|
Angenent G C, Colombo L. 1996. Molecular control of ovule development. Trends Plant Sci, 1, 228-232.
Apuya N R, Yadegari R, Fischer R L, Harada J J, Zimmerman J L, Goldberg R B. 2001. The Arabidopsis embryo mutant schlepperless has a defect in the chaperonin-60alpha gene. Plant Physiol, 126, 717-730.
Adamiec M, Misztal L, Kasprowicz-Maluśki A, Luciński R. 2020. EGY3: homologue of S2P protease located in chloroplasts. Plant Biol (Stuttg), 22, 735-743.
Adamiec M, Dobrogojski J, Wojtyla Ł, Luciński R. 2022. Stress-related expression of the chloroplast EGY3 pseudoprotease and its possible impact on chloroplasts' proteome composition. Front Plant Sci, 13, 965143.
Bowman J L, Smyth D R, Meyerowitz E M. 2012. The ABC model of flower development: then and now. Development, 139, 4095-4098.
Becker A, Theissen G. 2003. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol, 29, 464-489.
Coen E S, Meyerowitz E M. 1991. The war of the whorls: genetic interactions controlling flower development. Nature, 353, 31-37.
Causier B, Schwarz-Sommer Z, Davies B. 2010. Floral organ identity: 20 years of ABCs. Semin Cell Dev Biol, 21, 73-79.
Casazza A P, Rossini S, Rosso M G, Soave C. 2005. Mutational and expression analysis of ELIP1 and ELIP2 in Arabidopsis thaliana. Plant Mol Biol, 58, 41-51.
Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky M F. 2004. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol, 14, 1935-1940.
Dreni L, Zhang D. 2016. Flower development: the evolutionary history and functions of the AGL6 subfamily MADS-box genes. J Exp Bot, 67, 1625-1638.
Duan Y, Xing Z, Diao Z, Xu W, Li S, Du X, Wu G, Wang C, Lan T, Meng Z, Liu H, Wang F, Wu W, Xue Y. 2012. Characterization of Osmads6-5, a null allele, reveals that OsMADS6 is a critical regulator for early flower development in rice (Oryza sativa L.). Plant Mol Biol, 80, 429-442.
Dickson R, Weiss C, Howard R J, Alldrick S P, Ellis R J, Lorimer G, Azem A, Viitanen P V. 2000. Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding. J Biol Chem, 275, 11829-11835.
Elliot M M, David R S, John L B. 1989. Abnormal flowers and pattern formation in floral development. Development, 106, 209–217.
Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky M F, Kater M M, Colombo L. 2003. MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell, 15, 2603-2611.
Hileman L C, Sundstrom J F, Litt A, Chen M, Shumba T, Irish V F. 2006. Molecular and phylogenetic analyses of the MADS-box gene family in tomato. Mol Biol Evol, 23, 2245-2258.
Huang X, Effgen S, Meyer R C, Theres K, Koornneef M. 2012. Epistatic natural allelic variation reveals a function of AGAMOUS-LIKE6 in axillary bud formation in Arabidopsis. Plant Cell, 24, 2364-2379.
Hsu W H, Yeh T J, Huang K Y, Li J Y, Chen H Y, Yang C H. 2014. AGAMOUS-LIKE13, a putative ancestor for the E functional genes, specifies male and female gametophyte morphogenesis. Plant J, 77, 1-15.
Hsu H F, Chen W H, Shen Y H, Hsu W H, Mao W T, Yang C H. 2021. Multifunctional evolution of B and AGL6 MADS box genes in orchids. Nat Commun, 12, 902.
Irish V F. 2010. The flowering of Arabidopsis flower development. Plant J, 61, 1014-1028.
Koo S C, Bracko O, Park M S, Schwab R, Chun H J, Park K M, Seo J S, Grbic V, Balasubramanian S, Schmid M, Godard F, Yun D J, Lee S Y, Cho M J, Weigel D, Kim M C. 2010. Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box Gene AGAMOUS-LIKE6. Plant J, 62, 807-816.
