Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
GhSBP1 promotes cotton fiber initiation and elongation by activating GhNRT1.5, GhEzrA, and GhSH3P2

Xin Li1*, Jiaquan Chai2*, Liyong Hou2, Zengqiang Zhao3, Zongming Xie3, Youzhong Li3#, Liping Zhu1#

1 National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng 475004, China

2 College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China

3 Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science/Key Laboratory of Cotton Biology and Genetic Breeding in the Northwest Inland Cotton Production Region, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China

 Highlight 

GhSBP1 positively regulates cotton fiber initiation and elongation.

GhSBP1 directly binds to GTAC motifs in the promoters of GhNRT1.5, GhEzrA, and GhSH3P2.

A novel regulatory module GhSBP1-GhNRT1.5/GhEzrA/GhSH3P2 controls fiber development.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

SQUAMOSA启动子结合蛋白(SBP)转录因子是植物特有的转录因子,参与多种植物的生长发育过程。该蛋白在植物生长、发育及细胞伸长中起着关键作用,但其在陆地棉纤维发育中的调控机制尚不明确。本研究在棉花中发现了一个SBP家族转录因子蛋白GhSBP1。在棉花中过表达GhSBP1可增加纤维细胞长度和纤维起始数量,而敲除GhSBP1则导致纤维变短、纤维起始减少,表明GhSBP1正向调控纤维细胞的伸长与起始。通过DAP-seq富集分析,GhSBP1直接结合关键顺式元件GATC基序。我们筛选出在棉纤维快速伸长期高表达的基因GhNRT1.5GhEzrAGhSH3P2,并通过酵母单杂交、荧光素酶报告基因实验及电泳迁移率实验证实,GhSBP1直接与这些基因的启动子相互作用。过表达GhSBP1可提高下游基因的表达水平,而敲除GhSBP1则降低其表达。综上所述,GhSBP1通过调控GhNRT1.5GhEzrAGhSH3P2的转录,促进棉纤维发育。本研究不仅深化了对GhSBP1在棉纤维发育中功能的理解,也为利用GhSBP1及其相关基因提高棉纤维产量提供了新的遗传靶点。



Abstract  

The SQUAMOSA-PROMOTER BINDING PROTEIN (SBP) transcription factor is plant-specific and plays a critical role in developmental processes across many plant species. SBP transcription factors are essential for plant growth, development, and cell elongation. However, the mechanism by which SBP proteins regulate fiber development remains poorly understood in Gossypium hirsutum L. (cotton). In this study, we identified an SBP family transcription factor, designated GhSBP1, in cotton. Overexpression of GhSBP1 increased both fiber cell length and fiber initiation frequency, whereas knockout of GhSBP1 resulted in shorter fibers and reduced fiber initiation, demonstrating that GhSBP1 positively regulates both fiber elongation and initiation. DNA Affinity Purification Sequencing (DAP-seq) enrichment analysis using cotton fibers revealed that GhSBP1 directly binds to the GTAC motif, a key cis-regulatory element. We selected three genes—GhNRT1.5, GhEzrA, and GhSH3P2—that exhibit high expression during the rapid fiber elongation phase. Yeast one-hybrid, luciferase reporter, and electrophoretic mobility shift assays confirmed that GhSBP1 directly interacts with the promoters of these genes. Furthermore, overexpression of GhSBP1 upregulated the expression of these downstream genes, while knockout of GhSBP1 led to their downregulation. Collectively, these findings indicate that GhSBP1 promotes cotton fiber development by modulating the transcription of GhNRT1.5, GhEzrA, and GhSH3P2. This study not only enhances our understanding of GhSBP1 function in cotton fiber development but also identifies potential genetic targets for improving cotton lint production through manipulation of GhSBP1 and its associated regulatory network.

 

Keywords:  cotton              GhSBP1              transcription factor              fiber elongation  
Online: 21 November 2025  
Fund: 

This work was supported by the Major projects in agricultural biological breeding (2023ZD04038-02), the Postdoctoral Research Project Funding in Shaanxi Province, China (2023BSHTBZZ33), the Key Science and Technology Research Program of Xinjiang Province (2023AB006-02), the Key Scientific Research Projects of Higher Education Institutions in Henan Province, China (26A180003), the Hong Kong Scholars Program, China (XJ2023014), the financial support from the National Key R&D Program of China (2023YFD2301201).

About author:  #Correspondence Liping Zhu, E-mail: zhuliping0903@163.com; Youzhong Li, E-mail: 2529629871@qq.com

Cite this article: 

Xin Li, Jiaquan Chai, Liyong Hou, Zengqiang Zhao, Zongming Xie, Youzhong Li, Liping Zhu. 2025. GhSBP1 promotes cotton fiber initiation and elongation by activating GhNRT1.5, GhEzrA, and GhSH3P2. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.11.030

Aluko O O, Liu Z, Sun X. 2023. The interplay of carbon and nitrogen distribution: Prospects for improved crop yields. Modern Agriculture, 1, 57-75.

