Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Modelling spatio-temporal dynamics of soil organic carbon in paddy soil by coupling digital soil mapping with a process model

Zheng Wang1, 2, Songchao Chen1, 2, 3, Ruiying Zhao4, Jie Xue5, Qiangyi Yu6, Danqing Wei1, 2, 7, Wei Chen8, Qichun Zhang1, 2, Zhou Shi1, 2#

1 State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou 310058, China

2 College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China

3 ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China

4 Department of Geography, National University of Singapore, 117570, Singapore

5 Department of Land Management, Zhejiang University, Hangzhou 310058, China

6 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

7 Zhejiang Economic Information Center, Hangzhou 310006, China

8 Bureau of Agriculture and Rural Affairs of Jiashan County, Jiaxing 314100, China

 Highlights 

l The Well-facilitated Farmland Construction project can prevent SOC loss

l The temporal variation of SOCD is influenced by straw incorporation and irrigation

l Coupling the DSM and CENTURY is an effective approach to simulate the SOC dynamics

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

土壤有机碳(SOC)作为养分触发器起着至关重要的作用,直接影响土壤健康和农业生产。当前,中国正在进行的高标准农田建设(WFC)项目是一项综合农业管理策略,这将改变农田土壤环境,进而影响SOC的时空动态变化。然而,在高标准农田建设背景下,SOC时空变化并不明晰。为了解决这个问题,本研究选取了中国东南地区2022年建成的高标准农田为研究区,在2023年采集了202个表层土样本(0-20cm利用数字土壤制图(DSM技术CENTURY模型,绘制土壤关键属性时空分布,并模拟了SOC密度(SOCD)的时空变化。结果表明,2023年SOCD的范围是1.236.35 kg m-2,平均值为3.68 kg m-2;研究区内土壤pH、粘土和含沙量是影响SOCD空间分布的主要因素。CENTURY模型模拟结果表明,2010年到2021,即WFC项目开始之前SOCD呈下降趋势,在WFC实施后,预计从2022年到2030年将有所增加,这可能是由于合理灌溉秸秆还田增加了有机碳的固存和输入。此外,我们假设了未来不进行WFC项目的情景,结果表明,从2022年到2030年,SOCD持续下降,突显了WFC防止SOC流失方面具有重要的作用空间模拟结果表明,2021年和2030SOCD的空间格局相似,低值区域的增长率高于高SOCD水平的区域,表明SOCD水平较低的特定田间地块可以通过改善土壤管理来固定更多的碳。总之,WFC项目有可能增加水稻土中的有机碳固存和粮食产量,确保粮食安全和应对气候变化。



Abstract  

Soil organic carbon (SOC) plays a crucial role as a nutrient trigger and directly impacts soil health and agricultural productivity. In China, the Well-facilitated Farmland Construction (WFC) project is a comprehensive agricultural management strategy, changing the soil environment and then influencing the SOC dynamics. However, the long-term trajectory of SOC under the implementation of the WFC project remains unclear. To address this knowledge gap, this study focused on farmland in southeastern China that completed the WFC project in 2022. A total of 202 topsoil samples (0-20 cm) were collected from the regional paddy soil in 2023. Using digital soil mapping (DSM) and the CENTURY model, we delineated key soil properties and simulated the spatio-temporal changes of SOC density (SOCD). The results revealed that the SOCD ranged from 1.23 to 6.35 kg m-2, with an average value of 3.68 kg m-2 in 2023. Soil pH, clay, and sand content were primary factors influencing SOCD distribution. According to CENTURY model simulations, SOCD exhibited a declining trend from 2010 to 2021, while it was projected to increase from 2022 to 2030 following the WFC implementation, which could be attributed to enhancements in irrigation and straw incorporation. Besides, the scenario without WFC results shows that SOCD would decline from 2022 to 2030, underscoring the project’s effectiveness in preventing SOC loss for paddy soil. The spatial patterns of SOCD in 2021 and 2030 were similar, and the low-value areas showed faster increase rates than the areas with high SOCD levels, indicating that the specific field plots with lower SOCD levels could sequester more carbon with improved soil management. In conclusion, the WFC project can potentially increase SOC sequestration in the paddy soil and grain yield, ensuring food security and addressing climate change.