Klap C, Yeshayahou E, Bolger A M, Arazi T, Gupta S K, Shabtai S, Usadel B, Salts Y, Barg R. 2017. Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function. Plant Biotechnol J, 15, 634-647.
Kong X, Wang F, Geng S, Guan J, Tao S, Jia M, Sun G, Wang Z, Wang K, Ye X, Ma J, Liu D, Wei Y, Zheng Y, Fu X, Mao L, Lan X, Li A. 2022. The wheat AGL6-like MADS-box gene is a master regulator for floral organ identity and a target for spikelet meristem development manipulation. Plant Biotechnol J, 20, 75-88.
Kuo W Y, Huang C H, Liu A C, Cheng C P, Li S H, Chang W C, Weiss C, Azem A, Jinn T L. 2013. CHAPERONIN 20 mediates iron superoxide dismutase (FeSOD) activity independent of its co-chaperonin role in Arabidopsis chloroplasts. New Phytol, 197, 99-110.
Latijnhouwers M, Xu X M, Møller S G. 2010. Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development. Planta, 232, 567-578.
Li H, Liang W, Jia R, Yin C, Zong J, Kong H, Zhang D. 2010. The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Res, 20, 299-313.
Li B J, Zheng B Q, Wang J Y, Tsai W C, Lu H C, Zou L H, Wan X, Zhang D Y, Qiao H J, Liu Z J, Wang Y. 2020. New insight into the molecular mechanism of colour differentiation among floral segments in orchids. Commun Biol, 3, 89.
Lee K, Yoon H, Seo P J. 2024. The AGL6-ELF3-FT circuit controls flowering time in Arabidopsis. Plant Signal Behav, 19, 2358684.
Mizukami Y, Ma H. 1992. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell, 71, 119-131.
Montané M H, Kloppstech K. 2000. The family of light-harvesting-related proteins (LHCs, ELIPs, HLIPs): was the harvesting of light their primary function? Gene, 258, 1-8.
Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H, Uchida E, Nagato Y, Yoshida H. 2009. MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant Cell, 21, 3008-3025.
Pelaz S, Tapia-López R, Alvarez-Buylla E R, Yanofsky M F. 2001. Conversion of leaves into petals in Arabidopsis. Curr. Biol, 11, 182-184.
Pelaz S, Ditta G S, Baumann E, Wisman E, Yanofsky M F. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 405, 200-203.
Pinyopich A, Ditta G S, Savidge B, Liljegren S J, Baumann E, Wisman E, Yanofsky M F. 2003. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 424, 85-88.
Purugganan M D. 1997. The MADS-box floral homeotic gene lineages predate the origin of seed plants: phylogenetic and molecular clock estimates. J Mol Evol, 45, 392-396.
Peng S M, Luo T, Zhou J Y, Niu B, Lei N F, Tang L, Chen F. 2008. Cloning and quantification of expression levels of two MADS-box genes from Momordica charantia. Biologia plantarum, 52, 222-230.
Rossini S, Casazza A P, Engelmann E C, Havaux M, Jennings R C, Soave C. 2006. Suppression of both ELIP1 and ELIP2 in Arabidopsis does not affect tolerance to photoinhibition and photooxidative stress. Plant Physiol, 141, 1264-1273.
Rijpkema A S, Zethof J, Gerats T, Vandenbussche M. 2009. The petunia AGL6 gene has a SEPALLATA-like function in floral patterning. Plant J, 60, 1-9.
Schmittgen T D, Livak K J. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc, 3, 1101-1108.
Su Y, Liu J, Liang W, Dou Y, Fu R, Li W, Feng C, Gao C, Zhang D, Kang Z, Li H. 2019. Wheat AGAMOUS LIKE 6 transcription factors function in stamen development by regulating the expression of TaAPETALA3. Development, 146, dev177527.
Suzuki K, Nakanishi H, Bower J, Yoder D W, Osteryoung K W, Miyagishima S Y. 2009. Plastid chaperonin proteins Cpn60 alpha and Cpn60 beta are required for plastid division in Arabidopsis thaliana. BMC Plant Biol, 9, 38.
