Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Stage-dependence of the impacts of grazing and mowing on temporal stability of grassland biomass

Jiatao Zhang*, Hongbin Xu2, 3*, Xiao Tao Lü4, Lei Zhang2, 3, Ting Yuan1, Taogetao Baoyin1#, Zhuwen Xu1# 

1 Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau; Observation and Research Station for the Typical Steppe Ecosystem of the Ministry of Education; School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China

2 Inner Mongolia Academy of Forestry Sciences, Hohhot 010010, China

3 Inner Mongolia Duolun Hunshandake Sandland Ecosystem Observation and Research Station, Xilin Gol League 027300, China

4 Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China

 Highlights 

1. Grazing reduces stability in the early stage but not later, whereas the effects of mowing on stability emerge after four years.

2. Species asynchrony drives community stability in the early stages, while dominant species play a key role in the later stages.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

生态系统稳定性是生态系统服务得以持续供给的基础。我们目前对生态系统稳定性的理解主要来自干扰或实验处理后初始阶段的研究结果,这些结果反映了生态系统的短期响应。然而,对于长期响应是否与初始响应一致,目前尚不明确我们开展了一项为期九年的草地控制实验,研究了放牧(每年5月至9月每月放牧一次)和刈割(每年8月割草一次)对温带半干旱草原地上生物量时间稳定性的影响,并进一步探讨了实验初始四年与随后的五年中处理效应及稳定性主要驱动因素的差异。结果表明,在九年研究期间,放牧和刈割均显著降低了群落稳定性,且这种影响表现出明显的阶段依赖性:放牧在前四年降低了群落稳定性,但在随后的五年未见显著影响;相反,刈割在初期未对群落稳定性产生显著影响,但在随后的五年中显著降低了群落稳定性。群落稳定性的驱动机制在早期主要受物种异步性驱动,而在后期则完全由优势种稳定性调控。当长期放牧导致群落中克氏针茅(Stipa krylovii)和糙隐子草Cleistogenes squarrosa逐渐成为优势种,或刈割导致群落稳定性随时间显著下降时,应采取围封措施以促进生态系统恢复。此外,长期围封可能导致生物量下降,从而影响群落功能的维持。基于不同阶段,建议在草地管理中合理轮换围封、放牧和刈割,以构建科学的草地管理体系,从而实现草地资源的可持续利用。



Abstract  

Ecosystem stability ensures the sustainable supply of ecosystem services. Our current understanding of ecosystem stability is mainly based on results from the initial stage after disturbance or experimental treatments, which reveal short-term responses. There is a big knowledge gap regarding whether the long-term responses would be consistent with such initial responses. We examined how grazing and mowing affect the temporal stability of aboveground biomass in a temperate semi-arid steppe and further clarified the differences in treatment impacts and primary drivers of stability between the initial four years and the subsequent five years. Both grazing and mowing significantly decreased the community stability across the nine years, and such impacts showed high stage-dependency. Grazing reduced community stability in the first four years but not in the following five. Mowing initially did not affect community stability but reduced it over the next five yearsCommunity stability was driven by species asynchrony in the early stage, and later solely regulated by the dominant species stability. When Stipa krylovii and Cleistogenes squarrosa become dominant in the community following prolonged grazing, or when mowing leads to a notable decline in community stability over time, enclosure measures should be adopted to promote ecological recovery. Additionally, long-term enclosure may also lead to a decline in biomass, thereby affecting the maintenance of community functions. We recommend implementing a rational rotation of enclosure, grazing, and mowing in grassland management based on different stages, as a scientifically sound grassland management system is key to achieving sustainable utilization of grassland resources.

Keywords:  dominant species stability       grazing              mowing              temperate steppe              species asynchrony  
Online: 13 November 2025  
Fund: 

This study was supported by The Open bidding for selecting the best candidates” Project of Inner Mongolia Autonomous Region (2024JBGS0020), the Inner Mongolia Forestry Science Research Institutes Research Capacity Enhancement Unveiling and Leading” Project, China (2024NLTS03), the Project for Scientific Innovation Capability Development of the Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China (MPL20250202), and the National Key Basic Research Development Program, China (2014CB138805). We are profoundly thankful to the field observation platform of Inner Mongolia University.