Keywords:  soil organic carbon       well-facilitated farmland construction              spatio-temporal variation              digital soil mapping              CENTURY model  
Online: 07 November 2025  
Fund: 

This research is supported by the National Key Research and Development Program of China (2022YFB3903505 and 2022YFB3903503). We highly appreciate the great efforts from two anonymous reviewers for their constructive comments.

About author:  Zheng Wang, E-mail: wangzheng96@zju.edu.cn; Correspondence Zhou Shi, E-mail: shizhou@zju.edu.cn

Cite this article: 

Zheng Wang, Songchao Chen, Ruiying Zhao, Jie Xue, Qiangyi Yu, Danqing Wei, Wei Chen, Qichun Zhang, Zhou Shi. 2025. Modelling spatio-temporal dynamics of soil organic carbon in paddy soil by coupling digital soil mapping with a process model. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.11.006

Allison F E. 1973. Soil Organic Matter and its Role in Crop Production. Elsevier, New York.

Baldock J A, Skjemstad J O. 1999. Soil organic carbon/soil organic matter. In: Peverill K, Reuter D, Sparrow L, eds., Soil Analysis-An Interpretation Manual. CSIRO Publishing, Melbourne, Vic. Australia. pp. 159-170.

Bao S. 2000. Soil Agrochemical Analysis. China Agriculture Press, Beijing, China. (in Chinese)

Bauer A, Black A L. 1994. Quantification of the effect of soil organic matter content on soil productivity. Soil Science Society of America Journal, 58, 185-193.

Behrens T, Schmidt K, Ramirez-Lopez L, Gallant J, Zhu A X, Scholten T. 2014. Hyper-scale digital soil mapping and soil formation analysis. Geoderma, 213, 578-588.

Ben-Dor E, Patkin K, Banin A, Karnieli A. 2002. Mapping of several soil properties using DAIS-7915 hyperspectral scanner data-a case study over clayey soils in Israel. International Journal of Remote Sensing, 23, 1043-1062.

Berardi D, Brzostek E, Blanc-Betes E, Davison B, DeLucia E H, Hartman M D, Kent J, Parton, W J, Saha D, Hudiburg T W. 2020. 21st-century biogeochemical modeling: Challenges for Century-based models and where do we go from here? GCB Bioenergy, 12, 774-788.

Beusen A H W, Van Beek L P H, Bouwman A F, Mogollón J M, Middelburg J J. 2015. Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water-description of IMAGE-GNM and analysis of performance. Geoscientific Model Development, 8, 4045-4067.

Bista P, Machado S, Ghimire R, Del Grosso S J, Reyes-Fox M. 2016. Simulating soil organic carbon in a wheat-fallow system using the daycent model. Agronomy Journal, 108, 2554-2565.

Blanco-Canqui H, Shapiro C A, Wortmann C S, Drijber R A, Mamo M, Shaver T M, Ferguson R B. 2013. Soil organic carbon: The value to soil properties. Journal of Soil and Water Conservation, 68, 129A-134A.

Breiman L. 2001. Random forests. Machine Learning, 45, 5-32.

Cambule A H, Rossiter D G, Stoorvogel J J. 2013. A methodology for digital soil mapping in poorly-accessible areas. Geoderma, 192, 341-353.

Chen S, Arrouays D, Angers D A, Chenu C, Barré P, Martin M P, Saby N P, Walter C. 2019. National estimation of soil organic carbon storage potential for arable soils: A data-driven approach coupled with carbon-landscape zones. Science of the Total Environment, 666, 355-367.

Chen S, Arrouays D, Leatitia Mulder V, Poggio L, Minasny B, Roudier P, Libohova Z, Lagacherie P, Shi Z, Hannam J, Meersmans J, Richer-de-Forges A C, Walter C. 2022. Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma, 409, 115567.

