Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Identification and selection of evaluation indices for soybean shade tolerance via high-throughput phenotyping platforms and machine learning
Xiuni Li1, 2, 3, Menggen Chen1, Shuyuan He1, Jie Chen4, Xiangyao Xu1, Panxia Shao1, Yahan Su1, Lingxiao He1, Wenjing Zhang1, Nanli Du1, Mei Xu1, Yao Zhao1, 2, 3, Wenyu Yang1, 2, 3, Wouter H. Maes5#, Weiguo Liu1, 2, 3# #br#
1 College of Agronomy, Sichuan Agricultural University, Chengdu 610000, China
2 Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 610000, China
3 Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 610000, China
4 Guizhou Academy of Tobacco Science, Guiyang 550000, China

5 UAV Research Center, Department of Plants and Crops, Ghent University, Gent 9000, Belgium

 Highlights 

l High-throughput phenotyping of 202 soybean accessions across two growth stages identified key shade tolerance indicators.

l A two-stage framework assessed symbiotic shade tolerance, recovery ability, and overall performance.

l Machine learning–based trait mining was validated across multiple environments.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

间作是一个有前景的耕作方式,不仅能够实现可持续的水资源和土地利用效率还能保障国家粮油安全。为提升间作体系下大豆的产量稳定性,亟需构建科学、高效的耐荫性筛选体系。本研究基于高通量表型平台,提出一种集成多环境试验与机器学习分析的大豆耐荫性综合评价方法。该方法通过多元分析将202份大豆种质资源对套作环境的综合耐荫能力划分为共生期的耐荫能力和独立生长期的恢复能力,并从弱到强分为5个等级。然后,通过相关性分析、广义遗传力分析对指标进行初步筛选,再结合6种机器学习模型在大豆不同生育时期筛选关键耐荫指标。最后选用已知耐荫性的大豆品种在大田盆栽、大田种植、温室三种环境中种植,采用显著性分析对关键耐荫指标的准确性及普适性进行验证。研究结果表明,侧面投影面积(SCA)、顶部投影面积(TCA3)和顶部混合熵(TME)在耐荫能力较强的大豆品种中表现出两个关键特征:一是在遮荫条件下数值显著较高,二是在恢复期的增长幅度更大。基于上述三项指标构建的预测模型在耐荫能力与恢复能力方面的决定系数分别为R²=0.776R²=0.959,具有良好的预测性能。综上所述,本研究展示了高通量表型平台与机器学习技术结合在耐荫性指标筛选中的应用潜力。仅需测定SCATCA3TME三项指标,即可快速准确评估大豆苗期耐荫能力、生长后期的恢复能力及全生育期综合耐荫性。该方法为大豆种质资源的耐荫性评价、耐荫相关基因挖掘及间作专用品种的定向培育提供了有效工具和理论支撑。



Abstract  

Intercropping is a promising cultivation strategy that enhances the sustainable use of water and land resources while contributing to national food and oil security. To improve the yield stability of soybeans in intercropping systems, there is an urgent need to develop a scientific and efficient framework for evaluating shade tolerance. In this study, we propose an integrated shade tolerance assessment method based on high-throughput phenotyping, multienvironment trials, and machine learning (ML) approaches. Utilizing multivariate analysis, we evaluated 202 soybean accessions and partitioned their performance under intercropping into two distinct capacities, namely, shade tolerance during the cogrowth stage and recovery ability during the independent growth stage, each of which was classified into five levels from weak to strong. Preliminary trait selection was performed through correlation analysis and broad-sense heritability estimation, followed by the application of six ML models to identify the key shade tolerance traits across different growth stages. The robustness and generalizability of the selected traits were validated in three environments—a field pot, an open field, and a greenhouse—using soybean varieties with known shade tolerance levels. The results revealed that three traits—the side canopy area (SCA), top canopy area at stage 3 (TCA3), and top-view mixed entropy (TME)—were strongly associated with shade-tolerant varieties. These traits presented two distinguishing features: significantly higher values under shaded conditions and greater increases during the recovery phase. The prediction models constructed with these three traits achieved strong performance, with coefficients of determination of R²=0.776 for shade tolerance and R²=0.959 for recovery ability. In summary, this study demonstrates the potential for integrating high-throughput phenotyping with ML to efficiently identify the key indicators of shade tolerance. By measuring only three indicators—SCA, TCA3, and TME—soybean shade tolerance at the seedling stage, recovery ability during later growth, and overall shade tolerance across the full growth period can be rapidly and accurately evaluated. This method offers a powerful and practical tool for implementing shade tolerance evaluations, gene discovery, and targeted breeding of soybean cultivars that are suitable for intercropping systems.

