Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Long-term fertilizer application mitigates the impacts of climate conditions on soil nitrogen activation

Hongqin Zou1, Minggang Xu1, 2, Hayatu Nafiu Garba3, Keyu Ren1, Dejin Li1, Wenju Zhang1, Changai Lu1, Yinghua Duan1#

1 State Key Laboratory of Efficient Utilization of Arable Land in China / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2 Engineer and Technology Academy of Ecology and Environment, Shanxi Agricultural University, Taiyuan 030031, China

3 Department of Soil Science and Land Resources Management, Faculty of Agriculture, Usmanu Danfodiyo University, Sokoto, PMB 2346, Nigeria 

 Highlights 

Ÿ Nitrogen activation rate, i.e., slope of correlation between available nitrogen and total nitrogen, declined at later period of fertilization

Ÿ Soil properties were the main factors regulating nitrogen activation

Ÿ Impact of climate on soil nitrogen activation was attenuated under long-term fertilization

Ÿ Interaction between climate and soil had an enhanced impact on nitrogen activation in the later period.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

土壤全氮转化为有效氮(氮有效化,Nact的过程是全球氮循环的关键过程,直接影响作物氮素吸收和氮的环境效应。然而,长时间尺度下气候变化与施肥措施如何单独或共同影响土壤Nact不清楚。本研究基于1982/1990年建立的6个典型长期施肥试验,研究了不施肥、单施化肥、化肥配施有机肥和秸秆还田下第一个10和后土壤Nact的变化。结果表明,有机肥处理下5个试验点的土壤全氮(TN)和土壤有效氮 (AN) 分别以10.1–58.2 mg kg–1 yr–1 1.41–4.13 mg kg–1 yr–1的速率增加,这表明施用有机肥可同时提高土壤氮储量及其有效性。公主岭(GZL)试验点的TN年变化速率最高,达48.3–58.2 mg kg–1 yr–1,而张掖(ZY)的最低,仅为10.1 mg kg–1 yr–1。杨凌(YL)的AN 年变化率最高(3.65–4.13 mg kg–1 yr–1),郑州(ZZ)的最低,为1.41–2.23 mg kg–1 yr–1。有机肥处理在所有试验点的前10Nact速率(42–181 mg g–1)均高于后期的33–92 mg g–1,说明长期施用有机肥后期土壤全氮转化为有效氮的速率降低。所有试验点所有处理下的第一个10年的平均Nact(79–105 mg g–1)均高于后期的30–78 mg g–1,说明随着试验时间延长,土壤氮有效化速率降低。方差分解分析表明,从试验开始后前10年到后期,土壤因素对Nact的贡献从35%增加至45%,而气候因素的贡献则从19%降至8%。结构方程模型表明,年均温度直接影响Nact,其路径系数由前10年的0.86降至后期的0.45。综上,长期施肥削弱了气候因素对土壤Nact的直接影响,但增强了施肥后期气候与土壤因素的交互作用对Nact的影响。该研究通过明确不同试验点长期施肥下气候和土壤因素对氮转化的时间分异特征,为提高氮素有效性、调节气候变化对农业生产的影响及减少环境氮损失提供了依据。



Abstract  

Soil nitrogen activation (Nact) is pivotal for the global N cycle, influencing crop N availability and environmental N losses. However, it remains unclear how climate and fertilization individually, or jointly, affect soil Nact over multiple decades. Here, we examined the dynamic shifts in Nact between the first decade and later period in soils treated with non-fertilizer, mineral fertilizer with/without manure, mineral fertilizer with stover return, at 1982/1990, in six typical agricultural zones. Results revealed that soil total N (TN) and available N (AN) increased at rates of 10.1–58.2 mg kg–1 yr–1 and 1.41–4.13 mg kg–1 yr–1, respectively, by manure application at five sites, suggesting that manure enhanced both soil N storage and availability. The GZL site exhibited the highest annual change rate (ACR) in TN (48.358.2 mg kg–1 yr–1), while the ZY site had the lowest (10.1 mg kg–1 yr–1). Conversely, the YL site showed the highest ACR in AN (3.654.13 mg kg–1 yr–1), whereas the ZZ site exhibited the lowest (1.412.23 mg kg–1 yr–1)Notably, the Nact rates with manure application were higher in the first decade (42–181 mg g–1) than in the later period (33–92 mg g–1) at all sites. Overall, the average Nact of all treatments in the first decade (79–105 mg g–1) across six study sites was higher than in the later period (30–78 mg g–1). Variance portioning analysis indicated that soil properties’ contribution to Nact increased from 35% to 45% over time, while climatic conditions’ effect decreased from 19% to 8%. Structural equation modeling confirmed a direct impact of annual temperature on Nact, with path coefficients of 0.86 in the first decade and 0.45 in the later period. These results show that the impacts of climate on soil Nact were attenuated under long-term fertilizer application, while the interactions between climate and soil had an enhanced impact on Nact in the later period of fertilization. This context-specific insight can guide soil management strategies to enhance N availability, modulate the effects of climate change on agricultural production, and minimize environmental N losses.