Chen S, Chen Z, Zhang X, Luo Z, Schillaci C, Arrouays D, Richer-de-Forges A C, Shi  Z. 2024. European topsoil bulk density and organic carbon stock database (0-20cm) using machine-learning-based pedotransfer functions. Earth System Science Data, 16, 2367-2383.

Chen S, Martin M P, Saby N P, Walter C, Angers D A, Arrouays D. 2018. Fine resolution map of top-and subsoil carbon sequestration potential in France. Science of the Total Environment, 630, 389-400.

Chen S, Zhang G, Wang C. 2023. How does straw-incorporation rate reduce runoff and erosion on sloping cropland of black soil region? Agriculture, Ecosystems & Environment, 357, 108676. 

Chen Z, Shuai Q, Shi Z, Arrouays D, Richer-de-Forges A C, Chen S. 2023. National-scale mapping of soil organic carbon stock in France: New insights and lessons learned by direct and indirect approaches. Soil & Environmental Health, 1, 100049.

Chen Z M, Wang H Y, Liu X W, Zhao X L, Lu D J, Zhou J M, Li C Z. 2017. Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice-wheat cropping system. Soil and Tillage Research, 165, 121-127.

Collins H P, Rasmussen, P E, Douglas C L. 1992. Crop rotation and residue management effects on soil carbon and microbial dynamics. Soil Science Society of America Journal, 56, 783-788.

Cong P, Wang J, Li Y, Liu N, Dong J, Pang H, Zhang L, Gao Z. 2020. Changes in soil organic carbon and microbial community under varying straw incorporation strategies. Soil and Tillage Research, 204, 104735.

Czyż E A. 2004. Effects of traffic on soil aeration, bulk density and growth of spring barley. Soil and Tillage Research, 79, 153-166.

Dai L, Wang Z, Zhuo Z, Ma Y, Shi Z, Chen S. 2025. Prediction of soil organic carbon fractions in tropical cropland using a regional visible and near-infrared spectral library and machine learning. Soil and Tillage Research, 245, 106297.

Dai L, Xue J, Lu R, Wang Z, Chen Z, Yu Q, Shi Z, Chen S. 2024. In-situ prediction of soil organic carbon contents in wheat-rice rotation fields via visible near-infrared spectroscopy. Soil & Environmental Health, 2, 100113.

Dharumarajan S, Hegde R. 2020. Digital mapping of soil texture classes using Random Forest classification algorithm. Soil Use and Management, 38, 135-149.

Dimassi B, Guenet B, Saby N P A, Munoz F, Bardy M, Millet F, Martin M P. 2018. The impacts of CENTURY model initialization scenarios on soil organic carbon dynamics simulation in French long-term experiments. Geoderma, 311, 25-36.

Dong B, Liu H, Wang Y, Qiao Y, Zhang M, Yang H, Jin L, Liu M. 2018. Physio-ecological regulating mechanisms for highly efficient water use of crops. Chinese Journal of Eco-Agriculture, 26, 1465-1475. (in Chinese)

Erbach D C. 1987. Measurement of soil bulk density and moisture. Transactions of the ASAE, 30, 922-931.

Eswaran H, Van Den Berg E, Reich P. 1993. Organic carbon in soils of the world. Soil Science Society of America Journal, 57, 192-194.

Franzluebbers A J. 2002. Soil organic matter stratification ratio as an indicator of soil quality. Soil and Tillage Research, 66, 95-106.

Gabarrón-Galeote M A, Trigalet S, van Wesemael B. 2015. Effect of land abandonment on soil organic carbon fractions along a Mediterranean precipitation gradient. Geoderma, 249-250, 69-78.

Gao B C, Goetz A F, Wiscombe W J. 1993. Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 μm water vapor band. Geophysical Research Letters, 20, 301-304.