Keywords:  soybean       high-throughput phenotyping              machine learning              comprehensive evaluation              indicator of shade tolerance  
Online: 07 November 2025  
Fund: 

This work was supported by the Major Project on Agricultural Biotechnology Breeding under the Technology Innovation 2030 Initiative (2023ZD0403405), the National Natural Science Foundation of China (32172122), the Key Research and Development Project of the Guizhou Branch of the China National Tobacco Corporation (2023XM18), and the National Modern Agricultural Industry Technology System, Sichuan Soybean Innovation Team, China (SC-CXTD-2024-21).

Cite this article: 

Xiuni Li, Menggen Chen, Shuyuan He, Jie Chen, Xiangyao Xu, Panxia Shao, Yahan Su, Lingxiao He, Wenjing Zhang, Nanli Du, Mei Xu, Yao Zhao, Wenyu Yang, Wouter H. Maes, Weiguo Liu. 2025. Identification and selection of evaluation indices for soybean shade tolerance via high-throughput phenotyping platforms and machine learning. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.11.004

Baltzer J L, Thomas S C. 2007. Determinants of whole-plant light requirements in Bornean rain forest tree saplings. Journal of Ecology, 95, 1208-1221.

Buehring N W, Reginelli D B, Blaine M A. 1990. Long term wheat and soybean response to an intercropping system. In: Proceedings of the Southern Conservation Tillage Conference. Raleigh, NC. pp. 65-68.

Chen F, Zhou W G, Yin H, Luo X F, Chen W, Liu X, Wang X C, Meng Y J, Feng L Y, Qin Y Y, Zhang C Y, Yang F, Yong T W, Wang X C, Liu J, Du J B, Liu W G, Yang W Y, Shu K. 2020. Shading of the mother plant during seed development promotes subsequent seed germination in soybean. Journal of Experimental Botany, 71, 2072-2084.

Chen H Z, Sun Z D, Yang S Z, Li C Y. 2003. The effect of shading on the main traits of soybean and the identification method of shade tolerance of soybean were preliminarily reported. Chinese Journal of Oil Crop Sciences, 25, 78-82. (in Chinese)

Chen P, Song C, Liu X M, Zhou L, Yang H, Xiaona Zhang X N,  Zhou Y,  Du Q, Pang T,  Fu Z D ,  Wang X C Liu W GYang FShu KDu J BLiu JYang W Y Yong T W. 2019. Yield advantage and nitrogen fate in an additive maize-soybean relay intercropping system. Science of the Total Environment, 657, 987-999.

Chen P, Du Q, Zhang B C, Yang H, Fu Z D, Luo K, Lin P, Li Y L, Pu T, Yong T W, Yang W Y . 2023. Coordinated responses of leaf and nodule traits contributed to the N accumulation of relay intercropped soybean. Journal of Integrative Agriculture, 23,1-23.

Chiozza M V, Parmley K A, Higgins R H, Singh A K Miguez F E. 2021. Comparative prediction accuracy of hyperspectral bands for different soybean crop variables: From leaf area to seed composition. Field Crops Research, 271, 108260.

Deng Y, Cheng X, Tang F, Zhou Y. 2022. The control of moldy risk during rice storage based on multivariate linear regression analysis and random forest algorithm. JUSTC, 52, 6-1-6-9.

Dolijanović Ž, Kovačević D, Oljača S, Simić M. 2009. Types of interactions in intercropping of maize and soya bean. Journal of Agricultural Sciences, 54, 179-187.

Heckmann D, Schlüter U, & Weber A P. 2017. Machine learning techniques for predicting crop photosynthetic capacity from leaf reflectance spectra. Molecular plant, 10, 878-890.