Keywords:  nitrogen mineralization       climatic effect              soil properties              long-term fertilization              manure application  
Online: 21 November 2025  
Fund: 

This work was supported by the Innovation Program of Chinese Academy of Agricultural Sciences (CAAS–CSAL–202302), and the Central Public-interest Scientific Institution Basal Research Fund, China (Y2025YC88).

About author:  Hongqin Zou, Mobile: +86-18275029476, E-mail: 171885228@qq.com; #Correspondence Yinghua Duan, Mobile: +86-15101019161, E-mail: duanyinghua@caas.cn

Cite this article: 

Hongqin Zou, Minggang Xu, Hayatu Nafiu Garba, Keyu Ren, Dejin Li, Wenju Zhang, Changai Lu, Yinghua Duan. 2025. Long-term fertilizer application mitigates the impacts of climate conditions on soil nitrogen activation. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.11.033

Beesigamukama D, Mochoge B, Korir N, Ghemoh C J, Tanga C M. 2021. In situ nitrogen mineralization and nutrient release by soil amended with black soldier fly frass fertilizer. Scientific Reports, 11, 14799.

Black C A. 1965. Methods of Soil Analysis. Part II, Physical and Mineralogical Properties. American Society of Agronomy, Wisconsin.

Burke I C, Lauenroth W K, Parton W J. 1997. Regional and temporal variation in net primary production and nitrogen mineralization in grasslands. Ecology, 78, 13301340.

Chang R Y, Jin T T, Lue Y H, Liu G H, Fu B J. 2014. Soil carbon and nitrogen changes following afforestation of marginal cropland across a precipitation gradient in Loess Plateau of China. PLoS ONE, 9, e85426.

Chen L Y, Liu L, Qin S Q, Yang G B, Fang K, Zhu B, Yakov K, Chen P D, Xu Y P, Yang Y H. 2019. Regulation of priming effect by soil organic matter stability over a broad geographic scale. Nature Communications, 10, 5112. 

Cheng Y, Wang J, Bruno M, Zhang J B, Cai Z C, Chang S X. 2013. Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in central Alberta, Canada. Soil Biology and Biochemistry, 57, 848–857.

Choi W J, Ro H M, Chang S. 2004. Recovery of fertilizer-derived inorganic-15N in a vegetable field soil as affected by application of an organic amendment. Plant and Soil, 263, 191–201. 

Dawes M A, Patrick S, Stephan H, Christian R, Frank H. 2017. Soil warming opens the nitrogen cycle at the alpine treeline. Global Change Biology, 23, 421–434.

DeForest J L, Smemo K A, David B, Elliott H L, Jessice J C G, Jessice G, Kathryn D. 2012. Soil microbial responses to elevated phosphorus and pH in acidic temperate deciduous forests. Biogeochemistry, 109, 189–202.

Delgado-Baquerizo M, Eldridge D J, Maestre F T, Karunaratne S B, Pankaj T, Reich P B, Singh B K. 2017. Climate legacies drive global soil carbon stocks in terrestrial ecosystems. Science Advances, 34, e1602008.

Dessureault-Rompré J, Zebarth B, Burton D L, Alex G. 2015. Predicting soil nitrogen supply from soil properties. Canadian Journal of Soil Science, 95, 63–75.