Gholizadeh A, Žižala D, Saberioon M, Borůvka L. 2018. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sensing of Environment, 218, 89-103.

Goidts E, Van Wesemael B, Crucifix M. 2009. Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales. European Journal of Soil Science, 60, 723-739.

Grimm R, Behrens T, Märker M, Elsenbeer H. 2008. Soil organic carbon concentrations and stocks on Barro Colorado Island-Digital soil mapping using Random Forests analysis. Geoderma, 146, 102-113.

Hengl T, Heuvelink G B, Kempen B, Leenaars J G, Walsh M G, Shepherd K D, Sila A, MacMillan R A, Mendes de Jesus J, Tamene L, Tondoh J E. 2015. Mapping soil properties of Africa at 250m resolution: Random Forests significantly improve current predictions. PLoS ONE, 10, e0125814.

Heung B, Bulmer C E, Schmidt M G. 2014. Predictive soil parent material mapping at a regional-scale: A Random Forest approach. Geoderma, 214-215, 141-154.

Inman D J, Freeland R S, Ammons J T, Yoder R E. 2002. Soil investigations using electromagnetic induction and Ground‐Penetrating Radar in southwest Tennessee. Soil Science Society of America Journal, 66, 206-211.

Jin X, Du J, Liu H, Wang Z, Song K. 2016. Remote estimation of soil organic matter content in the Sanjiang Plain, Northest China: The optimal band algorithm versus the GRA-ANN model. Agricultural and Forest Meteorology, 218, 250-260.

Kelly R H, Parton W J, Crocker G J, Graced P R, Klír J, Körschens M, Poulton P R, Richter D D. 1997. Simulating trends in soil organic carbon in long-term experiments using the century model. Geoderma, 81, 75-90.

Kumar N, Velmurugan, Hamm N A S, Dadhwal V K. 2018. Geospatial mapping of soil organic carbon using regression kriging and remote sensing. Journal of the Indian Society of Remote Sensing, 46, 705-716.

Lagacherie P, McBratney A B. 2006. Chapter 1 spatial soil information systems and spatial soil inference systems: Perspectives for digital soil mapping. Developments in Soil Science, 31, 3-22.

Lal R. 2013. Intensive agriculture and the soil carbon pool. Journal of Crop Improvement, 27, 735-751.

Lavallee J M, Soong J L, Cotrufo M F. 2020. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 26, 261-273.

Li M, Zhang X, Pang G, Han F. 2013. The estimation of soil organic carbon distribution and storage in a small catchment area of the Loess Plateau. Catena, 101, 11-16.

Liang F, Li B, Vog, R D, Mulder J, Song H, Chen J, Guo J. 2023. Straw return exacerbates soil acidification in major Chinese croplands. Resources, Conservation and Recycling, 198, 107176.

Liaw A, Wiener M. 2002. Classification and regression by random forests. R News, 2-3, 18-22

Liu F, Wu H, Zhao Y, Li D, Yang J L, Song X, Shi Z, Zhu A X, Zhang G L. 2022. Mapping high resolution National Soil Information Grids of China. Science Bulletin, 67, 328-340.

Liu S, An N, Yang J, Dong S, Wang C, Yin Y. 2015. Prediction of soil organic matter variability associated with different land use types in mountainous landscape in southwestern Yunnan province, China. Catena, 133, 137-144.

Long J, Liu Y, Xing S, Zhang L, Qu M, Qiu L, Huang Q, Zhou B, Shen J. 2020. Optimal interpolation methods for farmland soil organic matter in various landforms of a complex topography. Ecological Indicators, 110, 105926.

Malone B P, Minasny B, Odgers N P, McBratney A B. 2014. Using model averaging to combine soil property rasters from legacy soil maps and from point data. Geoderma, 232-234, 34-44.

Mao Z. 2002. Water saving irrigation for rice and its effect on environment. Engineering Science, 4, 8-16. (in Chinese)

McBratney A B, Mendonça Santos M L, Minasny B. 2003. On digital soil mapping. Geoderma, 117, 3-52.

