Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
SlWRKY42 positively promotes proline accumulation by regulating SlP5CS1 to enhance tomato salt stress tolerance

Xiaoyan Liu1*, Pengyu Duan1*, Chunyu Shang4, Qingpeng Li1, Jianyu Yang5, Jiahui Yan1, Guo Chen1, Guobin Li1, 2, 3, Xiaohui Hu1, 2, 3, Songshen Hu1, 2, 3#

1 College of Horticulture, Northwest A&F University, Yangling 712100, China

2 Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling 712100, China

3 Shaanxi Protected Agriculture Research Centre, Yangling 712100, China

4 College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China

5 Tianjin Agricultural University, Tianjin 300380, China

 Highlights 

1. SlWRKY42 positively regulates salt tolerance in tomato.

2. SlWRKY42 positively regulates transcription of SlP5CS1 and promotes the accumulation of proline under salt stress.

3. Exogenous proline alleviated the damage of slwrky42 mutants under salt stress.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

番茄(Solanum lycopersicum L.)是全球范围内重要的蔬菜作物之一,在其生长周期内易遭受多种非生物胁迫的影响。其中,盐胁迫是对番茄生长发育危害程度最为严重的非生物胁迫因素之一。本研究中,我们成功鉴定到一个WRKY转录因子家族基因SlWRKY42。该转录因子在受到盐胁迫诱导表达。为深入探究SlWRKY42在盐胁迫下的功能,我们对SlWRKY42过表达SlWRKY42 OE材料和敲除突变体进行盐胁迫处理。研究结果表明,SlWRKY42正向调控番茄对盐胁迫的抗性。通过转录组测序分析发现,参与脯氨酸生物合成通路的相关基因在SlWRKY42 OE株系中显著富集。进一步检测发现,脯氨酸生物合成相关基因(SlP5CS1SlP5CS2)的表达量以及植株体内脯氨酸的含量,在SlWRKY42 OE株系中均显著升高。进一步研究发现,脯氨酸生物合成酶的关键编码基因SlP5CS1的启动子序列中存在一个W-box顺式作用元件。酵母单杂交(Y1H)、荧光素酶报告系统检测、凝胶阻滞EMSA)以及染色质免疫沉淀定量聚合酶链式反应(ChIP-qPCR)等实验结果证实,转录因子SlWRKY42能够特异性地结合至SlP5CS1启动子区域内的W-box顺式作用元件,进而激活该基因的表达,最终促进脯氨酸的积累。综上述,SlWRKY42转录因子通过精准调控SlP5CS1的转录表达,促进盐胁迫下番茄脯氨酸的积累,显著提升了番茄对盐胁迫的耐受能力。这一发现系统地阐明了SlWRKY42转录因子调控番茄耐盐性的核心分子机制,为深入理解植物耐盐调控网络提供了重要的理论依据,也为通过基因工程手段培育耐盐番茄品种提供了新的思路和靶点。



Abstract  

Tomato (Solanum lycopersicum L.) is an important vegetable crop worldwide. Throughout its growth cycle, tomato is susceptible to various abiotic stresses. Among these stresses, salt stress is one of the most detrimental abiotic factors to plant growth and development. In this study, we identified a WRKY transcription factor, SlWRKY42, which is induced by salt stress. We then characterized the function of SlWRKY42 in transgenic materials under salt stress and found that SlWRKY42 positively regulates salt tolerance in tomato. Transcriptome sequencing analysis revealed that genes involved in proline biosynthesis were significantly enriched in SlWRKY42-overexpressing (SlWRKY42 OE) plants. The proline biosynthesis genes (SlP5CS1 and SlP5CS2) and proline contents were significantly upregulated in SlWRKY42 OE lines. We discovered that the promoter of the proline biosynthesis gene SlP5CS1 contains a W-box element. Further yeast one-hybrid (Y1H), luciferase, electrophoretic mobility shift assay (EMSA), and chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) assays verified that SlWRKY42 could specifically bind to the W-box element in the promoter of SlP5CS1 and activate its expression, thereby promoting proline biosynthesis. In summary, SlWRKY42 enhances salt tolerance in tomato by regulating the expression of SlP5CS1, thereby elucidating the molecular mechanism by which the SlWRKY42 transcription factor controls salt tolerance in tomato.

