|
Aizaz M, Lubna Jan R, Asaf S, Bilal S, Kim K M, Al-Harrasi A. 2024. Regulatory Dynamics of Plant Hormones and Transcription Factors under Salt Stress. Biology, 13, 673.
Almas H I, Anwar S, Kausar A, Farhat F, Munawar M, Khalizadieh R. 2021. Exogenous application of methionine and phenylalanine confers salinity tolerance in tomato by concerted regulation of metabolites and antioxidants. Journal of Soil Science and Plant Nutrition, 21, 3051–3064.
Ashraf M, Foolad M R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206–216.
Baghour M, Gálvez F J, Sánchez M E, Aranda M N, Venema K, Rodríguez-Rosales M P. 2019. Overexpression of LeNHX2 and SlSOS2 increases salt tolerance and fruit production in double transgenic tomato plants. Plant Physiology And Biochemistry, 135, 77–86.
Chen C, Cui X, Zhang P, Wang Z, Zhang J. 2021. Expression of the pyrroline-5-carboxylate reductase (P5CR) gene from the wild grapevine Vitis yeshanensis promotes drought resistance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 168, 188–201.
Chuamnakthong, S, Nampei, M, Ueda, A. 2019. Characterization of Na+ exclusion mechanism in rice under saline–alkaline stress conditions. Plant science, 287, 110171.
Dai W, Wang M, Gong X, Liu J H. 2018. The transcription factor FcWRKY40 of Fortunella crassifolia functions positively in salt tolerance through modulation of ion homeostasis and proline biosynthesis by directly regulating SOS2 and P5CS1 homologs. New Phytologist, 219(3): 972–989.
Fan, H F, CX, Guo S R. 2012. Effect of nitric oxide on proline metabolism in cucumber seedlings under salinity stress. Journal of The American Society For Horticultural Science, 137, 127–133.
Funck D, Winter G, Baumgarten L, Forlani G. 2012. Requirement of proline synthesis during Arabidopsis reproductive development. BMC Plant Biology, 12, 191.
Giannopolitis C, Ries S. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59, 309–314.
Gao Y F, Liu J K, Yang F M, Zhang G Y, Wang D, Zhang L, Ou Y B, Yao Y A. 2020. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiologia Plantarum, 168, 98–117.
Hare P D, Cress W A, Van Staden J. 1998. Dissecting the roles of osmolyte accumulation during stress. Plant Cell and Environment, 21, 535–553.
Hare P D, Cress W A, Staden J V. 1999. Proline synthesis and degradation: a model for elucidating stress-related signal transduction. The Journal of Experimental Botany, 50, 413–434.
Hayat S, Hayat Q, Alyemeni M N, Wani A S, Pichtel J, Ahmad A. 2012. Role of proline under changing environments: a review. Plant Signaling & Behavior, 7, 1456–1466.
Hichri I, Muhovski Y, Žižková E, Dobrev PI, Gharbi E, Franco-Zorrilla JM, Lopez-Vidriero I, Solano R, Clippe A, Errachid A, Motyka V, Lutts S. 2017. The Solanum lycopersicum WRKY3 transcription factor SlWRKY3 is involved in salt stress tolerance in tomato. Frontiers in Plant Science, 8, 1343.
Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savouré A, Jaoua S. 2005. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Science, 169, 746–752.
Hodges D M, DeLong J M, Forney C F, Prange R K. 1999. Improving the thiobarbituric acid-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other in erfering compounds. Planta, 207, 604–611.
Huang S, Gao Y, Liu J, Peng X, Niu X, Fei Z, Cao S, and Liu Y. 2012. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Molecular Genetics and Genomics, 287, 495–513.
Isayenkov S V, Maathuis F J. 2019. Plant salinity stress: Many unanswered questions remain. Frontiers In Plant Science, 10, 80.
Jambunathan N. 2010. Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. Methods in Molecular Biology, 639, 292–298.
Kishor P B K, Hong Z, Miao G H, Hu C A A, Verma D P S. 1995. Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology, 108, 1387–1394.
Köşkeroğlu S, Tuna A L. 2010. The investigation on accumulation levels of proline and stress parameters of the maize (Zea mays L.) plants under salt and water stress. Acta Physiologiae Plantarum, 32, 541–549.