Aluko O O, Ninkuu V, Liu Z, Qin A, Liu H, Yang J, Hu M, Ma X, Sun X. 2025. Recent advances in cotton transformation and genome editing techniques: The prospects and challenges. Modern Agriculture, 3, e70014.

Bartlett A, O'malley R C, Huang S C, Galli M, Nery J R, Gallavotti A, Ecker J R. 2017. Mapping genome-wide transcription-factor binding sites using DAP-seq. Nature Protocal, 12, 1659-1672.

Birkenbihl R P, Jach G, Saedler H, Huijser P. 2005. Functional dissection of the plant-specific SBP-domain: Overlap of the DNA-binding and nuclear localization domains. Journal of Molecular Biology‌, 352, 585-596.

Cai C, Guo W, Zhang B. 2018. Genome-wide identification and characterization of SPL transcription factor family and their evolution and expression profiling analysis in cotton. Scientific Reports, 8, 762.

Ding Y, Ma Y, Liu N, Xu J, Hu Q, Li Y, Wu Y, Xie S, Zhu L, Min L, Zhang X. 2017. microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum). Plant Journal, 91, 977-994.

Fan X, Feng H, Tan Y, Xu Y, Miao Q, Xu G. 2016. A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. Journal of Integrative Plant Biology, 58, 590-599.

Fan X, Naz M, Fan X, Xuan W, Miller A J, Xu G. 2017. Plant nitrate transporters: From gene function to application. Journal of Experimental Botany, 68, 2463-2475.

Gao C, Zhuang X, Cui Y, Fu X, He Y, Zhao Q, Zeng Y, Shen J, Luo M, Jiang L. 2015. Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation. Proceedings of the National Academy of Sciences of the United States of America, 112, 1886-1891.

Gu L, Wei H, Wang H, Su J, Yu S. 2018. Characterization and functional analysis of GhWRKY42, a group IId WRKY gene, in upland cotton (Gossypium hirsutum L.). BMC Genetics, 19, 48.

Guo C, Xu Y, Shi M, Lai Y, Wu X, Wang H, Zhu Z, Poethig R S, Wu G. 2017. Repression of miR156 by miR159 regulates the timing of the juvenile-to-adult transition in Arabidopsis. Plant Cell, 29, 1293-1304.

Haigler C H, Betancur L, Stiff M R, Tuttle J R. 2012. Cotton fiber: A powerful single-cell model for cell wall and cellulose research. Fronter in Plant Science, 3, 104.

He Y, Fu X, Li L, Sun X, Tang K, Zhao J. 2022. AaSPL9 affects glandular trichomes initiation by positively regulating expression of AaHD1 in Artemisia annua L. Plant Science, 317, 111172.

Hellens R P, Allan A C, Friel E N, Bolitho K, Grafton K, Templeton M D, Karunairetnam S, Gleave A P, Laing W A. 2005. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods, 1, 13.

Ioannidi E, Rigas S, Tsitsekian D, Daras G, Alatzas A, Makris A, Tanou G, Argiriou A, Alexandrou D, Poethig S, Hatzopoulos P, Kanellis A K. 2016. Trichome patterning control involves TTG1 interaction with SPL transcription factors. Plant Molecular Biology, 92, 675-687.

Johnson A, Vert G. 2016. Unraveling K63 Polyubiquitination networks by sensor-based proteomics. Plant Physiology, 171, 1808-1820.

Kim H J, Triplett B A. 2001. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiology, 127, 1361-1366.

Kolb C, Nagel M K, Kalinowska K, Hagmann J, Ichikawa M, Anzenberger F, Alkofer A, Sato M H, Braun P, Isono E. 2015. FYVE1 is essential for vacuole biogenesis and intracellular trafficking in Arabidopsis. Plant Physiology, 167, 1361-1373.

Kropat J, Tottey S, Birkenbihl RP, Depege N, Huijser P, Merchant S. 2005. A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element. Proceedings of the National Academy of Sciences of the United States of America, 102, 18730-18735.

Li J, Wang M, Li Y, Zhang Q, Lindsey K, Daniell H, Jin S, Zhang X. 2019. Multi-omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation process. Plant Biotechnology Journal, 17, 435-450.

Liu N, Tu L, Wang L, Hu H, Xu J, Zhang X. 2017. MicroRNA 157-targeted SPL genes regulate floral organ size and ovule production in cotton. BMC Plant Biology, 17, 7.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402-408.