Theißen G. 2001. Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol, 4, 75-85.
Theißen G, Melzer R, Rümpler F. 2016. MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development, 143, 3259-3271.
Tao J, Liang W, An G, Zhang D. 2018. OsMADS6 controls flower development by activating rice FACTOR OF DNA METHYLATION LIKE1. Plant Physiol, 177, 713-727.
Viaene T, Vekemans D, Becker A, Melzer S, Geuten K. 2010. Expression divergence of the AGL6 MADS domain transcription factor lineage after a core eudicot duplication suggests functional diversification. BMC Plant Biol, 10, 148.
Viitanen P V, Schmidt M, Buchner J, Suzuki T, Vierling E, Dickson R, Lorimer G H, Gatenby A, Soll J. 1995. Functional characterization of the higher plant chloroplast chaperonins. J Biol Chem, 270, 18158-18164.
Wang C, Sun J J, Yang X Y, Wan L, Zhang Z H, Zhang H M. 2023. An optimized protocol using Steedman's wax for high-sensitivity RNA in situ hybridization in shoot apical meristems and flower buds of cucumber. Journal of Integrative Agriculture, 22, 464-470.
Wang T, Liu S, Tian S, Ma T, Wang W. 2022. Light regulates chlorophyll biosynthesis via ELIP1 during the storage of Chinese cabbage. Sci Rep, 12, 11098.
Xing H L, Dong L, Wang Z P, Zhang H Y, Han C Y, Liu B, Wang X C, Chen Q J. 2014. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol, 14, 327.
Xin T, Tian H, Ma Y, Wang S, Yang L, Li X, Zhang M, Chen C, Wang H, Li H, Xu J, Huang S, Yang X. 2022. Targeted creating new mutants with compact plant architecture using CRISPR/Cas9 genome editing by an optimized genetic transformation procedure in cucurbit plants. Hortic Res, 9, uhab086.
Yu X, Duan X, Zhang R, Fu X, Ye L, Kong H, Xu G, Shan H. 2016. Prevalent exon-intron structural changes in the APETALA1/FRUITFULL, SEPALLATA, AGAMOUS-LIKE6, and FLOWERING LOCUS C MADS-Box gene subfamilies provide new insights into their evolution. Front Plant Sci, 7, 598.
Yoo S K, Hong S M, Lee J S, Ahn J H. 2011. A genetic screen for leaf movement mutants identifies a potential role for AGAMOUS-LIKE 6 (AGL6) in circadian-clock control. Mol Cells, 31, 281-287.
Yu X, Chen G, Guo X, Lu Y, Zhang J, Hu J, Tian S, Hu Z. 2017. Silencing SlAGL6, a tomato AGAMOUS-LIKE6 lineage gene, generates fused sepal and green petal. Plant Cell Rep, 36, 959-969.
Yu X, Xia S, Xu Q, Cui Y, Gong M, Zeng D, Zhang Q, Shen L, Jiao G, Gao Z, Hu J, Zhang G, Zhu L, Guo L, Ren D, Qian Q. 2020. ABNORMAL FLOWER AND GRAIN 1 encodes OsMADS6 and determines palea identity and affects rice grain yield and quality. Sci China Life Sci, 63, 228-238.
Zhuang Y, Wei M, Ling C, Liu Y, Amin AK, Li P, Li P, Hu X, Bao H, Huo H, Smalle J, Wang S. 2021. EGY3 mediates chloroplastic ROS homeostasis and promotes retrograde signaling in response to salt stress in Arabidopsis. Cell Rep, 36, 109384.
Zhang X F, Jiang T, Wu Z, Du S Y, Yu Y T, Jiang S C, Lu K, Feng X J, Wang X F, Zhang D P. 2013. Cochaperonin CPN20 negatively regulates abscisic acid signaling in Arabidopsis. Plant Mol Biol, 83, 205-218.
|