About author:  Jiatao Zhang, E-mail: jtzhang0209@163.com; Hongbin Xu, E-mail: xhb1686@163.com #Correspondence Taogetao Baoyin, Email: bytgt@imu.edu.cn; Zhuwen Xu, zwxu@imu.edu.cn * These authors contributed equally to this work.

Cite this article: 

Jiatao Zhang, Hongbin Xu, Xiao Tao Lü, Lei Zhang, Ting Yuan, Taogetao Baoyin, Zhuwen Xu. 2025. Stage-dependence of the impacts of grazing and mowing on temporal stability of grassland biomass. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.11.018

Bai R, Zhou M, Guo Y, Sheng J, Yuan Y, Li Q, Hou L, Bai W. 2023. Long-term mowing reinforces connections between soil microbial and plant communities in a temperate steppe. Plant and Soil, 491, 177-190.

Bai Y, Han X, Wu J, Chen Z, Li L. 2004. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.

Bakker J, Elzinga J, De Vries Y. 2002. Effects of long‐term cutting in a grassland system: perspectives for restoration of plant communities on nutrient‐poor soils. Applied Vegetation Science, 5, 107-120.

Baoyin T, Li F Y, Bao Q, Minggagud H, Zhong Y. 2014. Effects of mowing regimes and climate variability on hay production of Leymus chinensis (Trin.) Tzvelev grassland in northern China. The Rangeland Journal, 36, 593-600.

Beck J J, Hernández D L, Pasari J R, Zavaleta E S. 2015. Grazing maintains native plant diversity and promotes community stability in an annual grassland. Ecological Applications, 25, 1259-1270.

Chen Q, Bakker J P, Alberti J, Bakker E S, Smit C, Olff H. 2021. Long‐term cross‐scale comparison of grazing and mowing on plant diversity and community composition in a salt‐marsh system. Journal of Ecology, 109, 3737-3747.

Chen T, Christensen M, Nan Z, Hou F. 2017. The effects of different intensities of long-term grazing on the direction and strength of plant–soil feedback in a semiarid grassland of Northwest China. Plant and Soil, 413, 303-317.

Craven D, Eisenhauer N, Pearse W D, Hautier Y, Isbell F, Roscher C, Bahn M, Beierkuhnlein C, Bönisch G, Buchmann N. 2018. Multiple facets of biodiversity drive the diversity–stability relationship. Nature Ecology & Evolution, 2, 1579-1587.

de Bello F, Lavorel S, Hallett L M, Valencia E, Garnier E, Roscher C, Conti L, Galland T, Goberna M, Májeková M. 2021. Functional trait effects on ecosystem stability: assembling the jigsaw puzzle. Trends in Ecology & Evolution, 36, 822-836.

Du L, Luo Y, Zhang J, Shen Y, Zhang J, Tian R, Shao W, Xu Z. 2024. Reduction in precipitation amount, precipitation events, and nitrogen addition change ecosystem carbon fluxes differently in a semi-arid grassland. Science of The Total Environment, 927, 172276.

Farrell C, Hobbs R J, Colmer T D. 2012. Microsite and litter cover effects on seed banks vary with seed size and dispersal mechanisms: implications for revegetation of degraded saline land. Plant Ecology, 213, 1145-1155.

Ganjurjav H, Zhang Y, Gornish E S, Hu G, Li Y, Wan Y, Gao Q. 2019. Differential resistance and resilience of functional groups to livestock grazing maintain ecosystem stability in an alpine steppe on the Qinghai-Tibetan Plateau. Journal of Environmental Management, 251, 109579.

Grime J. 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86, 902-910.

Hagan J G, Vanschoenwinkel B, Gamfeldt L. 2021. We should not necessarily expect positive relationships between biodiversity and ecosystem functioning in observational field data. Ecology Letters, 24, 2537-2548.

