tritici. The results showed that 58 different virulence phenotypes (VPs, VP1-VP58) were identified, and 57 VPs were new, showing high virulence variation (98.3-100%). Overall F2 progenies displayed different avirulence and virulence segregation ratios at 13 of 26 Yr loci tested, at which avirulence was controlled by one dominant or recessive gene, or by two genes with different gene effects. All F2 progenies showed a high level of heterozygosity (0.07-0.64), with a great difference of genotypic distribution, presenting a rich genetic diversity from sexual recombination. Genetic variation of the F2 progenies mostly occurred among individuals rather than among populations. A low correlation was detected between phenotype and genotype in the F2 progenies (R2=0.0257). This study provides an insight into understanding the role of sexual recombination in the origin of new races and high level of genetic diversity as well as evolution of the stripe rust. 

Keywords:  wheat stripe rust       sexual recombination       virulence variation       new race       heterozygosity       genetic diversity       gene chip  
Online: 08 December 2025  
Fund: 

This study was supported by the National Natural Science Foundation of China (32272507), and National Key R&D Program of China (2025YFE0105200; 2021YFD1401000). 

About author:  Maxinzhi Liu, E-mail: 1127730224@qq.com; Xinyao Ma, E-mail: maxinyao@nwafu.edu.cn; #Correspondence Jie Zhao, E-mail: jiezhao@nwafue.edu.cn; Zhensheng Kang, E-mail: kangzs@nwafu.edu.cn *These authors contributed equally to this study.

Cite this article: 

Maxinzhi Liu, Xinyao Ma, Bingbing Zhang, Xinyu Kong, Mudi Sun, Zhensheng Kang, Jie Zhao. 2025. Inheritance, virulence variation, and genetic heterozygosity of sexual recombination between races of Puccinia striiformis f. sp. tritic. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.005

Awais M, Ali S, Ju M, Liu W, Zhang G S, Zhang Z D, Li Z J, Ma X Y, Wang L, Du Z M, Tian X X, Zeng Q D, Kang Z S, Zhao J. 2022. Countrywide inter-epidemic region migration pattern suggests the role of southwestern population to wheat stripe rust epidemics in China. Environmental Microbiology, 24, 4684-4701.

Barots P, Fleischmann G, Samborski D J, Shipton W A. 1969. Studies on asexual variation in the virulence of oat crown rust, Puccinia coronata f. sp. avenae, and whet leaf rust, Puccinia recondita. Canadian Journal of Botany, 47, 1383-1387.

Caraigie J. H. 1927. Discovery of the function of the pycnia of the rust fungi. Nature, 120, 765-767.

Chen W, Zhang Z D, Ma X Y, Zhang G S, Yao Q, Kang Z S, Zhao J. 2021. Phenotyping and genotyping analyses reveal the spread of Puccinia striiformis f. sp. tritici aeciospores from susceptible barberry to wheat in Qinghai of China. Frontiers in Plant Science, 12, 764304.

Chen X M. 2005. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Canadian Journal of Plant Pathology, 27, 314-337.

Cheng P, Chen X M. 2014. Virulence and molecular analyses support asexual reproduction of Puccinia striiformis f. sp. tritici in the U.S. Pacific Northwest. Phytopathology, 104, 1208-1220.

Danecek P, Auton A, Abecasis G, Albers C A, Banks E, DePristo M A, Handsaker R E, Lunter G, Marth G T, Sherry S T, McVean G, Durbin R, 1000 Genomes Project Analysis Group. 2011. The variant call format and VCFtools. Bioinformatics, 27, 2156-2158.

De Bary A. 1865-1866. Neue Untersuchungen über Uredineen, inbesondere die Entwicklung der Puccinia graminis und den Zusammenhang derselbe mit Aecidium Berberidis. Berlin: Monatsberichte der Koniglichen Preussichen Akademie der Wissenschaften pp. 15-49, 205-215. (in German)

Demitriev A P, Shelomova L F. 1976. Study on heterokaryosis of the pathogen of brown rust of wheat. Bulletin, 39, 61-64.

Du Z M, Li Z J, Peng Y L, Zhang G S, Sun M D, Li S N, Ma X Y, Chen L, Kang Z S, Zhao J. 2022. Inheritance and linkage of virulence genes of Puccinia striiformis f. sp. hordei. Phytopathology, 112, 2514-2522.