Los G V, Encell L P, Mcdougall M G, Hartzell D D, Karassina N, Zimprich C, Wood M G, Learish R, Ohana R F, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert D H, Bulleit R F, Wood K V. 2008. HaloTag: A novel protein labeling technology for cell imaging and protein analysis. ACS Chemical Biology, 3, 373-382.

Machanick P, Bailey T L. 2011. MEME-ChIP: Motif analysis of large DNA datasets. Bioinformatics, 27, 1696-1697.

Nagel M K, Kalinowska K, Vogel K, Reynolds G D, Wu Z, Anzenberger F, Ichikawa M, Tsutsumi C, Sato M H, Kuster B, Bednarek S Y, Isono E. 2017. Arabidopsis SH3P2 is an ubiquitin-binding protein that functions together with ESCRT-I and the deubiquitylating enzyme AMSH3. Proceedings of the National Academy of Sciences of the United States of America, 114, 7197-7204.

Perez A J, Villicana J B, Tsui H T, Danforth M L, Benedet M, Massidda O, Winkler M E. 2021. FtsZ-Ring regulation and cell division are mediated by essential EzrA and accessory proteins ZapA and ZapJ in streptococcus pneumoniae. Fronters in Microbiology, 12, 780864.

Ruan Y L, Llewellyn D J, Furbank R T. 2001. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell, 13, 47-60.

Shan C M, Shangguan X X, Zhao B, Zhang X F, Chao L M, Yang C Q, Wang L J, Zhu H Y, Zeng Y D, Guo W Z, Zhou B L, Hu G J, Guan X Y, Chen Z J, Wendel J F, Zhang T Z, Chen X Y. 2014. Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nature Communication, 5, 5519.

Shi Y H, Zhu S W, Mao X Z, Feng J X, Qin Y M, Zhang L, Cheng J, Wei L P, Wang Z Y, Zhu Y X. 2006. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell, 18, 651-664.

Sun Z, Wang X, Liu Z, Gu Q, Zhang Y, Li Z, Ke H, Yang J, Wu J, Wu L, Zhang G, Zhang C, Ma Z. 2017. Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L. Plant Biotechnology Journal, 15, 982-996.

Tian Y, Zhang T. 2021. MIXTAs and phytohormones orchestrate cotton fiber development. Current Opinion in Plant Biology, 59, 101975.

Unte U S, Sorensen A M, Pesaresi P, Gandikota M, Leister D, Saedler H, Huijser P. 2003. SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis. Plant Cell, 15, 1009-1019.

Walford S A, Wu Y, Llewellyn D J, Dennis E S. 2011. GhMYB25-like: A key factor in early cotton fibre development. Plant Journal, 65, 785-797.

Wang K, He S, Yuxian Z 2025. Cotton2035: From genomics research to optimized breeding. Molecular Plant, 18, 298-312.

Wang P, Zhang J, Sun L, Ma Y, Xu J, Liang S, Deng J, Tan J, Zhang Q, Tu L, Daniell H, Jin S, Zhang X. 2018. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnolohy Journal, 16, 137-150.

Wang W, Li J, Liu J, Ren M, Li F. 2023. Utilising cottonseed in animal feeding: A dialectical perspective. Modern Agriculture, 1, 112-121.

Wang Y, Li Y, He S P, Xu SW, Li L, Zheng Y, Li X B. 2023. The transcription factor ERF108 interacts with AUXIN RESPONSE FACTORs to mediate cotton fiber secondary cell wall biosynthesis. Plant Cell, 35, 4133-4154.

Wang Y Y, Cheng Y H, Chen K E, Tsay Y F. 2018. Nitrate transport, signaling, and use efficiency. Annual Review of Plant Biology, 69, 85-122.

Wu C, Xiao S, Zhang X, Ren W, Shangguan X, Li S, Zuo D, Cheng H, Zhang Y, Wang Q, Lv L, Li P, Song G. 2024. GhHDZ76, a cotton HD-Zip transcription factor, involved in regulating the initiation and early elongation of cotton fiber development in G. hirsutum. Plant Science, 345, 112132.

Wu G, Poethig R S. 2006. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development, 133, 3539-3547.

Xiang Z, Li Z, Ren Z, Zeng J, Peng X, Li Y, Li J. 2019. EzrA, a cell shape regulator contributing to biofilm formation and competitiveness in Streptococcus mutans. Molecular Oral Microbiology, 34, 194-208.

Xie Y, Wang Y, Yu X, Lin Y, Zhu Y, Chen J, Xie H, Zhang Q, Wang L, Wei Y, Xiao Y, Cai Q, Zheng Y, Wang M, Xie H, Zhang J. 2022. SH3P2, an SH3 domain-containing protein that interacts with both Pib and AvrPib, suppresses effector-triggered, Pib-mediated immunity in rice. Molecular Plant, 15, 1931-1946.

