Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Functional genes associated with the occurrence of mycotoxins produced by Aspergillus in foods

Mei Gu1, Can Liu1, Xiaofeng Yue1, Du Wang1, Xiaoqian Tang1, Qi Zhang1, 2, 3, #, Peiwu Li1, 2, 3, 4, #

1 Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs and Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, China

2 Institute of Food Safety, Hubei University, Wuhan 430061, China

3 Hubei Hongshan Laboratory, Wuhan 430061, China

4 Xianghu Laboratory, Hangzhou 311231, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

曲霉菌是一种广泛存在的真菌,其产生的毒素(次生代谢产物)包括杂色曲霉毒素、黄曲霉毒素、赭曲霉毒素A和环匹阿尼酸等,广泛存在于多种食品中,导致其遭受严重污染,危害人类健康。杂色曲霉毒素是黄曲霉毒素合成通路中的一种关键的代谢物,黄曲霉毒素主要是由黄曲霉和寄生曲霉产生的已知真菌毒素中毒性最强,致癌性最强的霉菌毒素。赭曲霉毒素由赭曲霉,碳色曲霉等多种曲霉产生。赭曲霉毒素又分为赭曲霉毒素AOTA)、赭曲霉毒素BOTB)和赭曲霉毒素COTC)三类,其中赭曲霉毒素A被认为是最丰富、危害最大的霉菌毒素。此外,由青霉菌和曲霉菌产生的环匹阿尼酸也是一种非常重要的霉菌毒素。人类如果意外误食被真菌毒素污染的食物,会导致多种癌症,内脏疾病、癫痫发作,甚至死亡。因此真菌毒素的防控技术的开发对保障农产品质量安全具有重要意义。研究参与曲霉菌生长、繁殖和毒素生物合成的功能基因,对于制定防治霉菌毒素污染的创新策略——从源头阻断毒素合成,最大限度地减少毒素产生,降低污染风险奠定理论基础。

构巢曲霉能产生多种与生物技术和人类健康息息相关的化合物,是研究曲霉菌生长发育、次生代谢与环境因子相互作用的理想模型,因此被广泛用作真核生物遗传学和次生代谢研究的模式真菌。随着分子生物学技术的快速发展,一些功能基因不仅在构巢曲霉中得到研究,也在黄曲霉、寄生曲霉和烟曲霉等其他曲霉中被广泛关注。对同一功能基因在多种曲霉菌中的研究有助于阐明功能基因的保守性及其潜在的新功能,揭示物种间差异,并为开发创新型防控策略提供新思路。然而,现有综述多聚焦于曲霉菌中某一特定的生物学过程,缺乏对主要功能基因的系统性概述。本文综述了曲霉属真菌中参与多种真菌毒素(如杂色曲霉毒素、黄曲霉毒素、赭曲霉毒素和环匹阿尼酸等)生物合成,以及调控生长发育和对环境因子(光照、营养因子和pH)响应的关键功能基因的调控机制,同时讨论了近年来分子生物学技术在功能基因研究中的进展,以期为新功能基因的挖掘提供参考与技术指导



Abstract  

Aspergillus species are ubiquitous fungi that produce mycotoxins (secondary metabolites) known as sterigmatocystin, aflatoxin, ochratoxin A, and cyclopiazonic acid in many different kinds of foods, which leads to serious contamination in agricultural products thereby endangering human health. With the rapid advancement of molecular biology technology, extensive studies on Aspergillus fungi have been conducted on growth and development, mycotoxin biosynthesis, and their interactions with environment. Here, we summarized a series of functional genes of the main Aspergillus fungi relative to toxins occurrence in foods, which revealed the signal transduction mechanisms of their involvement in growth and development, toxin production, and response to environmental changes, anticipating providing theoretical guidance on developing control and prevention technologies for mycotoxin contamination in agricultural products to ensure food safety.

Keywords:  functional genes       Aspergillus              mycotoxin              a?atoxin              food safety  
Online: 01 November 2025  
Fund: 

This work was supported by the key project of National Natural Sciences Foundation of China (U22A20551, 32030085), Major project of Hubei Hongshan Laboratory, China (2021hszd015), Hubei Province Major Science and Technology Special Project, China (2023BBA002), National Natural Sciences Foundation of China (U22A20551), and National Natural Science Foundation of China Excellent Youth Fund (32422072). 

About author:  Mei Gu, E-mail: gumei1626@126.com; Correspondence Qi Zhang, E-mail: zhangqi01@caas.cn; Peiwu Li, E-mail: peiwuli@oilcrops.cn

Cite this article: 

Mei Gu, Can Liu, Xiaofeng Yue, Du Wang, Xiaoqian Tang, Qi Zhang, Peiwu Li. 2025. Functional genes associated with the occurrence of mycotoxins produced by Aspergillus in foods. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.10.017

Adams T H, Boylan M T, Timberlake W E. 1988. brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell, 54, 353-362.

Adams T H, Wieser J K, Yu J H. 1998. Asexual sporulation in Aspergillus nidulans. Microbiology and molecular biology reviews, 62, 35-54.