Duan X Y, Tellier A, Wan A M, Leconte M, de Vallavieille-Pope C, Enjalbert J. 2010. Puccinia striiformis f. sp. tritici presents high diversity and recombination in the over-summering zone of Gansu, China. Mycologia, 102, 44-53.

Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611-2620.

Flor H H., 1971. Current status of the gene-for-gene concept. Annual. Review. Phytopathology,. 9, 275-296.

Goddard M V. 1976. The production of a new race, 105E137 of Puccinia striiformis in glasshouse experiments. Transactions of the British Mycological Society, 67, 395-398.

Holtz M D, Kumar K, Zantinge J L, Xi K. 2014. Genetic diversity of Puccinia striiformis from cereals in Alberta, Canada. Plant Pathology, 63, 415-424.

HovmØller M S, Justesen A F, Brown J K M. 2002. Clonality and long-distance migration of Puccinia striiformis f. sp. tritici in north-west Europe. Plant Pathology, 51, 24-32.

Jin Y, Szabo L, Carson M. 2010. Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis spp. as an alternate host. Phytopathology, 100, 432-435.

Johnson R, Priestley R H, Taylor E C. 1978. Occurrence of virulence in Puccinia striiformis for compare wheat in England. Cereal Rust Bulletin, 6, 11-13.

Kang Z S, Li Z Q, Shang H S. 1994. On the screening of new heterocaryons of wheat stripe rust and its nucleal dissociation. Acta Phytopathologica Sinica, 24, 101-105. (in Chinese)

Kosman E, Dinoor A, Herrmann A, Schachtel G A. 2008. Virulence Analysis Tool (VAT). User Manual. Available online at: https://en-lifesci.tau.ac.il/profile/kosman/vat (accessed 26 February 2025).

Lei Y, Wang M N, Wan A M, Xia C J, See D R, Zhang M, Chen X M. 2017. Virulence and molecular characterization of experimental isolates of the stripe rust pathogen (Puccinia striiformis) indicate somatic recombination. Phytopathology, 107, 329-344.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078-2079.

Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Bioinformatics 00:1-2 arXiv:1303.3997v1 [q-bio.GN].

Li S N, Sun M D, Du Z M, Cheng X R, Yang L T, Ju M, Kang Z S, Zhao J. 2025b. Identification, validation, and evidence of frequent exchange of HD alleles in Puccinia striiformis reveal high genetic diversity of Chinese stripe rust population. bioRxiv preprint doi: https://doi.org/10.1101/2025.05.06.652357.

Li Z J, Chen X, Xu J, Liu F, Bian Y M, Du Z M, Ma X Y, Sun M D, Zhao Y Y, Kang Z S, Zhao J. 2025a. Fungicide application on alternate host barberry has significant roles in declining population genetic diversity and the risk of emerging new races of Puccinia striiformis f. sp. tritici. Plant Disease, First look, DOI: 10.1094/PDIS-12-24-2727-RE.

Li Z Q. 1980. The variation of wheat variety resistance to stripe rust in China and the way of its solution. Scientia Agricultural Sinica, 3, 72-77. (in Chinese)

Li Z Q. 1998. The loss of the resistance of wheat cultivars to stripe rust and control strategy in China. Exploration of Nature, 17, 23-24. (in Chinese)

Line R F, Chen X M. 1995. Successes in breeding for and managing durable resistance to wheat rusts. Plant Disease, 79, 1254-1255.

Line R F, Qayoum A. 1992. Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America,1968-87. Agriculture Research Services, 1788, 44.

Little R, Manners J G. 1969. Somatic recombination in yellow rust of wheat (Puccinia striiformis): I. The production and possible origin of two new physiologic races. Transaction of British Mycological Society, 53, 251-258.

Liu W C, Wang B T, Zhao Z H, Li Y, Kang Z S. 2022. Historical review and countermeasures of wheat stripe rust epidemics in China. China Plant Protection, 42, 21-27, 41. (in Chinese)

Liu Y, Chen X Y, Ma Y, Meng Z Y, Wang F L, Yang X J, Chen X F, Li X M, Kang Z S, Zhao J. 2021. Evidence of roles of susceptible barberry in providing (primary) inocula to trigger stripe rust infection on wheat in Longnan, Gansu. Acta Phytopathologica Sinica, 51, 366-380. (in Chinese)

Lu N H, Wang J F, Chen X M, Zhan G M, Chen C Q, Huang L L, Kang Z S. 2011. Spatial genetic diversity and interregional spread of Puccinia striiformis f. sp. tritici in Northwest China. European Journal of Plant Pathology, 131, 685-693. (in Chinese)

Miller M E, Nazareno E S, Rottschaefer S M, Riddle J, Pereira S D D, Li F, Nguyen-Phuc H, Henningsen E C, Persoons A, Saunders D G O, Stukenbrock E, Dodds, P N, Kianian S F, and Figueroa M. 2020. Increased virulence of Puccinia coronata f. sp. avenae populations through allele frequency changes at multiple putative Avr loci. PLoS Genetics, 16, e1009291.