Hallett L M, Hsu J S, Cleland E E, Collins S L, Dickson T L, Farrer E C, Gherardi L A, Gross K L, Hobbs R J, Turnbull L. 2014. Biotic mechanisms of community stability shift along a precipitation gradient. Ecology, 95, 1693-1700.

Hallett L M, Stein C, Suding K N. 2017. Functional diversity increases ecological stability in a grazed grassland. Oecologia, 183, 831-840.

Hassan N, Wang Z. 2024. Paralleled grazing and mowing differentially affected plant community diversity and productivity in a semi-arid grassland. Ecological Processes, 13, 62.

Hautier Y, Niklaus P A, Hector A. 2009. Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636-638.

Hautier Y, Seabloom E W, Borer E T, Adler P B, Harpole W S, Hillebrand H, Lind E M, MacDougall A S, Stevens C J, Bakker J D. 2014. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 508, 521-525.

He F, Yang J, Dong S, Zhi Y, Hao X, Shen H, Xiao J, Kwaku E A, Zhang R, Shi H. 2023. Short-term grazing changed temporal productivity stability of alpine grassland on Qinghai-Tibetan Plateau via response species richness and functional groups asynchrony. Ecological Indicators, 146, 109800.

Hillebrand H, Bennett D M, Cadotte M W. 2008. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology, 89, 1510-1520.

Holdredge C, Bertness M D. 2011. Litter legacy increases the competitive advantage of invasive Phragmites australis in New England wetlands. Biological Invasions, 13, 423-433.

Hoover D L, Knapp A K, Smith M D. 2014. Resistance and resilience of a grassland ecosystem to climate extremes. Ecology, 95, 2646-2656.

Hou G, Shi P, Zhou T, Sun J, Zong N, Song M, Zhang X. 2023. Dominant species play a leading role in shaping community stability in the northern Tibetan grasslands. Journal of Plant Ecology, 16, rtac110.

Huang M, Liu X, Zhou S. 2020. Asynchrony among species and functional groups and temporal stability under perturbations: Patterns and consequences. Journal of Ecology, 108, 2038-2046.

Lai S, Wu Z, Liu Y, Hou F. 2024. Grazing and selenium influence community stability by increasing asynchrony and sedge, forbs stability in alpine meadow of Qinghai-Tibet Plateau. European Journal of Agronomy, 160, 127292.

Lefcheck J S. 2016. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7, 573-579.

Lehman C L, Tilman D. 2000. Biodiversity, stability, and productivity in competitive communities. The American Naturalist, 156, 534-552.

Li H, Zhang J, Ru J, Song J, Chi Z, Zheng Y, Jiang L, Wan S. 2023. Temporal change in community temporal stability in response to mowing and nutrient enrichment: evidence from a 15-year grassland experiment. Journal of Plant Ecology, 16, rtac098.

Li R, Zheng H, O’Connor P, Xu H, Li Y, Lu F, Robinson B E, Ouyang Z, Hai Y, Daily G C. 2021. Time and space catch up with restoration programs that ignore ecosystem service trade-offs. Science Advances, 7, eabf8650.

Li T, Kamran M, Chang S, Peng Z, Wang Z, Ran L, Jiang W Q, Jin Y, Zhang X, You Y. 2022. Climate-soil interactions improve the stability of grassland ecosystem by driving alpine plant diversity. Ecological Indicators, 141, 109002.

Liang M, Liang C, Hautier Y, Wilcox K R, Wang S. 2021. Grazing‐induced biodiversity loss impairs grassland ecosystem stability at multiple scales. Ecology Letters, 24, 2054-2064.

Liang X S, Ma W, Yu Q, Luo W T, Wang Z W, Lü X T, Han X G. 2022. Conserved responses of nutrient resorption to extreme drought in a grassland: the role of community compositional changes. Functional Ecology, 36, 2616-2625.

Liu G, Wan L, He F, Tong Z, Liu Z, Li X. 2016. Effects of litter, seed position, and water availability on establishment of seedlings for two semiarid grass species. Plant Ecology, 217, 277-287.