Wang Z, Yang W Y, Wu Q L.2007. Effects of maize/soybean intercropping shading on photosynthetic characteristics and yield of soybean, Acta Agronomica Sinica, 33, 1502-1507. (in Chinese)

Egbe O. 2010. Effects of plant density of intercropped soybean with tall sorghum on competitive ability of soybean and economic yield at Otobi, Benue State, Nigeria. Journal of Cereals and Oilseeds, 1, 1-10.

Fei S, Hassan M A, Ma Y, Shu M, Cheng QLi ZChen Z, Xiao Y. 2021. Entropy weight ensemble framework for yield prediction of winter wheat under different water stress treatments using unmanned aerial vehicle-based multispectral and thermal data. Frontiers in Plant Science, 12, 1-18.

Feng Y, Liang C, Xiaoling W, Liu W G, Yang W Y. 2012. Analysis of agronomic parameters and spectral characteristics of soybean in different spatial configurations. Chinese Journal of Oil Crop Sciences, 34, 268-272. (in Chinese)

Ghosh P K, Tripathi A K, Bandyopadhyay K K,  Manna MC. 2009. Assessment of nutrient competition and nutrient requirement in soybean/sorghum intercropping system. European Journal of Agronomy, 31, 43-50.

Hughes A, Askew K, Scotson C, Williams K, Sauze C, Corke F, Doonan J H, Nibau C. 2017. Non-destructive, high-content analysis of wheat grain traits using X-ray micro computed tomography. Plant Methods, 13, 1-16.

Huang Q, Li C, Zhao H, Wu J M, Zhao Y H, Yang S Z, Chen H Z, Sun Z D. 2012. Study on shade tolerance of vegetable soybean germplasm resources under shading stress. Southwest China Journal of Agricultural Sciences, 25, 2212-2217. (in Chinese)

Iqbal N, Hussain S, Zhang X,Yang C, Raza M, Deng J,Ahmad S, Ashgar M A, Zhang J, Yang W Y, Liu J. 2018. Imbalance water deficit improves the seed yield and quality of soybean. Agronomy, 8, 168.

Ji Y S, Chen Z, Cheng Q, Liu R, Li M W, Yan X, Li G, Wang D, Fu L, Ma Y, Jin X L, Zong X X, Yang T.2022. Estimation of plant height and yield based on UAV imagery in faba bean (Vicia faba L.). Plant Methods, 18, 1-13.

Li C H, Yao X D, Ju B T, Zhu M Y, Wang H Y, Zhang H J, Ao X, Yu C M, Xie F T, Song S H. 2014. Analysis of shade tolerance of soybean of different genotypes and screening of identification indexes. Scientia Agricultura Sinica, 47, 2927-2939. (in Chinese)

Li L, Sun J, Sun J, Zhang F S, Li X L,Yang S C, Rengel Z. 2001. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Research, 71, 123-137.

Li L, Sun J, Zhang F, Li X, Rengel Z, Yang S. 2001. Wheat/maize or wheat/soybean strip intercropping: II. Recovery or compensation of maize and soybean after wheat harvesting. Field Crops Research, 71, 173-181.

Li S C, Sun Z H , Sang Q, Qin C, Kong L P , Huang X, Liu H, Su T, Li H Y, He M LFang C, Wang L S,Liu S G,  Liu B, Liu B H, Fu X D, Kong F J, Lu S J. 2023. Soybean reduced internode 1 determines internode length and improves grain yield at dense planting. Nature Communications, 14, 7939.

Li X F, Wang Z G, Bao X G, Sun J H , Yang S C, Wang P, Wang C B, Wu J P, Liu X R, Tian X T, Wang Y, Li J P, Wang Y, Xia H Y,  Mei P P, Wang X F, Zhao J H, Yu R P, Zhang W P, Che Z X,et al. 2021. Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability, 4, 943-950.

Li X N, Xu X Y, Xiang S, Chen M G, He S Y, Wang W Y, Xu M, Liu C Y, Yu L, Liu W G,Yang W Y. 2023. Soybean leaf estimation based on RGB images and machine learning methods. Plant Methods, 19, 1-16.