Devianti S, Bulan R, Sitorus A. 2022. Vis-NIR spectra combined with machine learning for predicting soil nutrients in cropland from Aceh Province, Indonesia. Case Studies in Chemical and Environmental Engineering, 6, 100268. 

Doetterl S, Cornelis J T, Six J, Bodé S, Opfergelt S B, Pascal, Van Oost K. 2015. Soil redistribution and weathering controlling the fate of geochemical and physical carbon stabilization mechanisms in soils of an eroding landscape. Biogeosciences, 12, 1357–1371.

Fu M H, Xu X C, Tabatabai M A. 1987. Effect of pH on nitrogen mineralization in crop-residue-treated soils. Biology and Fertility of Soils, 5, 115–119.

Gao J S, Xu M G, Wang B R. 2005. The effects of rational application of long term organic and chemical fertilizers on soil fertility and rice yield. Chinese Agricultural Science Bulletin, 8, 211–214, 259. (in Chinese) 

Giacomo T, Paolo B, Michela F, Roberta P, Francesco T, Marcello G, Kristian T K. 2012. Green manuring effect of pure and mixed barley-hairy vetch winter cover crops on maize and processing tomato N nutrition. European Journal of Agronomy, 43, 136-146.

Gong W, Yan X Y, Wang J Y, Hu T X, Gong Y B. 2011. Long-term applications of chemical and organic fertilizers on plant-available nitrogen pools and nitrogen management index. Biology and Fertility of Soils, 47, 767–775. 

Guntinas M E, Leiros M C, Trasar-Cepeda C, Gil-Sotres F. 2012. Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study. European Journal of Soil Biology, 48,73–80. 

Guo Z, Han J, Li J, Xu Y, Wang X. 2019. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure. PLoS ONE, 14, e0211163.

Kemmitt S J, David W, Goulding K W T, Jones D L. 2006. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology and Biochemistry, 38, 898–911.

Klaus K, Gerorg G. 2000. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Organic Geochemistry, 31, 711–725.

Kleber M, Eusterhues K, Keiluweit M, Mikutta C, Mikutta R, Nico P S. 2015. Chapter one: Mineral-organic associations: formation, properties, and relevance in soil environments. Advances in Agronomy, 130, 1–140.

Legendre P. 2007. Studying beta diversity: Ecological variation partitioning by multiple regression and canonical analysis. Journal of Plant Ecology, 31, 976–981.

Li X P, Shi X J. 2007. Effect of long-term imbalanced fertilization on purple soil fertility. Plant Nutrition and Fertilizer Science, 13, 27–32. 

Li Z L, Tian D S, Wang B X, Wang J S, Wang S, Chen H Y H, Xu X F, Wang C H, He N P, Niu S L. 2019. Microbes drive global soil nitrogen mineralization and availability. Global Change Biology, 25, 1078–1088.

Li Z L, Zeng Z Q, Tian D S, Wang J S, Fu Z, Wang B X, Tang Z, Chen W N, Chen H Y H, Wang C H, Yi C X, Niu S L. 2020. The stoichiometry of soil microbial biomass determines metabolic quotient of nitrogen mineralization. Environmental Research Letters, 15, 34005.

Liu Y, Wang C H, He N P, Wen X F, Gao Y, Li S G, Niu S L, Klaus B B, Luo Y Q, Yu G R. 2017. A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: Latitudinal patterns and mechanisms. Global Change Biology, 23, 455–464.

Lu R K. 2000. Soil Agricultural Chemical Analysis Method. China Agricultural Science Technology Press, Beijing. pp. 1–315. (in Chinese)

Marchant H K, Moritz H, Gaute L, Soeren A, Christian W, Kuypers M M M. 2016. Coupled nitrification-denitrification leads to extensive N loss in subtidal permeable sediments. Limnology and Oceanography, 61, 1033–1048. 

Matar A E, Beck D P, Pala M, Garabet S. 2008. Nitrogen mineralization potentials of selected Mediterranean soils. Communications in Soil Science and Plant Analysis, 22, 23–36.

Meyer N, Gerhard W, Andrei R, Nils B, Christopher M, Wulf A. 2018. Nitrogen and phosphorus supply controls soil organic carbon mineralization in tropical topsoil and subsoil. Soil Biology and Biochemistry, 119, 152–161.

