Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Global trends in the commercialization of genetically modified crops in 2024

Haohui Li1, 3*, Xingru Cheng1, 2*, Liqiang Wang1, Pei xie4, Haiwen Zhang1, Yadong Yang2#, Tao liu4#, Youhua Wang1#

1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

3 Hubei University, Wuhan, Hubei 430062, China

4 Chinese Academy of Agricultural Sciences, Beijing 100081, China

 Highlights 

The study systematically analyzes the spatial distribution pattern and regional evolution driving mechanism of global genetically modified (GM) crops in 2024.

The global planting area of GM crops reaches 209.8 million hectares, with developing countries accounting for 54.0% and their growth rate continuing to outpace that of developed countries.

It provides multidimensional empirical support and decision-making basis for the optimal allocation of agricultural biotechnology resources and the formulation of food security strategies.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

转基因作物的持续商业化进程不断提高全球粮食产量、改善作物品质并减少农药使用。此类技术创新有效推动农业生产体系向可持续方向转型。具体而言,转基因作物通过应对虫害、杂草滋生和耕地限制等核心挑战,已成为农业领域的关键新型生产力。本研究系统梳理了2024年全球转基因作物的空间分布格局,深入剖析了其发展驱动力与区域趋势演变,为农业科技创新提供关键信息支撑与战略指导。2024年,全球转基因作物种植面积达到2.098亿公顷,同比增长1.7%。转基因大豆和转基因玉米占据主导地位,分别占全球种植面积的50.0%32.5%。具有多重性状(抗虫性、耐除草剂性等)的转基因玉米占比高达92.5%发展中国家的转基因作物种植占比显著提升,巴西和越南成为区域增长引擎。政策支持与先进技术推广被认定为核心驱动力。同时,基因编辑技术的应用进程加快,多个国家批准了耐旱、抗病等新型性状的转基因作物,标志着下一代转基因作物商业化取得实质性进展。本研究为全球农业生物技术发展提供多维度洞察与指导,推动生物技术育种迈入“4.0时代”。



Abstract  

The ongoing commercialization of GM crops continues to enhance global grain yields, improve crop quality, and reduce pesticide usage.  These technological advancements have effectively propelled agricultural production systems toward sustainable transformation.  Specifically, GM crops address core challenges such as pest infestations, weed proliferation, and arable land constraints, emerging as a pivotal new productive force in agriculture. This study systematically examines the global spatial distribution patterns of GM crops in 2024 and provides an in-depth analysis of the driving forces and evolving regional trends, offering critical informational support and strategic guidance for innovation in agricultural science and technology. In 2024, the global GM crop cultivation area reached 209.8 million hectares, reflecting a 1.7% year-on-year increase. GM Glycine max (soybean) and Zea mays (maize) dominated the landscape, accounting for 50.0 and 32.5% of the total area, respectively, with stacked traits maizeconferring insect resistance and herbicide tolerance—comprising up to 92.5% of GM maize. The share of cultivation in developing countries expanded substantially, with Brazil and Vietnam emerging as regional growth drivers. Policy support and the diffusion of advanced technologies were identified as core driving forces. Concurrently, gene-editing technology applications accelerated, and several countries approved novel traits—including drought tolerance and disease resistance—marking substantial progress in the commercialization of next-generation GM crops. This research provides multidimensional insights and strategic guidance to support global agricultural biotechnology development, promoting the transition of biotechnology breeding into the "4.0 era".

Keywords:  genetically modified crops       commercialization              global agriculture              cultivation area              biotechnology  
Online: 24 November 2025  
Fund: 

This work was supported by the Central Public-interest Scientific Institution Basal Research Fund, China (Y2025CY45) and the Agricultural Science and Technology Innovation Program of the Chinese Academy of 

Agricultural Sciences (Y2025ZZ11).

About author:  Haohui Li, E-mail: guilingniao@foxmail.com; #Correspondence, Youhua Wang, Tel: +86-10-82109850, E-mail: wangyouhua@caas.cn; Tao Liu, Tel: +86-10-82105625, E-mail: liutao@caas.cn

Cite this article: 

Haohui Li, Xingru Cheng, Liqiang Wang, Pei xie, Haiwen Zhang, Yadong Yang, Tao liu, Youhua Wang. 2025. Global trends in the commercialization of genetically modified crops in 2024. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.11.037

AgbioInvestor. 2024. Global GM Crop Area Review. AgbioInvestor Publications.

AgbioInvestor. 2025. Global GM crop area review. GM Monitor Series. [2025-06-16]. https://gm.agbioinvestor.com/downloads/9.

AgriGrowth Tasmania. 2025. GMO Environmental Scan Final Report. Department of Natural Resources and Environment Tasmania.

Bucholzer M, Frommer W B. 2022. An increasing number of countries regulate genome editing in crops. New Phytologist, 234, 1589–1602.

Xingru Cheng, Haohui Li, Qiaoling Tang, Haiwen Zhang, Tao Liu, Youhua Wang,. 2024. Trends in the global commercialization of genetically modified crops in 2023. Journal of Integrative Agriculture, 23, 3943-3952.

CY Futures. 2025. Simulation of the commercialization process for genetically modified corn and soybeans in China. CY research institute, Shanghai. Retrieved february 25. [2025-06-22]. https://wwwdata.cyqh.com.cn/upload/2025-02-25/1740461955878_fd7010e6-2f8a-42ac-b6ac-881f9eb377e0.pdf

European Commission. 2024. Commission Implementing Decision (EU) 2024/2628. Official Journal of the European Union, L 320, 15–28.

European Parliament. 2024. Regulation (EU)2024/411 on Plants Obtained by Certain New Genomic Techniques. Official Journal of the European Union, C 120, 45–67.