Keywords:  tomato       salt stress              SlWRKY42              SlP5CS1                    proline  
Online: 07 November 2025  
Fund: 

This work was completed with support from the National Natural Science Foundation of China (No. 32302531), China Agriculture Research System (CARS-23-D06). 

About author:  #Correspondence Songshen Hu, E-mail: Songshenh@nwafu.edu.cn *These authors contributed equally to this study.

Cite this article: 

Xiaoyan Liu, Pengyu Duan, Chunyu Shang, Qingpeng Li, Jianyu Yang, Jiahui Yan, Guo Chen, Guobin Li, Xiaohui Hu, Songshen Hu. 2025. SlWRKY42 positively promotes proline accumulation by regulating SlP5CS1 to enhance tomato salt stress tolerance. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.11.007

Aizaz M, Lubna Jan R, Asaf S, Bilal S, Kim K M, Al-Harrasi A. 2024. Regulatory Dynamics of Plant Hormones and Transcription Factors under Salt Stress. Biology, 13, 673.

Almas H I, Anwar S, Kausar A, Farhat F, Munawar M, Khalizadieh R. 2021. Exogenous application of methionine and phenylalanine confers salinity tolerance in tomato by concerted regulation of metabolites and antioxidants. Journal of Soil Science and Plant Nutrition, 21, 3051–3064.

Ashraf M, Foolad M R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206–216.

Baghour M, Gálvez F J, Sánchez M E, Aranda M N, Venema K, Rodríguez-Rosales M P. 2019. Overexpression of LeNHX2 and SlSOS2 increases salt tolerance and fruit production in double transgenic tomato plants. Plant Physiology And Biochemistry, 135, 77–86.

Chen C, Cui X, Zhang P, Wang Z, Zhang J. 2021. Expression of the pyrroline-5-carboxylate reductase (P5CR) gene from the wild grapevine Vitis yeshanensis promotes drought resistance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 168, 188–201.

Chuamnakthong, S, Nampei, M, Ueda, A. 2019. Characterization of Na+ exclusion mechanism in rice under saline–alkaline stress conditions. Plant science, 287, 110171.

Dai W, Wang M, Gong X, Liu J H. 2018. The transcription factor FcWRKY40 of Fortunella crassifolia functions positively in salt tolerance through modulation of ion homeostasis and proline biosynthesis by directly regulating SOS2 and P5CS1 homologs. New Phytologist, 219(3): 972–989.

Fan, H F, CX, Guo S R. 2012. Effect of nitric oxide on proline metabolism in cucumber seedlings under salinity stress. Journal of The American Society For Horticultural Science, 137, 127–133.

Funck D, Winter G, Baumgarten L, Forlani G. 2012. Requirement of proline synthesis during Arabidopsis reproductive development. BMC Plant Biology, 12, 191.

Giannopolitis C, Ries S. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59, 309–314.

Gao Y F, Liu J K, Yang F M, Zhang G Y, Wang D, Zhang L, Ou Y B, Yao Y A. 2020. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiologia Plantarum, 168, 98–117.

Hare P D, Cress W A, Van Staden J. 1998. Dissecting the roles of osmolyte accumulation during stress. Plant Cell and Environment, 21, 535–553.

Hare P D, Cress W A, Staden J V. 1999. Proline synthesis and degradation: a model for elucidating stress-related signal transduction. The Journal of Experimental Botany, 50, 413–434.

Hayat S, Hayat Q, Alyemeni M N, Wani A S, Pichtel J, Ahmad A. 2012. Role of proline under changing environments: a review. Plant Signaling & Behavior, 7, 1456–1466.