Newton M, Johnson T, Brown A M. 1930. A preliminary study on the hybridization of physiologic forms of Puccinia graminis tritici. Scientific Agriculture, 10, 721-731.

Peakall R, Smouse P E. 2012. GenAIEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28, 2537-2539.

Pritchard J K, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.

Rodriguez-Algaba J, HovmØller M S, Villegas D, Cantero-Martínez C, Jin Y, Justensen A F. 2021. Two indigenous Berberis species from Spain were confirmed as alternate hosts of the yellow rust fungus Puccinia striiformis f. sp. tritici. Plant Disease, 105, 2281-2285.

Rodriguez-Algaba J, Walter S, SØrensen C K, HovmØller M S. 2014. Sexual structures and recombination of the wheat rust fungus Puccinia striiformis on Berberis vulgaris. Fungal Genetics and Biology, 70, 77-85.

Roelfs A P. 1982. Effects of barberry eradication on stem rust in the United States. Plant Disease, 66, 177-181.

Rosenberg N A. 2004. DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4, 137-138.

Schachtel G A, Dinoor A, Herrmann A, Kosman E. 2012. Comprehensive evaluation of virulence and resistance data: A new analysis tool. Plant Disease, 96, 1060-1063.

Shan W X, Chen S Y, Kang Z S, Wu L R, Li Z Q. 1998. Genetic diversity in Puccinia striiformis Westend. f. sp. tritici revealed by pathogen genome-specific repetitive sequence. Canadian Journal of Botany, 76, 587-595.

Shang H S, Jing J X, Li Z Q. 1994. Mutations induced by ultraviolet radiation affecting virulence in Puccinia striiformis. Acta Phytopathologica Sinica, 24, 347-351.

Sperschneider J, Hewitt T, Lewis D C, Periyannan S, Milgate A W, Hickey L T, Mago R, Nodds P N, Figueroa M. 2023. Nuclear exchange generates populations diversity in the wheat leaf rust pathogen Puccinia triticina. Nature Microbiology, 8, 2130-2141.

Statler G D. 1977. Inheritance of virulence of culture 73-74 Puccinia recondita. Phytopathology, 67, 906-908.

Statler G D. 1979a. Inheritance of pathogenicity of culture 70-1, race 1 of Puccinia recondita tritici. Phytopathology, 69, 661-663.

Statler G D. 1979b. Inheritance of virulence of Melampsora lini race 218. Phytopathology, 69, 257-259.

Statler G D. 1985. Mutations affecting virulence in Puccinia recondita. Phytopathology, 75, 565-567.

Steele K A, Humphreys E, Wellings C R, Dickinson M J. 2001. Support for a stepwise mutation model for pathogen evolution in Australasian Puccinia striiformis f. sp. tritici by use of molecular markers. Plant Pathology, 50, 174-180.

Tian Y, Zhan G M, Chen X M, Tungruengtragoon A, Lu X, Zhao J, Huang L L, Kang Z S. 2016. Virulence and SSR marker segregation in a Puccinia striiformis f. sp. tritici population produced by selfing a Chinese isolate on Berberis shensiana. Phytopathology, 106, 185-191.

Tian Y, Zhan G M, Lu X, Zhao J M, Huang L L, Kang Z S. 2017. Determination of heterozygosity for avirulence/virulence loci through sexual hybridization of Puccinia striiformis f. sp. tritici. Frontiers of Agricultural Science and Engineering, 4, 48-58.

Wang L, Liu F, Bian Y M, Sun M D, Kang Z S, Zhao J. 2024. Revealing inheritance of a Xinjiang isolate BGTB-1of Puccinia striiformis f. sp. tritici and the shift of pathogenicity from avirulence to virulence at heterozygous AvrYr5 locus. Journal of Integrative Agriculture, 2024, First look, oi.org/10.1016/j.jia.2024.04.023.