Li Y, Miao Y, Zhang J, Cammarano D, Li S Y, Liu X J, Tian Y C, Zhu Y, Cao W X, Cao Q. 2022. Improving estimation of winter wheat nitrogen status using random forest by integrating multi-source data across different agro-ecological zones. Frontiers in Plant Science, 13, 890892.

Li Y, Miao Y, Zhang J, et al. Improving estimation of winter wheat nitrogen status using random forest by integrating multi-source data across different agro-ecological zones[J]. Frontiers in plant science, 2022, 13: 890892.

Li Z, Lyu X G, Li H Y, Tu Q C, Zhao T, Liu J, Liu B. 2024. The mechanism of low blue light-induced leaf senescence mediated by GmCRY1s in soybean. Nature Communications, 15, 798.

Li X N, Chen M G, He SY, Xu X Y, He L X, Wang L, Gao Y, Tang F D, Gong T, Wang W Y, Xu M, Liu C Y, Yu L, Liu W G, Yang W Y. 2024. Estimation of soybean yield based on high-throughput phenoty and machine learning. Frontiers in Plant Science15, 1395760.

Liu X, Rahman T, Song C, Su B Y, Yang F, Yong T W, Wu Y S, Zhang C Y, Yang W Y. 2017. Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems. Field Crops Research, 200, 38-46.

Lv Y, Francis C, Wu P, Chen X L, Zhao X. 2014. Maize–soybean intercropping interactions above and below ground. Crop Science, 54, 914-922.

Meyers T P, Hollinger S E. 2004. An assessment of storage terms in the surface energy balance of maize and soybean. Agricultural and Forest Meteorology, 125, 105-115.

Naik H S, Zhang J, Lofquist A, Assefa TSarkar SAckerman DSingh ASingh A K, Ganapathysubramanian B. 2017. A real-time phenotyping framework using machine learning for plant stress severity rating in soybean. Plant Methods, 13, 23-40.

Pelech E A, Evers J B, Pederson T L, Drag D W, Fu P, Bernacchi C J. 2023. Leaf, plant, to canopy: A mechanistic study on aboveground plasticity and plant density within a maize–soybean intercrop system for the Midwest, USA. Plant, Cell & Environment, 46, 405-421.

Pranga J, Borra-Serrano I, Aper J, De Swaef T, Ghesquiere A, Quataert P, Roldán-Ruiz I, Janssens I A, Ruysschaert G, Lootens P. 2021. Improving accuracy of herbage yield predictions in perennial ryegrass with UAV-based structural and spectral data fusion and machine learning. Remote Sensing, 13, 3459.

Qiao M G, Sun R B, Wang Z X, Dumack K, Xie X G, Dai C CWang E T, Zhou J Z, Sun B, Peng X H, Bonkowski M, Chen Y. 2024. Legume rhizodeposition promotes nitrogen fixation by soil microbiota under crop diversification. Nature Communications15, 2924.

Qin C, Li Y, Li D. et al. 2023. PH13 improves soybean shade traits and enhances yield for high-density planting at high latitudes. Nature Communications, 14, 6813.

Raza M A, Yasin H S, Gul H, Qin R, Mohi Ud Din A, Khalid MH, Hussain S, Gitari H, Saeed A, Wang J, Rezaei-Chiyaneh E. 2022. Maize/soybean strip intercropping produces higher crop yields and saves water under semi-arid conditions. Frontiers in Plant Science, 13, 1006720

Ren Y Y, Wang X L, Zhang S Q, Palta J A, Chen Y L. 2017. Influence of spatial arrangement in maize-soybean intercropping on root growth and water use efficiency. Plant and Soil, 415, 131-144.

Roth L, Aasen H, Walter A, Liebisch F. 2018. Extracting leaf area index using viewing geometry effects—A new perspective on high-resolution unmanned aerial system photography. ISPRS Journal of Photogrammetry and Remote Sensing, 141, 161-175. 

Saudy H, El-Metwally I. 2009. Weed management under different patterns of sunflower-soybean intercropping. Journal of Central European Agriculture, 10, 41-51.

Skidmore M E, Sims K M, Gibbs H K. 2023. Agricultural intensification and childhood cancer in Brazil. Proceedings of the National Academy of Sciences of the United States of Ameirca, 120, e2306003120

Su Y, Yang H, Wu Y, Gong W, Gul H, Yan Y, Yang W. 2023. Photosynthetic acclimation of shade-grown soybean seedlings to a high-light environment. Plants, 12, 2324. 

