Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Sex-specific and functional differentiation between OR23h and OR109d in aggregation pheromone detection in Riptortus pedestris

Xiaotong Zhang1, 2, 3, Jiahang Wei2, Xuanpu Luan2, Ian W. Keesey5, Xin Chen4, Qi Yan1, 2, Shuanglin Dong1, 2#, Jin Zhang1, 2, 3#

1 Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China

2 State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China

3 Key Laboratory of Soybean Disease and Pest Controlof Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China

4 Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China

5 School of Biological Sciences, University of Nebraska  Lincoln (UNL), Lincoln 68588, USA

 Highlights 

Riptortus pedestris detects aggregation pheromones via its distiflagellum.

OR23h is broadly tuned to three structurally similar components, E2HE2H, E2HZ3H, and E2HH, whereas the male-biased OR109d is narrowly tuned to E2HE2H.

Dual RNAi treatment demonstrated that OR23h and OR109d collectively mediate the response to the primary component, E2HE2H.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

点蜂缘蝽(Riptortus pedestris)是东亚国家大豆的主要害虫。雄虫释放的聚集信息素能够吸引成虫和若虫,这为开发环境友好型害虫防控方法提供了潜力。然而,聚集信息素识别的分子机制尚不明确。本研究利用非洲爪蟾卵母细胞表达系统进行功能分析,发现两个气味受体(OR23h 与 OR109d)负责感知聚集信息素,其中主要组分  (E)-2-己烯基 (E)-2-己烯酸酯可被这两个受体共同识别。进一步的 qPCR 表达谱分析表明,OR109d 仅在雄虫触角中表达,而 OR23h 在雌雄个体中的表达水平相近。RNA干扰实验显示,dsOR23h 处理能显著降低雌雄个体对 (E)-2-己烯基 (Z)-3-己烯酸酯的触角电位反应。此外,同时干扰两个受体基因可显著降低雄虫 (E)-2-己烯基 (E)-2-己烯酸酯的触角电位反应,并完全抑制雄虫对该化合物的趋向行为。这些结果与性别表达谱一致,揭示了两受体在功能及性别间的分化机制。本研究明确了调控该类信息素所引发聚集行为的关键气味受体,深化了对半翅目昆虫嗅觉信号传导机制的理解,并为优化害虫治理策略提供了重要理论依据。



Abstract  

The bean bug, Riptortus pedestris, is a major pest of soybeans in East Asian countries. Male-released aggregation pheromones attract both adults and nymphs, offering potential for eco-friendly pest control. However, the molecular mechanisms underlying the detection of the aggregation pheromones remain unclear. In the present study, functional analysis using the Xenopus oocyte expression system demonstrated that two ORs (OR23h and OR109d) were responsible for sensing aggregation pheromones, with the primary component (E)-2-hexenyl (E)-2-hexenoate (E2HE2H) being shared by the two ORs. Further quantitative PCR (qPCR) profiling indicated that OR109d was expressed only in male antennae, while OR23h was expressed in both sexes at similar levels. RNA interference assays demonstrated that dsOR23h-treatment significantly reduced the Electroantennographic (EAG) response of (E)-2-hexenyl (Z)-3-hexenoate (E2HZ3H) in both sexes. Furthermore, simultaneous RNAi knockdown of the two ORs significantly reduced the male EAG response to E2HE2H and abolished male attraction to this compound. These results were consistent with the sex expression profile, demonstrating the sex and functional differentiation between the two ORs. Taken together, this study characterizes the ORs responsible for chemical perception and the associated aggregation behaviors driven by these pheromones. Thus, this study enhances our understanding of olfactory signaling in a hemipteran insect and contributes to the knowledge required for improved pest management.

Keywords:  odorant receptors       Xenopus oocyte expression and two-electrode voltage clamp              RNA interference              synergism              EAG response              behavioral preference  
Online: 07 November 2025  
Fund: 

This work was supported by grants from the National Key Research and Development Program of China (2023YFD1401000) and the National Natural Science Foundation of China (32372530). 