Lehmann S, Funck D, Szabados L, Rentsch D. 2010. Proline metabolism and transport in plant development. Amino Acids, 39, 949–962.
Li J B, Luan Y S, Jin H. 2012. The tomato SlWRKY gene plays an important role in the regulation of defense responses in tobacco. Biochemical and Biophysical Research Communications, 427, 671–6
Li S, Wang X, Liu X, Thompson A J, Liu F. 2022. Elevated CO2 and high endogenous ABA level alleviate PEG-induced short-term osmotic stress in tomato plants. Environmental and Experimental Botany, 194, 104763.
Li W, Pang S, Lu Z, Jin B. 2020. Function and mechanism of WRKY transcription factors in abiotic stress responses of plants. Plants, 9, 1515
Liang Y, Bai J, Xie Z, Lian Z, Guo J, Zhao F, Liang Y, Huo H, Gong H. 2023. Tomato sucrose transporter SlSUT4 participates in flowering regulation by modulating gibberellin biosynthesis. Plant Physiology, 192, 1080–1098.
Lim, C, Kang, K, Shim, Y, Yoo, S C, Paek, N. C. 2022. Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways. Plant physiology, 188, 1900–1916.
Liu C, Mao B, Yuan D, Chu C, Duan M. 2022. Salt tolerance in rice: Physiological responses and molecular mechanisms. The Crop Journal, 10, 13–25.
Liu M, Yu H, Ouyang B, Shi C, Demidchik V, Hao Z, Yu M, Shabala S. 2020. NADPH oxidases and the evolution of plant salinity tolerance. Plant Cell and Environment, 43, 2957–2968.
Liu W, Wei J W, Shan Q, Liu M, Xu J, Gong B. 2024. Genetic engineering of drought- and salt-tolerant tomato via Δ1-pyrroline-5-carboxylate reductase S-nitrosylation. Plant Physiology, 195, 1038–1052.
Liu X, Shang C, Duan P, Yang J, Wang J, Sui D, Chen G, Li X, Li G, Hu S, Hu X. 2025. The SlWRKY42–SlMYC2 module synergistically enhances tomato saline-alkali tolerance by activating the jasmonic acid signaling and spermidine biosynthesis pathway. Journal of Integrative Plant Biology, 67:1254–1273.
Liu Z Q, Yan L, Wu Z, Mei C, Lu K, Yu Y T, Liang S, Zhang X F, Wang X F, Zhang D P. 2012. Cooperation of three WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in repressing two ABA-responsive genes ABI4 and ABI5 in Arabidopsis. Journal of Experimental Botany, 63:6371–92.
Lichtenthaler HK, Gitelson A, Lang M 1996. Non-Destructive determination of Chlorophyll content of leaves of a green and an aurea mutant of tobacco by reflectance measurements. Plant Physiology, 148, 483–493.
Lv X, Chen S, Wang Y. 2019. Advances in understanding the physiological and molecular responses of sugar beet to salt stress. Frontiers in Plant Science, 10, 1431.
Mittler R, Zandalinas S I, Fichman Y, Van Breusegem F. 2022. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, 23: 663–679.
Morton M J L, Awlia M, Al-Tamimi N, Saade S, Pailles Y, Negrão S, Tester M. 2019. Salt stress under the scalpel–dissecting the genetics of salt tolerance. The Plant Journal, 97, 148–163.
Noctor G, Foyer CH. 2016. Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiology, 171, 1581–1592.
Oh GGK, O’Leary B M, Signorelli S, Millar A H. 2022. Alternative oxidase (AOX) 1a and 1d limit proline-induced oxidative stress and aid salinity recovery in Arabidopsis. Plant Physiology, 188, 1521–1536.
Rushton P J, Somssich I E, Ringler P, and Shen Q J. 2010. WRKY transcription factors. Trends In Plant Science, 15, 247–258.
Satoh R, Nakashima K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. 2002. ACTCAT, a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. Plant Physiology, 130, 709–719.
Sharma S, Villamor J G, Verslues P E. 2011. Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiology, 157, 292–304.