Tsay J, Fukai S, Wilson G. 1988. Effects of relative sowing time of soybean on growth and yield of cassava in cassava/soybean intercropping. Field Crops Research, 19, 227-239.

Wang J, Zhou Q, Shang J. Liu C, Zhuang T, Ding J, Xian Y, Zhao L, Wang W, Zhou G, Tan C.2021. UAV- and machine learning-based retrieval of wheat SPAD values at the overwintering stage for variety screening. Remote Sensing, 13, 1-20.

Wang X, Feng Y, Yu L, Shu Y, Tan F, Gou Y, Luo S, Yang W, Li Z, Wang J. 2020. Sugarcane/soybean intercropping with reduced nitrogen input improves crop productivity and reduces carbon footprint in China. Science of the Total Environment, 719, 137517. 

Wu X L, Liang H Y, Yang F, Liu W G, Yu Y H,Yang W Y. 2015. Comprehensive evaluation and screening identification indexes of shade tolerance at seedling in soybean. Scientia Agricultura Sinica, 48, 2497-2507. (in Chinese)

Xiang S, Wang S Y, Xu M, Liu W G. 2023. YOLO POD: A fast and accurate multi-task model for dense soybean pod counting. Plant Methods, 19, 8.

Yu X B, Liang J Q, He Z M, Liao J H, Zhang M R, Wu H Y, Ming C, Tang Q Y, Li X Q.2016. Response of leaf morphology and photosynthetic characteristics of soybean in maize-soybean relay strip intercropping system. Chinese Journal of Oil Crops Sciences, 38, 452-459. (in Chinese)

Zhu Y, Cao Z, Lu H, Li Y, Xiao Y. 2016. In-field automatic observation of wheat heading stage using computer vision. Biosystems Engineering, 143, 28-41.

[1] Niu Wang, Weidong Zhang, Zhenyu Zhong, Xiongbo Zhou, Xinran Shi, Xin Wang. FGF7 secreted from dermal papillae cell regulates the proliferation and differentiation of hair follicle stem cell[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3583-3597.
[2] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[3] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[4] Zuxian Chen, Bingbing Zhao, Yingying Wang, Yuqing Du, Siyu Feng, Junsheng Zhang, Luxiang Zhao, Weiqiang Li, Yangbao Ding, Peirong Jiao. H5N1 avian influenza virus PB2 antagonizes duck IFN-β signaling pathway by targeting mitochondrial antiviral signaling protein[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3614-3625.
[5] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[6] Yufeng Xiao, Meiqi Dong, Xian Wu, Shuang Liang, Ranhong Li, Hongyu Pan, Hao Zhang. Enrichment, domestication, degradation, adaptive mechanism, and nicosulfuron bioremediation of bacteria consortium YM2[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3529-3545.
[7] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[8] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[9] Zishuai Wang, Wangchang Li, Zhonglin Tang. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3574-3582.
[10] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[11] Minghui Li, Yilan Chen, Siqiao Wang, Xueke Sun, Yongkun Du, Siyuan Liu, Ruiqi Li, Zejie Chang, Peiyang Ding, Gaiping Zhang. Plug-and-display nanoparticle immunization of the core epitope domain induces potent neutralizing antibody and cellular immune responses against PEDV[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3598-3613.
[12] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[13] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[14] Mingxin Feng, Ying Hu, Xin Yang, Jingwen Li, Haochen Wang, Yujia Liu, Haijun Ma, Kai Li, Jiayin Shang, Yulin Fang, Jiangfei Meng. Uncovering the miRNA-mediated regulatory network involved in postharvest senescence of grape berries[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3465-3483.
[15] Li Liu, Yifeng Feng, Ziqi Han, Yaxiao Song, Jianhua Guo, Jing Yu, Zidun Wang, Hui Wang, Hua Gao, Yazhou Yang, Yuanji Wang, Zhengyang Zhao. Functional analysis of the xyloglucan endotransglycosylase/hydrolase gene MdXTH2 in apple fruit firmness formation[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3418-3434.
No Suggested Reading articles found!