McCauley A, Jones C, Jacobsen J. 2009. Soil pH and organic matter. Nutrient Management Module, 8, 1-12.

Minasny B, McBratney A B. 2016. Digital soil mapping: A brief history and some lessons. Geoderma, 264, 301-311.

NDRC (National Development and Reform Commission). 2021. National Well-facilitated Farmland Construction Plan (2021-2030). [2021-11-02]. https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/202111/t20211102_1302810.html

Neufeldt H. 2005. Carbon stocks and sequestration potentials of agricultural soils in the federal state of Baden-Württemberg, SW Germany. Journal of Plant Nutrition and Soil Science, 168, 202-211.

Ogle S M, Breidt F J, Easter M, Williams S, Killian K, Paustian K. 2010. Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process-based model. Global Change Biology, 16, 810-822.

Ouyang W, Shan Y, Hao F, Lin C. 2014. Differences in soil organic carbon dynamics in paddy fields and drylands in northeast China using the CENTURY model. Agriculture, Ecosystems & Environment, 194, 38-47.

Parton W J, Stewart J W, Cole C V. 1988. Dynamics of C, N, P and S in grassland soils: A model. Biogeochemistry, 5, 109-131.

Presley D R, Ransom M D, Kluitenberg G J, Finnell P R. 2004. Effects of thirty years of irrigation on the genesis and morphology of two semiarid soils in Kansas. Soil Science Society of America Journal, 68, 1916-1926.

Priesack E, Gayler S, Hartmann H P. 2006. The impact of crop growth sub-model choice on simulated water and nitrogen balances. Nutrient Cycling in Agroecosystems, 75, 1-13.

R Core Team. 2022. R: A language and environment for statistical computing. R foundation for statistical computing, Lanzhou, China.

Reijneveld A, van Wensem J, Oenema O. 2009. Soil organic carbon contents of agricultural land in the Netherlands between 1984 and 2004. Geoderma, 152, 231-238.

Sanderman J, Hengl T, Fiske G J. 2017. Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences of the United States of America, 114, 9575-9580.

Sarkar D, Tarafdar J C, Kundu M C. 2006. Effect of changes of soil pH on microbial activity and availability of phosphorus and sulfur. Environment and Ecology, 24, 200-202.

Schapel A, Marschner P, Churchman J. 2019. Influence of clay clod size and number for organic carbon distribution in sandy soil with clay addition. Geoderma, 335, 123-132.

Seitz S, Goebes P, Puerta V L, Pereira E I P, Wittwer R, Six J, van der Heijden M G A, Scholten T. 2018. Conservation tillage and organic farming reduce soil erosion. Agronomy for Sustainable Development, 39, 4.

Six J, Elliott E T, Paustian K. 1999. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Science Society of America Journal, 63, 1350-1358.

Smith P. 2005. An overview of the permanence of soil organic carbon stocks: Influence of direct human-induced, indirect and natural effects. European Journal of Soil Science, 56, 673-680.

Somaratne S, Seneviratne G, Coomaraswamy U. 2005. Prediction of soil organic carbon across different land-use patterns. Soil Science Society of America Journal, 69, 1580-1589.

Stockmann U, Padarian J, McBratney A, Minasny B, de Brogniez D, Montanarella L, Hong S Y, Rawlins B G, Field D J. 2015. Global soil organic carbon assessment. Global Food Security, 6, 9-16.

Sul W J, Asuming-Brempong S, Wang Q, Tourlousse D M, Penton C R, Deng Y, Rodrigues J L M, Adiku S G K, Jones J W, Zhou J, Cole J R, Tiedje J M. 2013. Tropical agricultural land management influences on soil microbial communities through its effect on soil organic carbon. Soil Biology and Biochemistry, 65, 33-38.

Sun B, Wang Y, Li Z, Gao W, Wu J, Li C, Song Z, Gao Z. 2019. Estimating Soil Organic Carbon Density in the otindag sandy land, Inner Mongolia, China, for modelling spatiotemporal variations and evaluating the influences of human activities. Catena, 179, 85-97.