Miller K, Aegerter, B J, Clark, N E, Leinfelder-Miles M, Miyao E M, Smith R, Wilson R, Geisseler D. 2019. Relationship between soil properties and nitrogen mineralization in undisturbed soil cores from California agroecosystems. Communications in Soil Science and Plant Analysis, 50, 77–92.

Mohanty S, Nayak A K, Anjani K, Rahul T, Mohammad S, Bhattacharyya P, Raja R, Panda B B. 2013. Carbon and nitrogen mineralization kinetics in soil of rice–rice system under long term application of chemical fertilizers and farmyard manure. European Journal of Soil Biology, 58, 113–121.

Murphy J, Riley J P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 678–681.

Näsholm T, Knut K, Ulrika G. 2009. Uptake of organic nitrogen by plants. The New Phytologist, 182, 31–48.

Padhan K, Sudeshna B, Asha S, Manna M C, Sharma M P, Singh M, Wanjari R H, Sharma R P, Sharma G K, Patra A K. 2020. Soil N transformation as modulated by soil microbes in a 44 years long term fertilizer experiment in a sub-humid to humid Alfisol. Applied Soil Ecology, 145, 103355.

Poffenbarger H J, Sawyer J E, Barker D W, Olk D C, Six J, Castellano M J. 2018. Legacy effects of long-term nitrogen fertilizer application on the fate of nitrogen fertilizer inputs in continuous maize. Agriculture, Ecosystems and Environment, 265, 544-55. 

Qin Z X, Zhang Y T, Guo T. 2013. Characteristics of mineralization and nitrification in neutral purple paddy soil from a long-tem fertilization experiment. Scientia Agricultural Sinica, 46, 3392–3400. (in Chinese)

R Core Team. 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Risch A C, Zimmermann S, Moser B, Schütz M, Hagedorn F, Firn J, Fray P A, Adler P B, Biederman L A, Stevens C J, Tognetti P M, Virtanen R, Yahdjian L, Hueso R O. 2020. Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties. Global Change Biology, 26, 7173–7185.

Risch A C, Zimmermann S, Ochoa-Hueso R, Schütz M, Frey B, Firn J L, Fay P A, Hagedorn F, Borer E T, Seabloom E W, Stevens C J, Silveira M L, Adler P B, Báez S. 2019. Soil net nitrogen mineralisation across global grasslands. Nature Communications, 10, 4981.

Ros G H, Temminghoff E J M, Hoffland E. 2011. Nitrogen mineralization: A review and meta-analysis of the predictive value of soil tests. European Journal of Soil Science, 62, 162–173.

Rustad L, Campbell J, Marion G, Norby R, Mitchell M, Hartley A, Cornelissen J, Gurevitch J. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126, 543–562.

Sehrish A, Liu K L, Waqas A, N.G. H, N.A. D, Ali A M, Shen Z, Li J W, Huang J, Zhang H M. 2023. Gross nitrogen mineralization and nitrification at an optimal phosphorus input level in southern Chinese red soil with long-term fertilization. Soil and Tillage Research, 230, 105710.

Serna-Chavez H M, Fierer N, Bodegom P M. 2013. Global drivers and patterns of microbial abundance in soil. Global Ecology and Biogeography, 22, 162–1172.

Spargo J T, Cavigelli M A, Mirsky S B, Maul J E, Meisinger J J. 2011. Mineralizable soil nitrogen and labile soil organic matter in diverse long-term cropping systems. Nutrient Cycling in Agroecosystems, 90, 253–266.

Stanford G, Smith S J. 1972. Nitrogen mineralization potentials of soils. Soil Science Society of America Journal, 36, 465–472.

Sun R B, Wang F H, Hu C L, Liu B B. 2021. Metagenomics reveals taxon-specific responses of the nitrogen-cycling microbial community to long-term nitrogen fertilization. Soil Biology and Biochemistry, 156, 108214. 

Tang X, Li J M, Ma Y M, Hao X Y, Li X Y. 2008. Phosphorus efficiency in long-term (15 years) wheat-maize cropping systems with various soil and climate conditions. Field Crops Research, 108, 231–237.

Treseder K K. 2010. Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies. Ecology Letters, 11, 1111–1120.