About author:  #Correspondence Jin Zhang, E-mail: jinzhang001@njau.edu.cn; Shuanglin Dong, E-mail: sldong@njau.edu.cn

Cite this article: 

Xiaotong Zhang, Jiahang Wei, Xuanpu Luan, Ian W. Keesey, Xin Chen, Qi Yan, Shuanglin Dong, Jin Zhang. 2025. Sex-specific and functional differentiation between OR23h and OR109d in aggregation pheromone detection in Riptortus pedestris. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.11.009

Endo N, Takashi W, Nobuo M, Seiichi M, Rikiya S. 2005. Ambiguous response of Riptortus Clavatus (Heteroptera: Alydidae) to different blends of its aggregation pheromone components. Applied Entomology and Zoology, 40, 41–45.

Guo J M, Wei Z Q, Hou J H, He Y, Luan X P, Zhang Y Y, Liu X L, Zhang X T, Zhang J, Yan Q, Dong S L. 2023. Ionotropic receptor IR75q.2 mediates avoidance reaction to nonanoic acid in the fall armyworm Spodoptera frugiperda (Lepidoptera, Noctuidae). Journal of Agricultural and Food Chemistry, 71, 20602–20612.

Guo X J, He H, Sun J H, Kang L. 2023. Plasticity of aggregation pheromones in insects. Current Opinion in Insect Science, 59, 101098.  

Guo X J, Yu Q Q, Chen D F, Wei J N, Yang P C, Yu J, Wang X H, Kang L. 2020. 4-vinylanisole is an aggregation pheromone in locusts. Nature, 584, 584–588.

Hallem E A, Carlson J R. 2006. Coding of odors by a receptor repertoire. Cell, 125, 143–160.

Hallem E A, Dahanukar A, Carlson J R. 2006. Insect odor and taste receptors. Annual Review of Entomology, 51, 113–135.

Hansson B S, Stensmyr M C. 2011. Evolution of insect olfaction. Neuron, 72, 698–711.

Huh H S, Jang S A, Park C G. 2009. Variation in aggregation pheromone secretion of bean bug, Riptortus clavatus. Korean Journal of Applied Entomology, 48, 1612–1617.

Huh H S, Park K H, Seo W D, Park C G. 2005. Interaction of aggregation pheromone components of the bean bug, Riptortus clavatus (Thunberg) (Heteroptera: Alydidae). Applied Entomology and Zoology, 40, 643–648.

Huh W, Park C G. 2010. Effect of day length and temperature on the diapause termination of Riptortus pedestris (Hemiptera: Alydidae) male adults. Korean Journal of Applied Entomology, 49, 205–210.

Karlson P, Lüscher M. 1959. ‘Pheromones’: A new term for a class of biologically active substances. Nature, 183, 55–56.

Kim J, Park K C, Roh H S, Kim J, Oh H W, Kim J A, Park C G. 2016. Morphology and distribution of antennal sensilla of the bean bug Riptortus pedestris (Hemiptera: Alydidae). Microscopy Research and Technique, 79, 501–511.

Leal W S. 2013. Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology, 58, 373–391.

Leal W S, Higuchi H, Mizutani N, Nakamori H, Kadosawa T, Ono M. 1995. Multifunctional communication in Riptortus clavatus (Heteroptera: Alydidae): Conspecific nymphs and egg parasitoid Ooencyrtus nezarae use the same adult attractant pheromone as chemical cue. Journal of Chemical Ecology, 21, 973–985.

Leal W S, Kadosawa T. 1992. (E)-2-hexenyl hexanoate, the alarm pheromone of the bean bug Riptortus clavatus (Heteroptera: Alydidae). Bioscience, Biotechnology, and Biochemistry, 56, 1004–1005.