Swain S R, Chakraborty P, Panigrahi N, Vasava H B, Reddy N N, Roy S, Majeed I, Das, B S. 2021. Estimation of soil texture using Sentinel-2 multi-spectral imaging data: An ensemble modeling approach. Soil and Tillage Research, 213, 105134.

Tisdall J M, Oades J M. 1982. Organic matter and water-stable aggregates in soils. Journal of Soil Science, 33, 141-163.

Tornquist C G, Mielniczuk J, Cerri C E P. 2009. Modeling soil organic carbon dynamics in Oxisols of Ibirubá (Brazil) with the Century Model. Soil and Tillage Research, 105, 33-43.

Vaudour E, Gomez C, Fouad Y, Lagacherie P. 2019. Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems. Remote Sensing of Environment, 223, 21-33.

Wang N, Chen S, Huang J, Frappart F, Taghizadeh R, Zhang X, Wigneron J P, Xue J, Xiao Y, Peng J, Shi Z. 2024. Global soil salinity estimation at 10m using multi-source remote sensing. Journal of Remote Sensing, 4, 0130.

Wang X, Li Y, Lian J, Luo Y, Niu Y, Gong X. 2019. Progress in application of the CENTURY model for prediction of soil carbon levels in different ecosystems. Acta Prataculturae Sinica, 28, 179-189. (in Chinese)

Wang X, Shi W, Sun X, Wang M. 2020. Comprehensive benefits evaluation and its spatial simulation for well‐facilitated farmland projects in the Huang-Huai-Hai Region of China. Land Degradation & Development, 31, 1837-1850.

Wang Y, Wu P, Mei F, Ling Y, Qiao Y, Liu C, Leghari S J, Guan X, Wang T. 2021. Does continuous straw returning keep China farmland soil organic carbon continued increase? A meta-analysis. Journal of Environmental Management, 288, 112391.

Wu H, Guo Z, Peng C. 2003. Land use induced changes of organic carbon storage in soils of China. Global Change Biology, 9, 305-315.

Wu L, Zhang W, Wei W, He Z, Kuzyakov Y, Bol R, Hu R. 2019. Soil organic matter priming and carbon balance after straw addition is regulated by long-term fertilization. Soil Biology and Biochemistry, 135, 383-391.

Xiao Y, Xue J, Zhang X, Wang N, Hong Y, Jiang Y, Zhou Y, Teng H, Hu B, Lugato E, Richer-de-Forges A C. 2022. Improving pedotransfer functions for predicting soil mineral associated organic carbon by ensemble machine learning. Geoderma, 428, 116208.

Xu M, Lou Y, Sun X, Wang W, Baniyamuddin M, Zhao K. 2011. Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation. Biology and Fertility of Soils, 47, 745-752.

Xu Q, Rui W, He H, Wu F, Luo H, Bian X, Zhang W. 2006. Characteristics and regional differences of soil organic carbon density in farmland under different land use patterns in China. Scientia Agricultura Sinica, 39, 2505-2510. (in Chinese)

Xue J, Zhang X, Chen S, Hu B, Wang N, Shi Z. 2024. Quantifying the agreement and accuracy characteristics of four satellite-based LULC products for cropland classification in China. Journal of Integrative Agriculture, 23, 283-297.

Yang J, Liu, K, Wang Z, Du Y, Zhang J. 2007. Water-saving and high-yielding irrigation for lowland rice by controlling limiting values of soil water potential. Journal of Integrative Plant Biology, 49, 1445-1454.

Yost J L, Hartemink A E. 2019. Soil organic carbon in sandy soils: A review. Advances in Agronomy, 158, 217-310.

Zeraatpisheh M, Ayoubi S, Mirbagheri Z, Mosaddeghi M R, Xu M. 2021. Spatial prediction of soil aggregate stability and soil organic carbon in aggregate fractions using machine learning algorithms and environmental variables. Geoderma Regional, 27, e00440.