Vigil M F, Eghball B, Cabrera M L, Jakubowski B R, Davis J G. 2002. Accounting for seasonal nitrogen mineralization: An overview. Journal of Soil and Water Conservation, 57, 464–469.

Vonk W J, Hijbeek R, Glendining M J, Powlson D S, Bhogal A, Merbach I, Silva J A V, Poffenbarger H J, Dhillon J, Sieling K, Ten Berge H F M. 2022. The Legacy Effect of Synthetic N Fertiliser. European Journal of Soil Science, 733, e13238.

Walkley A. 1935. An examination of methods for determining organic carbon and nitrogen in soils (with one text-figure). The Journal of Agricultural Science, 25, 598–609.

Wang J, Wu, L, Xiao Q, Huang Y P, Liu K L, Wu Y, Li D C, Duan Y H, Zhang W J. 2023. Long-term manuring enhances soil gross nitrogen mineralization and ammonium immobilization in subtropical area. Agriculture, Ecosystems and Environment, 348, 108439.

Wang X, Yoo K, Wackett A A, Gutknecht J, Ronald A, Heimsath A. 2018. Soil organic carbon and mineral interactions on climatically different hillslopes. Geoderma, 322, 71–80.

Wei H X, Xu C Y, Hawkins B J, Ma L Y, Jiang L N. 2011. Organic amendment and inorganic fertilization affect soil properties and quality of Larix olgensis bareroot stock. New Forests, 43, 155–168.

Ouyang Y, Norton J M. 2020. Short-term nitrogen fertilization affects microbial community composition and nitrogen mineralization functions in an agricultural soil. Applied and Environmental Microbiology, 86, e02278-19.

Zhang S S, Zheng Q, Noll L, Hu Y T, Wolfgang W. 2019. Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate soil gross N mineralization. Soil Biology and Biochemistry, 135, 304315.

Zou C M, Grove J H, Pearce R C, Coyne M S, Ren K. 2019. What happens to in situ net soil nitrogen mineralization when nitrogen fertility changes? Journal of Plant Nutrition and Soil Science, 182, 296–306.

[1] Niu Wang, Weidong Zhang, Zhenyu Zhong, Xiongbo Zhou, Xinran Shi, Xin Wang. FGF7 secreted from dermal papillae cell regulates the proliferation and differentiation of hair follicle stem cell[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3583-3597.
[2] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[3] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[4] Zuxian Chen, Bingbing Zhao, Yingying Wang, Yuqing Du, Siyu Feng, Junsheng Zhang, Luxiang Zhao, Weiqiang Li, Yangbao Ding, Peirong Jiao. H5N1 avian influenza virus PB2 antagonizes duck IFN-β signaling pathway by targeting mitochondrial antiviral signaling protein[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3614-3625.
[5] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[6] Yufeng Xiao, Meiqi Dong, Xian Wu, Shuang Liang, Ranhong Li, Hongyu Pan, Hao Zhang. Enrichment, domestication, degradation, adaptive mechanism, and nicosulfuron bioremediation of bacteria consortium YM2[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3529-3545.
[7] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[8] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[9] Zishuai Wang, Wangchang Li, Zhonglin Tang. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3574-3582.
[10] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[11] Minghui Li, Yilan Chen, Siqiao Wang, Xueke Sun, Yongkun Du, Siyuan Liu, Ruiqi Li, Zejie Chang, Peiyang Ding, Gaiping Zhang. Plug-and-display nanoparticle immunization of the core epitope domain induces potent neutralizing antibody and cellular immune responses against PEDV[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3598-3613.
[12] Hanqiang Lü, Aizhong Yu, Qiang Chai, Feng Wang, Yulong Wang, Pengfei Wang, Yongpan Shang, Xuehui Yang. No-tillage with total green manure incorporation: A better strategy to higher maize yield and nitrogen uptake in arid irrigation areas[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3403-3417.
[13] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[14] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[15] Mingxin Feng, Ying Hu, Xin Yang, Jingwen Li, Haochen Wang, Yujia Liu, Haijun Ma, Kai Li, Jiayin Shang, Yulin Fang, Jiangfei Meng. Uncovering the miRNA-mediated regulatory network involved in postharvest senescence of grape berries[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3465-3483.
No Suggested Reading articles found!