Liu Z, Guo S, Wang T, Yan W, Baoyin T, Fry E. 2024. Phase-dependent grassland temporal stability is mediated by species and functional group asynchrony: A long-term mowing experiment. Science of The Total Environment, 951, 175445.

Loreau M, de Mazancourt C. 2008. Species synchrony and its drivers: neutral and nonneutral community dynamics in fluctuating environments. The American Naturalist, 172, E48-E66.

Ma F, Zhang R, Svenning J C, Zhang F, He Y, Wang J, Tian D, Zhou Q, Niu S. 2024. Decoupled responses of the stability of above‐and belowground productivity to drought and clipping in an alpine meadow. Journal of Ecology, 112, 2585-2597.

Ma Z, Zeng Y, Wu J, Zhou Q, Hou F. 2022. Plant litter influences the temporal stability of plant community biomass in an alpine meadow by altering the stability and asynchrony of plant functional groups. Functional Ecology, 36, 148-158.

Magenau E, Kiesel A, Clifton‐Brown J, Lewandowski I. 2021. Influence of cutting height on biomass yield and quality of miscanthus genotypes. GCB Bioenergy, 13, 1675-1689.

Milchunas D, Lauenroth W, Chapman P. 1992. Plant competition, abiotic, and long-and short-term effects of large herbivores on demography of opportunistic species in a semiarid grassland. Oecologia, 92, 520-531.

Murphy J, Riley J P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36.

Olofsson J. 2006. Short-and long-term effects of changes in reindeer grazing pressure on tundra heath vegetation. Journal of Ecology, 431-440.

Pimm S L. 1984. The complexity and stability of ecosystems. Nature, 307, 321-326.

Polley H W, Wilsey B J, Derner J D. 2003. Do species evenness and plant density influence the magnitude of selection and complementarity effects in annual plant species mixtures? Ecology Letters, 6, 248-256.

Ren H, Taube F, Stein C, Zhang Y, Bai Y, Hu S. 2018. Grazing weakens temporal stabilizing effects of diversity in the Eurasian steppe. Ecology and Evolution, 8, 231-241.

Rook A, Dumont B, Isselstein J, Osoro K, WallisDeVries M, Parente G, Mills J. 2004. Matching type of livestock to desired biodiversity outcomes in pastures–a review. Biological Conservation, 119, 137-150.

Salgado‐Luarte C, Escobedo V M, Stotz G C, Rios R S, Arancio G, Gianoli E. 2019. Goat grazing reduces diversity and leads to functional, taxonomic, and phylogenetic homogenization in an arid shrubland. Land Degradation & Development, 30, 178-189.

Sandoval‐Calderon A P, Rubio Echazarra N, van Kuijk M, Verweij P A, Soons M, Hautier Y. 2024. The effect of livestock grazing on plant diversity and productivity of mountainous grasslands in South America–A meta‐analysis. Ecology and Evolution, 14, e11076.

Semmartin M, Garibaldi L A, Chaneton E J. 2008. Grazing history effects on above-and below-ground litter decomposition and nutrient cycling in two co-occurring grasses. Plant and Soil, 303, 177-189.

Shen C, Zhang J, Yang X, Liu J, Han G. 2025. Effects of grazing on temperate grassland ecosystems: A meta-analysis. Agriculture, Ecosystems & Environment, 381, 109452.

Steiner C F, Long Z T, Krumins J A, Morin P J. 2005. Temporal stability of aquatic food webs: partitioning the effects of species diversity, species composition and enrichment. Ecology Letters, 8, 819-828.

Sun S, Zhao S, Liu X, Lv P, Liang M, Li Y, Hu Y, Zuo X. 2023. Grazing impairs ecosystem stability through changes in species asynchrony and stability rather than diversity across spatial scales in desert steppe, Northern China. Agriculture, Ecosystems & Environment, 346, 108343.

Tälle M, Deák B, Poschlod P, Valkó O, Westerberg L, Milberg P. 2016. Grazing vs. mowing: A meta-analysis of biodiversity benefits for grassland management. Agriculture, Ecosystems & Environment, 222, 200-212.