Wang L, Zheng D, Zuo S X, Chen X M, Zhuang H, Huang L L, Kang Z S, Zhao J. 2018. Inheritance and linkage of virulence genes in Chinese predominant race CYR32 of the wheat stripe rust pathogen Puccinia striiformis f. sp. tritici. Frontiers in Plant Science, 9: 120.

Wang X L, Zhu F, Huang L L, Wei G R, Kang Z S. 2009. Effects of ultraviolet radiation on pathogenicity mutation of Puccinia striiformis f. sp. tritici. Journal of Nuclear Agricultural Sciences, 23, 375-379. (in Chinese)

Waterhouse W L. 1929. A preliminary account for the origin of two new Australian physiologic forms of Puccinia graminis triticiProceedings of Linnean Society of New South Wales, 54, 96-106.

Wellings C R. 2011. Global status of stripe rust: a review of historical and current status. Euphytica, 179: 129-141.

Yan H H, Ma Z, Yao Q, Cao S Q, Jia J Z, Li J Q, Zhao J, Yan W Y, Ma J H, Chen W, Zhang B, Han D J, Kang Z S, Huang L L, Zeng Q D. 2024. A genotyping by target sequencing chip for population genetic analysis of the wheat stripe rust pathogen (Puccinia striiformis). Authorea (preprint) Doi: 10.22541/au.171825522.22875677/v1.

Yao Q Y, Wang G F, Xu Z B, Wang M N, Wang Y, Jing J X. 2006. Virulent mutant in Puccinia striiformis induced by ethyl methyl sulfonate (EMS). Journal of Northwest A&F University (Natural Science Edition), 34, 120-123. (in Chinese)

Yuan C Y, Wang M N, Skinner D Z, See D R, Xia C J, Guo X H, Chen X M. 2018. Inheritance of virulence, construction of a linkage map, and mapping dominant virulence genes in Puccinia striiformis f. sp. tritici through characterization of a sexual population with genotyping-by-sequencing. Phytopathology, 108, 133-141.

Zadoks J C. 1961. Yellow rust on wheat: studies on epidemiology and physiologic specialization. Tijdschrift Over Plantenziekten, 67, 69-256.

Zhang G S, Liu W, Wang L, Ju M, Tian X X, Du Z M, Kang Z S, Zhao J. 2023. Genetic characteristics and linkage of virulence genes of the Puccinia striiformis f. sp. tritici isolate TSA-6 to Yr5 host resistance. Plant Disease, 107, 688-700.

Zhang H, Liu Y M, Zhang X Y, Ji W Q, Kang Z S. 2023. A necessary considering factor for breeding growth-defense tradeoff in plants. Stress Biology, 3, 6.

Zhao JWang LWang Z Y, Chen X M, Zhang H C, Yao J N, Zhan G M, Chen WHuang LKang Z S. 2013. Identification of eighteen Berberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China. Phytopathology, 103, 927-934.

Zhao Y Y, Huang X L, Li Q, Huang L L, Kang Z S, Zhao J. 2023. Virulence phenotyping and molecular genotyping reveal high diversity within and strong gene flow between the Puccinia striiformis f. sp. tritici populations collected from barberry and wheat in Shaanxi Province of China. Plant Disease, 107, 701-712.

Zheng W M, Huang L, Huang J, Wang X, Chen X, Zhao J, Guo J, Zhuang H, Qiu C, Liu J, Liu H, Huang X, Pei G, Zhan G, Tang C, Cheng Y, Liu M, Zhang J, Zhao Z, Zhang S, Han Q, Han D, Zhang H, Zhao J, Gao X, Wang J, Ni P, Dong W, Yang L, Yang H, Xu JR, Zhang G, Kang Z. 2013. High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nature Communications, 4, 2673.

Zheng W M, Liu F, Kang Z S, Chen S Y, Li Z Q, Wu L R. 2000. AFLP fingerprinting of main dominant races of Puccinia striiformis f. sp. tritici in China. Progress of Natural Science, 10, 54-59. (in Chinese)

[1] Wei Liu, Xueling Huang, Meng Ju, Mudi Sun, Zhimin Du, Zhensheng Kang, Jie Zhao. Molecular evidence of the west-to-east dispersal of Puccinia striiformis f. sp. tritici in central Shaanxi and the migration of the inoculum from Gansu[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2251-2265.
[2] Gensheng Zhang, Mudi Sun, Xinyao Ma, Wei Liu, Zhimin Du, Zhensheng Kang, Jie Zhao. Yr5-virulent races of Puccinia striiformis f. sp. tritici possess relative parasitic fitness higher than current main predominant races and potential risk[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2674-2685.
[3] Wenting Li, Chaoqun Gao, Zhao Cai, Sensen Yan, Yanru Lei, Mengya Wei, Guirong Sun, Yadong Tian, Kejun Wang, Xiangtao Kang.