FAO (Food and Agriculture Organization of the United Nations). 2023. Safety and global application assessment of genetically modified crops. Food and Agriculture Organization of the United Nations, Rome. [2025-06-30]. https://www.fao.org/3/cb4567en/cb4567en.pdf.

FDA (U.S. Food and Drug Administration). 2022. Biotechnology consultation note for GMB151 soybean. Silver Spring, MD: FDA, extension. [2025-06-20]. http://ngbkcglbmlglgldjfcnhaijeecaccgfi/https://www.fda.gov/media/158266/download

FSANZ (Food Standards Australia New Zealand). 2024. A1274 approval report. [2025-06-22]. https://www.foodstandards.gov.au/food-standards-code/applications/A1274-Food-derived-from-disease-resistant-banana-line-QCAV-4.

HCL (House of Commons Library). 2023. Genetic technology (precision breeding) bill 2022-23. [2025-06-12]. https://commonslibrary.parliament.uk/research-briefings/cbp-9557/

IRRI (International Rice Research Institute). 2021. Golden rice: Frequently asked questions. [2025-06-14]. https://irri.org/goldenrice/faq

ISAAA (International Service for the Acquisition of Agri-Biotech Applications). 2024a. Analysis of commercialization process for genetically modified maize and soybean in China. [2025-06-16]. https://www.isaaa.org/kc/cropbiotechupdate/article/default.asp?ID=21196

ISAAA (International Service for the Acquisition of Agri-Biotech Applications). 2024b. Countries approving GM crop cultivation: Science speaks. [2025-02-25]. https://www.isaaa.org/blog/entry/default.asp?BlogDate=10/31/2024

ISAAA (International Service for the Acquisition of Agri-Biotech Applications). 2024c. Global Status Of Commercialized Biotech/GM Crops in 2024. Brief No. 60. International Service for the Acquisition of Agri-Biotech Applications, Ithaca, NY.

ISAAA (International Service for the Acquisition of Agri-Biotech Applications). 2024d. Global Status of Regulatory Approvals for Gene-Edited Crops. [2025-06-18]. https://www.isaaa.org/resources/infographics/globalstatusgeneeditedcrops/

Ishii T, Araki M. 2017. A future scenario of the global regulatory landscape regarding genome-edited crops. GM Crops & Food, 8, 44–56.

Miao H P, Xia L H, Bahetibieke, Wang X W. 2024. Analysis of the development status and prospects of genetically modified soybeans in the context of developing new quality productive forces. Agricultural Outlook, 20, 96–103. (in Chinese)

MARAPRC (Ministry of Agriculture and Rural Affairs of the People’s Republic of China). 2024. List of approved agricultural genetically modified organism safety certificates (Part 1). Beijing, China. [2024-05-08]. https://www.moa.gov.cn/ztzl/zjyqwgz/spxx/202405/t20240508_6454996.htm.

Turnbull C, Lillemo M, Hvoslef-Eide T A K. 2021. Global regulation of genetically modified crops amid the gene edited crop boom-A review. Frontiers in Plant Science, 12, 630396.

USDA (United States Department of Agriculture) Economic Research Service. 2025. Adoption of genetically engineered crops in the U.S. [2025-6-19]. https://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-united-states

USDA (United States Department of Agriculture) Foreign Agricultural Service. 2024. EU agricultural biotechnology annual 2024 (GAIN Report No. GAIN-CH2024-0012). USDA, Washington, D.C. [2025-06-20]. https://www.fas.usda.gov/data/eu-27-agricultural-biotechnology-annual

[1] Niu Wang, Weidong Zhang, Zhenyu Zhong, Xiongbo Zhou, Xinran Shi, Xin Wang. FGF7 secreted from dermal papillae cell regulates the proliferation and differentiation of hair follicle stem cell[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3583-3597.
[2] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[3] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[4] Zuxian Chen, Bingbing Zhao, Yingying Wang, Yuqing Du, Siyu Feng, Junsheng Zhang, Luxiang Zhao, Weiqiang Li, Yangbao Ding, Peirong Jiao. H5N1 avian influenza virus PB2 antagonizes duck IFN-β signaling pathway by targeting mitochondrial antiviral signaling protein[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3614-3625.
[5] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[6] Yufeng Xiao, Meiqi Dong, Xian Wu, Shuang Liang, Ranhong Li, Hongyu Pan, Hao Zhang. Enrichment, domestication, degradation, adaptive mechanism, and nicosulfuron bioremediation of bacteria consortium YM2[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3529-3545.
[7] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[8] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[9] Zishuai Wang, Wangchang Li, Zhonglin Tang. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3574-3582.
[10] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[11] Minghui Li, Yilan Chen, Siqiao Wang, Xueke Sun, Yongkun Du, Siyuan Liu, Ruiqi Li, Zejie Chang, Peiyang Ding, Gaiping Zhang. Plug-and-display nanoparticle immunization of the core epitope domain induces potent neutralizing antibody and cellular immune responses against PEDV[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3598-3613.
[12] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[13] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[14] Mingxin Feng, Ying Hu, Xin Yang, Jingwen Li, Haochen Wang, Yujia Liu, Haijun Ma, Kai Li, Jiayin Shang, Yulin Fang, Jiangfei Meng. Uncovering the miRNA-mediated regulatory network involved in postharvest senescence of grape berries[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3465-3483.
[15] Li Liu, Yifeng Feng, Ziqi Han, Yaxiao Song, Jianhua Guo, Jing Yu, Zidun Wang, Hui Wang, Hua Gao, Yazhou Yang, Yuanji Wang, Zhengyang Zhao. Functional analysis of the xyloglucan endotransglycosylase/hydrolase gene MdXTH2 in apple fruit firmness formation[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3418-3434.
No Suggested Reading articles found!