Shrestha A, Cudjoe D K, Kamruzzaman M, Siddique S, Fiorani F, Léon J, Naz A A. 2021. Abscisic acid-responsive element binding transcription factors contribute to proline synthesis and stress adaptation in Arabidopsis. Journal of Plant Physiology, 261, 153414.
Szabados L, Savoure A. 2010. Proline: a multifunctional amino acid. Trends in Plant Science, 15, 89–97.
Shu P, Li Y, Li Z, Sheng J, Shen L. 2022. SlMAPK3 enhances tolerance to salt stress in tomato plants by scavenging ROS accumulation and up-regulating the expression of ethylene signaling related genes. Environmental And Experimental Botany, 193, 104698.
Singh D, Debnath P, Sane A P, and Sane V A. 2023. Tomato (Solanum lycopersicum) WRKY23 enhances salt and osmotic stress tolerance by modulating the ethylene and auxin pathways in transgenic Arabidopsis. Plant Physiology and Biochemistry, 195, 330–340.
Signorelli S, Coitiño EL, Borsani O, Monza J. 2014. Molecular mechanisms for the reaction between (•)OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress. Journal of Physical Chemistry B, 118, 37–47.
Srinivas V, Balasubramanian D. 1995. Proline is a protein-compatible hydrotrope. Langmuir, 11, 2830–2833.
Székely G, Ábrahám E, Cséplő Á, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik J, Schmelzer E, Koncz C, Szabados L. 2008. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. The Plant Journal, 53, 11–28.
Tanveer K, Gilani S, Hussain Z, Ishaq R, Adeel M, Ilyas N. 2019. Effect of salt stress on tomato plant and the role of calcium. Journal of Plant Nutrition, 43, 28–35.
Van Zelm E, Zhang Y, Testerink C. 2020. Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71: 403–433.
Wang H, Chen W, Xu Z, Chen M, and Yu D. 2023. Functions of WRKYs in plant growth and development. Trends in Plant Science, 28, 630–645.
Wang G, Zhang J, Wang G, Fan X, Sun X, Qin H. 2014. Proline responding1 plays a critical role in regulating general protein synthesis and the cell cycle in maize. The Plant Cell, 26, 2582–2600.
Wang Q, Zhang D, Guan Z, Li D, Pei K, Liu J, Zou T, Yin P. 2018. DapF stabilizes the substrate-favoring conformation of RppH to stimulate its RNA-pyrophosphohydrolase activity in Escherichia coli. Nucleic Acids Research, 46, 6880–6892.
Wang Y, Zhang M, Wu C, Chen C, Meng L, Zhang G, Zhuang K, Shi, Q. 2024. SlWRKY51 regulates proline content to enhance chilling tolerance in tomato. Plant Cell & Environment, 47, 5104–5114.
Wani S H, Anand S, Singh B, Bohra A, and Joshi R. 2021. WRKY transcription factors and plant defense responses: latest discoveries and future prospects. Plant Cell Reports, 40, 1071–1085.
Wu X, Xu J, Meng X, Fang X, Xia M, Zhang J, Cao S, Fan T. 2022. Linker histone variant HIS1-3 and WRKY1 oppositely regulate salt stress tolerance in Arabidopsis. Plant Physiology, 189, 1833–1847.
Xu J, Kang Z, Zhu K, Zhao D, Yuan Y, Yang S, Zhen W, Hu X. 2021. RBOH1-dependent H2O2 mediates spermine-induced antioxidant enzyme system to enhance tomato seedling tolerance to salinity-alkalinity stress. Plant Physiology and Biochemistry, 164, 237–246.
Yang Y, Guo Y. 2018. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist, 217, 523–539.
Yuan L, Dang J, Zhang J, Wang L, Zheng H, Li G, Li J, Zhou F, Khan A, Zhang Z, Hu X. 2024. A glutathione S-transferase regulates lignin biosynthesis and enhances salt tolerance in tomato. Plant Physiology, 196, 2989-3006.
Zhao C, Zhang H, Song C, Zhu J K, Shabala S. 2020. Mechanisms of plant responses and adaptation to soil salinity. Innovation, 1: 100017.
|