Hichri I, Muhovski Y, Žižková E, Dobrev PI, Gharbi E, Franco-Zorrilla JM, Lopez-Vidriero I, Solano R, Clippe A, Errachid A, Motyka V, Lutts S. 2017. The Solanum lycopersicum WRKY3 transcription factor SlWRKY3 is involved in salt stress tolerance in tomato. Frontiers in Plant Science, 8, 1343.

Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savouré A, Jaoua S. 2005. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Science, 169, 746–752.

Hodges D M, DeLong J M, Forney C F, Prange R K. 1999. Improving the thiobarbituric acid-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other in erfering compounds. Planta, 207, 604–611.

Huang S, Gao Y, Liu J, Peng X, Niu X, Fei Z, Cao S, and Liu Y. 2012. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Molecular Genetics and Genomics, 287, 495–513.

Isayenkov S V, Maathuis F J. 2019. Plant salinity stress: Many unanswered questions remain. Frontiers In Plant Science, 10, 80.

Jambunathan N. 2010. Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. Methods in Molecular Biology, 639, 292–298.

Kishor P B K, Hong Z, Miao G H, Hu C A A, Verma D P S. 1995. Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology, 108, 1387–1394.

Köşkeroğlu S, Tuna A L. 2010. The investigation on accumulation levels of proline and stress parameters of the maize (Zea mays L.) plants under salt and water stress. Acta Physiologiae Plantarum, 32, 541–549.

Lehmann S, Funck D, Szabados L, Rentsch D. 2010. Proline metabolism and transport in plant development. Amino Acids, 39, 949–962.

Li J B, Luan Y S, Jin H. 2012. The tomato SlWRKY gene plays an important role in the regulation of defense responses in tobacco. Biochemical and Biophysical Research Communications, 427, 671–6

Li S, Wang X, Liu X, Thompson A J, Liu F. 2022. Elevated CO2 and high endogenous ABA level alleviate PEG-induced short-term osmotic stress in tomato plants. Environmental and Experimental Botany, 194, 104763.

Li W, Pang S, Lu Z, Jin B. 2020. Function and mechanism of WRKY transcription factors in abiotic stress responses of plants. Plants, 9, 1515

Liang Y, Bai J, Xie Z, Lian Z, Guo J, Zhao F, Liang Y, Huo H, Gong H. 2023. Tomato sucrose transporter SlSUT4 participates in flowering regulation by modulating gibberellin biosynthesis. Plant Physiology, 192, 1080–1098.

Lim, C, Kang, K, Shim, Y, Yoo, S C, Paek, N. C. 2022. Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways. Plant physiology, 188, 1900–1916.

Liu C, Mao B, Yuan D, Chu C, Duan M. 2022. Salt tolerance in rice: Physiological responses and molecular mechanisms. The Crop Journal, 10, 13–25.

Liu M, Yu H, Ouyang B, Shi C, Demidchik V, Hao Z, Yu M, Shabala S. 2020. NADPH oxidases and the evolution of plant salinity tolerance. Plant Cell and Environment, 43, 2957–2968.

Liu W, Wei J W, Shan Q, Liu M, Xu J, Gong B. 2024. Genetic engineering of drought- and salt-tolerant tomato via Δ1-pyrroline-5-carboxylate reductase S-nitrosylation. Plant Physiology, 195, 1038–1052.

Liu X, Shang C, Duan P, Yang J, Wang J, Sui D, Chen G, Li X, Li G, Hu S, Hu X. 2025. The SlWRKY42–SlMYC2 module synergistically enhances tomato saline-alkali tolerance by activating the jasmonic acid signaling and spermidine biosynthesis pathway. Journal of Integrative Plant Biology, 67:1254–1273.

Liu Z Q, Yan L, Wu Z, Mei C, Lu K, Yu Y T, Liang S, Zhang X F, Wang X F, Zhang D P. 2012. Cooperation of three WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in repressing two ABA-responsive genes ABI4 and ABI5 in Arabidopsis. Journal of Experimental Botany, 63:6371–92.