Assessing the conservation impact of Chinese indigenous chicken populations between ex-situ and in-situ using genome-wide SNPs [J]. >Journal of Integrative Agriculture, 2024, 23(3): 975-987.

[4] TAO Ling-ling, TING Yu-jie, CHEN Hong-rong, WEN Hui-lin, XIE Hui, LUO Ling-yao, HUANG Ke-lin, ZHU Jun-yan, LIU Sheng-rui, WEI Chao-ling. Core collection construction of tea plant germplasm in Anhui Province based on genetic diversity analysis using simple sequence repeat markers[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2719-2728.
[5] WANG Meng-qi, ZHANG Hong-rui, XI Yu-qiang, WANG Gao-ping, ZHAO Man, ZHANG Li-juan, GUO Xian-ru. Population genetic variation and historical dynamics of the natural enemy insect Propylea japonica (Coleoptera: Coccinellidae) in China[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2456-2469.
[6] WANG Jie, LEI Qiu-xia, CAO Ding-guo, ZHOU Yan, HAN Hai-xia, LIU Wei, LI Da-peng, LI Fu-wei, LIU Jie. Whole genome SNPs among 8 chicken breeds enable identification of genetic signatures that underlie breed features[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2200-2212.
[7] LIU Cheng, ZHAO Ning, JIANG Zhi-cheng, ZHANG Huan, ZHAI Hong, HE Shao-zhen, GAO Shao-pei, LIU Qing-chang. Analysis of genetic diversity and population structure in sweetpotato using SSR markers[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3408-3415.
[8] ZHANG Ying, CAO Yu-fen, HUO Hong-liang, XU Jia-yu, TIAN Lu-ming, DONG Xing-guang, QI Dan, LIU Chao. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2275-2290.
[9] XU Xin, YE Jun-hua, YANG Ying-ying, LI Ruo-si, LI Zhen, WANG Shan, SUN Yan-fei, ZHANG Meng-chen, XU Qun, FENG Yue, WEI Xing-hua, YANG Yao-long. Genetic diversity analysis and GWAS reveal the adaptive loci of milling and appearance quality of japonica (oryza sativa L.) in Northeast China[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1539-1550.
[10] GUO Yi, GONG Ying, HE Yong-meng, YANG Bai-gao, ZHANG Wei-yi, CHEN Bo-er, HUANG Yong-fu, ZHAO Yong-ju, ZHANG Dan-ping, MA Yue-hui, CHU Ming-xing, E Guang-xin. Investigation of Mitochondrial DNA genetic diversity and phylogeny of goats worldwide[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1830-1837.
[11] WANG Fu-qiang, FAN Xiu-cai, ZHANG Ying, SUN Lei, LIU Chong-huai, JIANG Jian-fu. Establishment and application of an SNP molecular identification system for grape cultivars[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1044-1057.
[12] LIU Na, CHENG Fang-yun, GUO Xin, ZHONG Yuan. Development and application of microsatellite markers within transcription factors in flare tree peony (Paeonia rockii) based on next-generation and single-molecule long-read RNA-seq[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1832-1848.
[13] GAO Yuan, WANG Da-jiang, WANG Kun, CONG Pei-hua, LI Lian-wen, PIAO Ji-cheng. Analysis of genetic diversity and structure across a wide range of germplasm reveals genetic relationships among seventeen species of Malus Mill. native to China [J]. >Journal of Integrative Agriculture, 2021, 20(12): 3186-3198.
[14] May Oo kHINE, brozenká MICHAELA, LIU Yan, Jiban kumar kUNDU, WANG Xi-feng. Molecular diversity of barley yellow dwarf virus-PAV from China and the Czech Republic[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2736-2745.
[15] GU Xiao-zhen, CAO Ya-cong, ZHANG Zheng-hai, ZHANG Bao-xi, ZHAO Hong, ZHANG Xiao-min, WANG Hai-ping, LI Xi-xiang, WANG Li-hao. Genetic diversity and population structure analysis of Capsicum germplasm accessions[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1312-1320.
No Suggested Reading articles found!