Zhang Y, Liu T, Meyer C A, Eeckhoute J, Johnson D S, Bernstein B E, Nusbaum C, Myers R M, Brown M, Li W, Liu X S. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biology, 9, R137.

Zhu L, Wang H, Zhu J, Wang X, Jiang B, Hou L, Xiao G. 2023. A conserved brassinosteroid-mediated BES1-CERP-EXPA3 signaling cascade controls plant cell elongation. Cell Reports, 42, 112301.

Zhuang X, Jiang L. 2014. Autophagosome biogenesis in plants: Roles of SH3P2. Autophagy, 10, 704-705.

Zhuang X, Wang H, Lam SK, Gao C, Wang X, Cai Y, Jiang L. 2013. A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in Arabidopsis. Plant Cell, 25, 4596-4615.

 

 

 

Fig. 1  GhSBP1 promotes fiber development in cotton. A, relative expression of GhSBP1 at different stages of fiber development. Error bars represent ±SD (n=3). B, Sanger sequencing-based genotyping of GhSBP1-knockout lines generated via CRISPR-Cas9 gene editing. Nucleotide deletions are indicated by red dashes; nucleotide insertions are shown with red letters. C, Western blot analysis detecting GhSBP1-Flag protein in 10-DPA fibers from wild-type (WT) and GhSBP1-overexpressing cotton plants. D, Images of 10-DPA fiber cells from wild-type and GhSBP1 transgenic cotton plants. Scale bar, 10 μm. E, Statistical analysis of fiber length presented in D. Error bars represent ±SD (n=30). P-values were calculated by one-way Analyze variance (ANOVA) followed by Tukey’s post-hoc test. **, P<0.01. F, Images of mature fiber cells from wild-type and GhSBP1 transgenic cotton plants. Scale bar, 10 mm. G, Statistical analysis of fiber length shown in F. Error bars represent ±SD (n=30). P-values were determined using one-way ANOVA with Tukey’s post-hoc test. **, P<0.01; ***, P<0.001. H, Phenotypic characterization of fiber initiation cells in wild-type cotton, GhSBP1-OE, and GhSBP1-Cas9 lines. Scale bar, 100 μm. I, Quantitative analysis of fiber initiation phenotypes from H. Error bars represent ±SD (n=30). P-values were calculated by one-way ANOVA followed by Tukey’s post-hoc test. *, P<0.05; ns, P>0.05.

[1] Niu Wang, Weidong Zhang, Zhenyu Zhong, Xiongbo Zhou, Xinran Shi, Xin Wang. FGF7 secreted from dermal papillae cell regulates the proliferation and differentiation of hair follicle stem cell[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3583-3597.
[2] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[3] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[4] Zuxian Chen, Bingbing Zhao, Yingying Wang, Yuqing Du, Siyu Feng, Junsheng Zhang, Luxiang Zhao, Weiqiang Li, Yangbao Ding, Peirong Jiao. H5N1 avian influenza virus PB2 antagonizes duck IFN-β signaling pathway by targeting mitochondrial antiviral signaling protein[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3614-3625.
[5] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[6] Yufeng Xiao, Meiqi Dong, Xian Wu, Shuang Liang, Ranhong Li, Hongyu Pan, Hao Zhang. Enrichment, domestication, degradation, adaptive mechanism, and nicosulfuron bioremediation of bacteria consortium YM2[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3529-3545.
[7] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[8] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[9] Zishuai Wang, Wangchang Li, Zhonglin Tang. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3574-3582.
[10] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[11] Minghui Li, Yilan Chen, Siqiao Wang, Xueke Sun, Yongkun Du, Siyuan Liu, Ruiqi Li, Zejie Chang, Peiyang Ding, Gaiping Zhang. Plug-and-display nanoparticle immunization of the core epitope domain induces potent neutralizing antibody and cellular immune responses against PEDV[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3598-3613.
[12] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[13] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[14] Mingxin Feng, Ying Hu, Xin Yang, Jingwen Li, Haochen Wang, Yujia Liu, Haijun Ma, Kai Li, Jiayin Shang, Yulin Fang, Jiangfei Meng. Uncovering the miRNA-mediated regulatory network involved in postharvest senescence of grape berries[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3465-3483.
[15] Li Liu, Yifeng Feng, Ziqi Han, Yaxiao Song, Jianhua Guo, Jing Yu, Zidun Wang, Hui Wang, Hua Gao, Yazhou Yang, Yuanji Wang, Zhengyang Zhao. Functional analysis of the xyloglucan endotransglycosylase/hydrolase gene MdXTH2 in apple fruit firmness formation[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3418-3434.
No Suggested Reading articles found!