Zhang H, Goll D S, Wang Y P, Ciais P, Wieder W R, Abramoff R, Huang Y, Guenet B, Prescher A K, Viscarra Rossel R A, Barre P, Chenu C, Zhou G, Tang X. 2020. Microbial dynamics and soil physicochemical properties explain large-scale variations in soil organic carbon. Global Change Biology, 26, 2668-2685.

Zhang J, Balkovič J, Azevedo L B, Skalský R, Bouwman A F, Xu G, Wang J, Xu M, Yu C. 2018. Analyzing and modelling the effect of long-term fertilizer management on crop yield and soil organic carbon in China. Science of the Total Environment, 627, 361-372.

Zhang L, Heuvelink G B M, Mulder V L, Chen S, Deng X, Yang L. 2024. Using process-oriented model output to enhance machine learning-based soil organic carbon prediction in space and time. Science of the Total Environment, 922, 170778.

Zhang Y, Lavallee J M, Robertson A D, Even R, Ogle S M, Paustian K, Cotrufo M F, 2021. Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model. Biogeosciences, 18, 3147-3171.

Zhao R, Zhang W, Duan Z, Chen S, Shi Z. 2023. An improved estimate of soil carbon pool and carbon fluxes in the Qinghai-Tibetan grasslands using data assimilation with an ecosystem biogeochemical model. Geoderma, 430, 116283.

Zhou F, Xue J, Wang Z, Jin W, Shi Z, Yu Q, Zhou L, Chen S. 2025. Integrating historical crop rotation changes into soil organic matter mapping in the cropland of southeastern China. Earth's Future, 13, e2025EF006117.

[1] Niu Wang, Weidong Zhang, Zhenyu Zhong, Xiongbo Zhou, Xinran Shi, Xin Wang. FGF7 secreted from dermal papillae cell regulates the proliferation and differentiation of hair follicle stem cell[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3583-3597.
[2] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[3] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[4] Zuxian Chen, Bingbing Zhao, Yingying Wang, Yuqing Du, Siyu Feng, Junsheng Zhang, Luxiang Zhao, Weiqiang Li, Yangbao Ding, Peirong Jiao. H5N1 avian influenza virus PB2 antagonizes duck IFN-β signaling pathway by targeting mitochondrial antiviral signaling protein[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3614-3625.
[5] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[6] Yufeng Xiao, Meiqi Dong, Xian Wu, Shuang Liang, Ranhong Li, Hongyu Pan, Hao Zhang. Enrichment, domestication, degradation, adaptive mechanism, and nicosulfuron bioremediation of bacteria consortium YM2[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3529-3545.
[7] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[8] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[9] Zishuai Wang, Wangchang Li, Zhonglin Tang. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3574-3582.
[10] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[11] Minghui Li, Yilan Chen, Siqiao Wang, Xueke Sun, Yongkun Du, Siyuan Liu, Ruiqi Li, Zejie Chang, Peiyang Ding, Gaiping Zhang. Plug-and-display nanoparticle immunization of the core epitope domain induces potent neutralizing antibody and cellular immune responses against PEDV[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3598-3613.
[12] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[13] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[14] Mingxin Feng, Ying Hu, Xin Yang, Jingwen Li, Haochen Wang, Yujia Liu, Haijun Ma, Kai Li, Jiayin Shang, Yulin Fang, Jiangfei Meng. Uncovering the miRNA-mediated regulatory network involved in postharvest senescence of grape berries[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3465-3483.
[15] Li Liu, Yifeng Feng, Ziqi Han, Yaxiao Song, Jianhua Guo, Jing Yu, Zidun Wang, Hui Wang, Hua Gao, Yazhou Yang, Yuanji Wang, Zhengyang Zhao. Functional analysis of the xyloglucan endotransglycosylase/hydrolase gene MdXTH2 in apple fruit firmness formation[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3418-3434.
No Suggested Reading articles found!