Lichtenthaler HK, Gitelson A, Lang M 1996. Non-Destructive determination of Chlorophyll content of leaves of a green and an aurea mutant of tobacco by reflectance measurements. Plant Physiology, 148, 483–493.

Lv X, Chen S, Wang Y. 2019. Advances in understanding the physiological and molecular responses of sugar beet to salt stress. Frontiers in Plant Science, 10, 1431.

Mittler R, Zandalinas S I, Fichman Y, Van Breusegem F. 2022. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, 23: 663–679.

Morton M J L, Awlia M, Al-Tamimi N, Saade S, Pailles Y, Negrão S, Tester M. 2019. Salt stress under the scalpel–dissecting the genetics of salt tolerance. The Plant Journal, 97, 148–163.

Noctor G, Foyer CH. 2016. Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiology, 171, 1581–1592.

Oh GGK, O’Leary B M, Signorelli S, Millar A H. 2022. Alternative oxidase (AOX) 1a and 1d limit proline-induced oxidative stress and aid salinity recovery in Arabidopsis. Plant Physiology, 188, 1521–1536.

Rushton P J, Somssich I E, Ringler P, and Shen Q J. 2010. WRKY transcription factors. Trends In Plant Science, 15, 247–258.

Satoh R, Nakashima K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. 2002. ACTCAT, a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. Plant Physiology, 130, 709–719.

Sharma S, Villamor J G, Verslues P E. 2011. Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiology, 157, 292–304.

Shrestha A, Cudjoe D K, Kamruzzaman M, Siddique S, Fiorani F, Léon J, Naz A A. 2021. Abscisic acid-responsive element binding transcription factors contribute to proline synthesis and stress adaptation in Arabidopsis. Journal of Plant Physiology, 261, 153414.

Szabados L, Savoure A. 2010. Proline: a multifunctional amino acid. Trends in Plant Science, 15, 89–97.

Shu P, Li Y, Li Z, Sheng J, Shen L. 2022. SlMAPK3 enhances tolerance to salt stress in tomato plants by scavenging ROS accumulation and up-regulating the expression of ethylene signaling related genes. Environmental And Experimental Botany, 193, 104698.

Singh D, Debnath P, Sane A P, and Sane V A. 2023. Tomato (Solanum lycopersicum) WRKY23 enhances salt and osmotic stress tolerance by modulating the ethylene and auxin pathways in transgenic Arabidopsis. Plant Physiology and Biochemistry, 195, 330–340.

Signorelli S, Coitiño EL, Borsani O, Monza J. 2014. Molecular mechanisms for the reaction between (•)OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress. Journal of Physical Chemistry B, 118, 37–47.

Srinivas V, Balasubramanian D. 1995. Proline is a protein-compatible hydrotrope. Langmuir, 11, 2830–2833.

Székely G, Ábrahám E, Cséplő Á, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik J, Schmelzer E, Koncz C, Szabados L. 2008. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. The Plant Journal, 53, 11–28.

Tanveer K, Gilani S, Hussain Z, Ishaq R, Adeel M, Ilyas N. 2019. Effect of salt stress on tomato plant and the role of calcium. Journal of Plant Nutrition, 43, 28–35.

Van Zelm E, Zhang Y, Testerink C. 2020. Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71: 403–433.

Wang H, Chen W, Xu Z, Chen M, and Yu D. 2023. Functions of WRKYs in plant growth and development. Trends in Plant Science, 28, 630–645.

Wang G, Zhang J, Wang G, Fan X, Sun X, Qin H. 2014. Proline responding1 plays a critical role in regulating general protein synthesis and the cell cycle in maize. The Plant Cell, 26, 2582–2600.

Wang Q, Zhang D, Guan Z, Li D, Pei K, Liu J, Zou T, Yin P. 2018. DapF stabilizes the substrate-favoring conformation of RppH to stimulate its RNA-pyrophosphohydrolase activity in Escherichia coli. Nucleic Acids Research, 46, 6880–6892.