Liu X L, Zhang J, Yan Q, Miao C L, Han W K, Hou W, Yang K, Hansson B S, Peng Y C, Guo J M, Xu H, Wang C Z, Dong S L, Knaden M. 2020. The molecular basis of host selection in a crucifer-specialized moth. Current Biology, 30, 4476-4482.e5.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biology, 15, 550.

Mizutani N, Wada T, Higuchi H, Ono M, Leal W S. 1997. A component of a synthetic aggregation pheromone of Riptortus clavatus (THUNBERG) (Heteroptera: Alydidae), that attracts an egg parasitoid, Ooencyrtus nezarae ISHII (Hymenoptera: Encyrtidae). Applied Entomology and Zoology, 32, 504–507.

Mizutani N, Wada T, Yasuda T, Endo N, Yamaguchi T, Moriya S. 2008a. Influence of photoperiod on attractiveness and pheromone contents of the bean bug, Riptortus pedestris (Heteroptera: Alydidae). Applied Entomology and Zoology, 43, 585–592.

Mizutani N, Yasuda T, Yamaguchi T, Moriya S. 2007. Individual variation in the amounts of pheromone components in the male bean bug, Riptortus pedestris1 (Heteroptera: Alydidae) and its attractiveness to the same species. Applied Entomology and Zoology, 42, 629–636.

Mizutani N, Yasuda T, Yamaguchi T, Moriya S. 2008b. Pheromone contents and physiological conditions of adult bean bugs, Riptortus pedestris (Heteroptera: Alydidae), attracted to conspecific males during non-diapause and diapause periods in fields. Applied Entomology and Zoology, 43, 331–339.

Morishima M, Tabuchi K, Ito K, Mizutani N, Moriya S. 2005. Effect of feeding on the attractiveness of Riptortus clavatus (Thunberg) (Heteroptera: Alydidae) males to conspecific individuals. Japanese Journal of Applied Entomology and Zoology, 49, 262–265.

Numata H, Kon M, Hidaka T. 1990. Male adults attract conspecific adults in the bean bug, Riptortus clavatus THUNBERG : Heteroptera : Alydidae. Applied Entomology and Zoology, 25, 144–145.

Rahman M M, Lim U T. 2017. Evaluation of aggregation and alarm pheromones of Riptortus pedestris (Hemiptera: Alydidae) as a push–pull strategy in soybean fields. Applied Entomology and Zoology, 52, 469–479.

Rahman M M, Kim E, Kim D, Bhuyain M M, Lim U T. 2018. Use of aggregation pheromone traps increases infestation of adult Riptortus pedestris (Hemiptera: Alydidae) in soybean fields. Pest Management Science, 74, 2578–2588.

Rani P U, Madhavendra S S. 2005. External morphology of antennal and rostral sensillae in four hemipteran insects and their possible role in host plant selection. International Journal of Tropical Insect Science, 25, 198–207.

Roh G H, Cha D H, Park C G. 2021. Olfactory attraction to aggregation pheromone is mediated by disti-flagellum of antennal segments in Riptortus pedestris. Journal of Asia-Pacific Entomology, 24, 415–420.

Sims C, Birkett M A, Withall D M. 2022. Enantiomeric discrimination in insects: The role of OBPs and ORs. Insects, 13, 368.

Tabuchi K, Moriya S, Mizutani N. 2005. Seasonal catches of the bean bug, Riptortus clavatus (Thunberg) (Heteroptera: Alydidae), in water-pan traps with synthetic attractants. Japanese Journal of Applied Entomology and Zoology, 49, 99–104.

Tateishi K, Nishimura Y, Sakuma M, Yokohari F, Watanabe H. 2020. Sensory neurons that respond to sex and aggregation pheromones in the nymphal cockroach. Scientific Reports, 10, 1995.

Vickers N J. 2017. Animal communication: When I’m calling you, will you answer too? Current Biology, 27, R713–R715.

Wertheim B, Allemand R, Vet L E M, Dicke M. 2006. Effects of aggregation pheromone on individual behaviour and food web interactions: A field study on Drosophila. Ecological Entomology, 31, 216–226.