Tang B, Man J, Xiang G, Wang Y, Bai Y. 2020. Heavy grazing disrupts positive effects of arbuscular mycorrhizae symbiosis on community productivity and stability under low and high phosphorus conditions. Plant and Soil, 457, 375-387.

Thibaut L M, Connolly S R. 2013. Understanding diversity–stability relationships: towards a unified model of portfolio effects. Ecology Letters, 16, 140-150.

Tilman D. 1999. The ecological consequences of changes in biodiversity: a search for general principles. Ecology, 80, 1455-1474.

Tilman D, Lehman C L, Bristow C E. 1998. Diversity-stability relationships: statistical inevitability or ecological consequence? The American Naturalist, 151, 277-282.

Tilman D, Reich P B, Knops J M. 2006. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 441, 629-632.

Walkley A, Black I A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38.

Wan S, Luo Y, Wallace L. 2002. Changes in microclimate induced by experimental warming and clipping in tallgrass prairie. Global Change Biology, 8, 754-768.

Wan Z, Gu R, Ganjurjav H, Hu G, Gao Q, Liang Y, Chun X, Zhou H. 2024. The stability of aboveground productivity in a semiarid steppe in China is influenced by the plant community structure. Communications Earth & Environment, 5, 523.

Wen P, Wang B, Liu S, Wu L, Yue L, Wu Y, Chen H, Bai Y, Chen D. 2023. Seasonal community stability increased with water addition and shrub removal but reduced with nitrogen addition in semi‐arid grassland. Functional Ecology, 37, 690-702.

Wilcox K R, Tredennick A T, Koerner S E, Grman E, Hallett L M, Avolio M L, La Pierre K J, Houseman G R, Isbell F, Johnson D S. 2017. Asynchrony among local communities stabilises ecosystem function of metacommunities. Ecology Letters, 20, 1534-1545.

Wu Q, Ren H, Wang Z, Li Z, Liu Y, Wang Z, Li Y, Zhang R, Zhao M, Chang S X. 2020. Additive negative effects of decadal warming and nitrogen addition on grassland community stability. Journal of Ecology, 108, 1442-1452.

Xiong S, Nilsson C. 1999. The effects of plant litter on vegetation: a meta‐analysis. Journal of Ecology, 87, 984-994.

Xu H, Zhang J, Baoyin T, Zhang L, Yuan T. 2024a. The Effects of Different Grazing Periods on the Functional Traits of Leymus chinensis (Trin.) Tzvelev in a Typical Inner Mongolia Steppe. Agronomy, 14, 2370.

Xu Q, Yang X, Song J, Ru J, Xia J, Wang S, Wan S, Jiang L. 2022. Nitrogen enrichment alters multiple dimensions of grassland functional stability via changing compositional stability. Ecology Letters, 25, 2713-2725.

Xu Z, Jiang L, Ren H, Han X. 2024b. Opposing responses of temporal stability of aboveground and belowground net primary productivity to water and nitrogen enrichment in a temperate grassland. Global Change Biology, 30, e17071.

Xu Z, Liu H, Meng Y, Yin J, Ren H, Li M-H, Yang S, Tang S, Jiang Y, Jiang L. 2023. Nitrogen addition and mowing alter drought resistance and recovery of grassland communities. Science China Life Sciences, 66, 1682-1692.

Yang G J, Hautier Y, Zhang Z J, Lü X T, Han X G. 2022. Decoupled responses of above‐and below‐ground stability of productivity to nitrogen addition at the local and larger spatial scale. Global Change Biology, 28, 2711-2720.

Yang H, Jiang L, Li L, Li A, Wu M, Wan S. 2012. Diversity‐dependent stability under mowing and nutrient addition: Evidence from a 7‐year grassland experiment. Ecology Letters, 15, 619-626.

Yuan T, Ren W, Wang Z, Fry E L, Tang S, Yin J, Zhang J, Jia Z. 2023. How does the pattern of root metabolites regulating beneficial microorganisms change with different grazing pressures? Frontiers in Plant Science, 14, 1180576.