Wang Y, Zhang M, Wu C, Chen C, Meng L, Zhang G, Zhuang K, Shi, Q. 2024. SlWRKY51 regulates proline content to enhance chilling tolerance in tomato. Plant Cell & Environment, 47, 5104–5114.

Wani S H, Anand S, Singh B, Bohra A, and Joshi R. 2021. WRKY transcription factors and plant defense responses: latest discoveries and future prospects. Plant Cell Reports, 40, 1071–1085.

Wu X, Xu J, Meng X, Fang X, Xia M, Zhang J, Cao S, Fan T. 2022. Linker histone variant HIS1-3 and WRKY1 oppositely regulate salt stress tolerance in Arabidopsis. Plant Physiology, 189, 1833–1847.

Xu J, Kang Z, Zhu K, Zhao D, Yuan Y, Yang S, Zhen W, Hu X. 2021. RBOH1-dependent H2O2 mediates spermine-induced antioxidant enzyme system to enhance tomato seedling tolerance to salinity-alkalinity stress. Plant Physiology and Biochemistry, 164, 237–246.

Yang Y, Guo Y. 2018. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist, 217, 523–539.

Yuan L, Dang J, Zhang J, Wang L, Zheng H, Li G, Li J, Zhou F, Khan A, Zhang Z, Hu X. 2024. A glutathione S-transferase regulates lignin biosynthesis and enhances salt tolerance in tomato. Plant Physiology, 196, 2989-3006.

Zhao C, Zhang H, Song C, Zhu J K, Shabala S. 2020. Mechanisms of plant responses and adaptation to soil salinity. Innovation, 1: 100017.

[1] Niu Wang, Weidong Zhang, Zhenyu Zhong, Xiongbo Zhou, Xinran Shi, Xin Wang. FGF7 secreted from dermal papillae cell regulates the proliferation and differentiation of hair follicle stem cell[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3583-3597.
[2] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[3] Ling Ai, Ju Qiu, Jiuguang Wang, Mengya Qian, Tingting Liu, Wan Cao, Fangyu Xing, Hameed Gul, Yingyi Zhang, Xiangling Gong, Jing Li, Hong Duan, Qianlin Xiao, Zhizhai Liu. A naturally occurring 31 bp deletion in TEOSINTE BRANCHED1 causes branched ears in maize[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3322-3333.
[4] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[5] Zuxian Chen, Bingbing Zhao, Yingying Wang, Yuqing Du, Siyu Feng, Junsheng Zhang, Luxiang Zhao, Weiqiang Li, Yangbao Ding, Peirong Jiao. H5N1 avian influenza virus PB2 antagonizes duck IFN-β signaling pathway by targeting mitochondrial antiviral signaling protein[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3614-3625.
[6] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[7] Yi Zhang, Jing You, Jun Tang, Wenwen Xiao, Mi Wei, Ruhui Wu, Jinyan Liu, Hanying Zong, Shuoyu Zhang, Jie Qiu, Huan Chen, Yinghua Ling, Fangming Zhao, Yunfeng Li, Guanghua He, Ting Zhang. PDL1-dependent trans-acting siRNAs regulate lateral organ polarity development in rice[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3297-3310.
[8] Yufeng Xiao, Meiqi Dong, Xian Wu, Shuang Liang, Ranhong Li, Hongyu Pan, Hao Zhang. Enrichment, domestication, degradation, adaptive mechanism, and nicosulfuron bioremediation of bacteria consortium YM2[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3529-3545.
[9] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[10] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[11] Zishuai Wang, Wangchang Li, Zhonglin Tang. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3574-3582.
[12] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[13] Minghui Li, Yilan Chen, Siqiao Wang, Xueke Sun, Yongkun Du, Siyuan Liu, Ruiqi Li, Zejie Chang, Peiyang Ding, Gaiping Zhang. Plug-and-display nanoparticle immunization of the core epitope domain induces potent neutralizing antibody and cellular immune responses against PEDV[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3598-3613.
[14] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[15] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
No Suggested Reading articles found!