Wertheim B, Baalen E J A V, Dicke M, Vet L E M. 2005. Pheromone-mediated aggregation in nonsocial arthropods: An evolutionary ecological perspective. Annual Review of Entomology, 50, 321–346.

Yasuda T, Mizutani N, Endo N, Fukuda T, Matsuyama T, Ito K, Moriya S, Sasaki R. 2007a. A new component of attractive aggregation pheromone in the bean bug, Riptortus clavatus (Thunberg) (Heteroptera: Alydidae). Applied Entomology and Zoology, 42, 1–7.

Yasuda T, Mizutani N, Honda Y, Endo N, Yamaguchi T, Moriya S, Fukuda T, Sasaki R. 2007b. A supplemental component of aggregation attractant pheromone in the bean bug Riptortus clavatus (Thunberg) (Heteroptera: Alydidae), related to food exploitation. Applied Entomology and Zoology, 42, 161–166.

Yew J Y, Chung H. 2015. Insect pheromones: An overview of function, form, and discovery. Progress in Lipid Research, 59, 88–105.

Yuvaraj J K, Roberts R E, Sonntag Y, Hou X Q, Grosse-Wilde E, Machara A, Zhang D D, Hansson B S, Johanson U, Löfstedt C, Andersson M N. 2021. Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biology19, 16.

Zhang X T, Luan X P, Wei J H, Zhang P P, Guo J M, Keesey I W, Gao Y, Yan Q, Zhang J, Dong S L. 2024. Identification of a soybean volatile attractive for Riptortus pedestris using reverse chemical ecology approach. Journal of Agricultural and Food Chemistry, 72, 27084–27093.

[1] Niu Wang, Weidong Zhang, Zhenyu Zhong, Xiongbo Zhou, Xinran Shi, Xin Wang. FGF7 secreted from dermal papillae cell regulates the proliferation and differentiation of hair follicle stem cell[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3583-3597.
[2] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[3] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[4] Zuxian Chen, Bingbing Zhao, Yingying Wang, Yuqing Du, Siyu Feng, Junsheng Zhang, Luxiang Zhao, Weiqiang Li, Yangbao Ding, Peirong Jiao. H5N1 avian influenza virus PB2 antagonizes duck IFN-β signaling pathway by targeting mitochondrial antiviral signaling protein[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3614-3625.
[5] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[6] Yufeng Xiao, Meiqi Dong, Xian Wu, Shuang Liang, Ranhong Li, Hongyu Pan, Hao Zhang. Enrichment, domestication, degradation, adaptive mechanism, and nicosulfuron bioremediation of bacteria consortium YM2[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3529-3545.
[7] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[8] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[9] Zishuai Wang, Wangchang Li, Zhonglin Tang. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3574-3582.
[10] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[11] Minghui Li, Yilan Chen, Siqiao Wang, Xueke Sun, Yongkun Du, Siyuan Liu, Ruiqi Li, Zejie Chang, Peiyang Ding, Gaiping Zhang. Plug-and-display nanoparticle immunization of the core epitope domain induces potent neutralizing antibody and cellular immune responses against PEDV[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3598-3613.
[12] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[13] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[14] Mingxin Feng, Ying Hu, Xin Yang, Jingwen Li, Haochen Wang, Yujia Liu, Haijun Ma, Kai Li, Jiayin Shang, Yulin Fang, Jiangfei Meng. Uncovering the miRNA-mediated regulatory network involved in postharvest senescence of grape berries[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3465-3483.
[15] Li Liu, Yifeng Feng, Ziqi Han, Yaxiao Song, Jianhua Guo, Jing Yu, Zidun Wang, Hui Wang, Hua Gao, Yazhou Yang, Yuanji Wang, Zhengyang Zhao. Functional analysis of the xyloglucan endotransglycosylase/hydrolase gene MdXTH2 in apple fruit firmness formation[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3418-3434.
No Suggested Reading articles found!