Yuan T, Zhang J, Zhang S, Tang S, Li Y, Ren W, Mi W, Liang J. 2025. Differential response of C3 and C4 plants in temperate grasslands to different grazing intensities and nitrogen addition. Journal of Environmental Management, 391, 126470.

Zhang A, Wang D, Wan S. 2019. Litter addition decreases plant diversity by suppressing seeding in a semiarid grassland, Northern China. Ecology and Evolution, 9, 9907-9915.

Zhang F, Bennett J A, Zhang B, Zhao M, Han G. 2022. Intensification of disturbance destabilizes productivity through effects on dominant species. Ecological Indicators, 143, 109383.

Zhang L, Bai W, Zhang Y, Lambers H, Zhang W H. 2023. Ecosystem stability is determined by plant defence functional traits and population stability under mowing in a semi‐arid temperate steppe. Functional Ecology, 37, 2413-2424.

Zhang Y, Loreau M, He N, Zhang G, Han X. 2017. Mowing exacerbates the loss of ecosystem stability under nitrogen enrichment in a temperate grassland. Functional Ecology, 31, 1637-1646.

Zhao T, Suo R, Alemu A W, Zheng J, Zhang F, Iwaasa A D, Guo J, Zhao M, Zhang B. 2024. Mowing increased community stability in semiarid grasslands more than either fencing or grazing. Ecological Applications, e2985.

Zheng S, Lan Z, Li W, Shao R, Shan Y, Wan H, Taube F, Bai Y. 2011. Differential responses of plant functional trait to grazing between two contrasting dominant C3 and C4 species in a typical steppe of Inner Mongolia, China. Plant and Soil, 340, 141-155. 

[1] Niu Wang, Weidong Zhang, Zhenyu Zhong, Xiongbo Zhou, Xinran Shi, Xin Wang. FGF7 secreted from dermal papillae cell regulates the proliferation and differentiation of hair follicle stem cell[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3583-3597.
[2] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[3] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[4] Zuxian Chen, Bingbing Zhao, Yingying Wang, Yuqing Du, Siyu Feng, Junsheng Zhang, Luxiang Zhao, Weiqiang Li, Yangbao Ding, Peirong Jiao. H5N1 avian influenza virus PB2 antagonizes duck IFN-β signaling pathway by targeting mitochondrial antiviral signaling protein[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3614-3625.
[5] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[6] Yufeng Xiao, Meiqi Dong, Xian Wu, Shuang Liang, Ranhong Li, Hongyu Pan, Hao Zhang. Enrichment, domestication, degradation, adaptive mechanism, and nicosulfuron bioremediation of bacteria consortium YM2[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3529-3545.
[7] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[8] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[9] Zishuai Wang, Wangchang Li, Zhonglin Tang. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3574-3582.
[10] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[11] Minghui Li, Yilan Chen, Siqiao Wang, Xueke Sun, Yongkun Du, Siyuan Liu, Ruiqi Li, Zejie Chang, Peiyang Ding, Gaiping Zhang. Plug-and-display nanoparticle immunization of the core epitope domain induces potent neutralizing antibody and cellular immune responses against PEDV[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3598-3613.
[12] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[13] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[14] Mingxin Feng, Ying Hu, Xin Yang, Jingwen Li, Haochen Wang, Yujia Liu, Haijun Ma, Kai Li, Jiayin Shang, Yulin Fang, Jiangfei Meng. Uncovering the miRNA-mediated regulatory network involved in postharvest senescence of grape berries[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3465-3483.
[15] Li Liu, Yifeng Feng, Ziqi Han, Yaxiao Song, Jianhua Guo, Jing Yu, Zidun Wang, Hui Wang, Hua Gao, Yazhou Yang, Yuanji Wang, Zhengyang Zhao. Functional analysis of the xyloglucan endotransglycosylase/hydrolase gene MdXTH2 in apple fruit firmness formation[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3418-3434.
No Suggested Reading articles found!