Allen R S, Millgate A G, Chitty J A, Thisleton J, Miller J A, Fist A J, Gerlach W L, Larkin P J. 2004. RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nature biotechnology, 22, 1559-1566.

Andrianopoulos A, Timberlake W E. 1994. The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Molecular and cellular biology, 14, 2503-2515.

Aramayo R, Adams T, Timberlake W. 1989. A large cluster of highly expressed genes is dispensable for growth and development in Aspergillus nidulans. Genetics, 122, 65-71.

Aramayo R, Timberlake W E. 1993. The Aspergillus nidulans yA gene is regulated by abaA. The EMBO Journal, 12, 2039-2048.

Armas-Tizapantzi A, Montiel-González A M. 2016. RNAi silencing: a tool for functional genomics research on fungi. Fungal Biology Reviews, 30, 91-100.

Bayram Ö, Biesemann C, Krappmann S, Galland P, Braus G H. 2008a. More than a repair enzyme: Aspergillus nidulans photolyase-like CryA is a regulator of sexual development. Molecular biology of the cell, 19, 3254-3262.

Bayram Ö, Braus G H. 2012. Coordination of secondarymetabolism and development in fungi: the velvet familyof regulatory proteins. FEMS microbiology reviews, 36, 1-24.

Bayram Ö, Feussner K, Dumkow M, Herrfurth C, Feussner I, Braus G H. 2016. Changes of global gene expression and secondary metabolite accumulation during light-dependent Aspergillus nidulans development. Fungal Genetics and Biology, 87, 30-53.

Bayram O, Krappmann S, Ni M, Bok J W, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon N-J, Keller N P, Yu J-H. 2008b. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science, 320, 1504-1506.

Bazaz M R, Dehghani H. 2022. From DNA break repair pathways to CRISPR/Cas-mediated gene knock-in methods. Life Sciences, 295, 120409.

Becher R, Weihmann F, Deising H B, Wirsel S G. 2011. Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses. BMC genomics, 12, 1-17.

Behzadi P, Najafi A, Behzadi E, Ranjbar R. 2013. Detection and identification of clinical pathogenic fungi by DNA microarray. Infectioro, 35, 6-10.

Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, Fischer R. 2005. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Current Biology, 15, 1833-1838.

Boase N A, Kelly J M. 2004. A role for creD, a carbon catabolite repression gene from Aspergillus nidulans, in ubiquitination. Molecular microbiology, 53, 929-940.

Bok J W, Keller N P. 2004. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryotic cell, 3, 527-535.

Bölker M. 1998. Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genetics and Biology, 25, 143-156.

Boylan M T, Mirabito P M, Willett C E, Zimmerman C R, Timberlake W E. 1987. Isolation and physical characterization of three essential conidiation genes from Aspergillus nidulans. Molecular and cellular biology.

Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball C A, Causton H C. 2001. Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nature genetics, 29, 365-371.

Brown D, Yu J, Kelkar H, Fernandes M, Nesbitt T, Keller N, Adams T, Leonard T. 1996. Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proceedings of the National Academy of Sciences, 93, 1418-1422.

Busby T M, Miller K Y, Miller B L. 1996. Suppression and enhancement of the Aspergillus nidulans medusa mutation by altered dosage of the bristle and stunted genes. Genetics, 143, 155-163.

Caceres I, Al Khoury A, El Khoury R, Lorber S, P. Oswald I, El Khoury A, Atoui A, Puel O, Bailly J-D. 2020. Aflatoxin biosynthesis and genetic regulation: A review. Toxins, 12, 150.

Caddick M X, Brownlee A G, Arst H N. 1986. Regulation of gene expression by pH of the growth medium in Aspergillus nidulans. Molecular and General Genetics MGG, 203, 346-353.

Cai J, Zeng H, Shima Y, Hatabayashi H, Nakagawa H, Ito Y, Adachi Y, Nakajima H, Yabe K. 2008. Involvement of the nadA gene in formation of G-group aflatoxins in Aspergillus parasiticus. Fungal Genetics and Biology, 45, 1081-1093.

Calvo A M, Bok J, Brooks W, Keller N P. 2004. veA is required for toxin and sclerotial production in Aspergillus parasiticus. Applied and environmental microbiology, 70, 4733-4739.

Calvo A M, Wilson R A, Bok J W, Keller N P. 2002. Relationship between secondary metabolism and fungal development. Microbiology and molecular biology reviews, 66, 447-459.

Cary J W, Ehrlich K C, Bland J M, Montalbano B G. 2006. The aflatoxin biosynthesis cluster gene, aflX, encodes an oxidoreductase involved in conversion of versicolorin A to demethylsterigmatocystin. Applied and environmental microbiology, 72, 1096-1101.

Cary J W, Wright M, Bhatnagar D, Lee R, Chu F S. 1996. Molecular characterization of an Aspergillus parasiticus dehydrogenase gene, norA, located on the aflatoxin biosynthesis gene cluster. Applied and Environmental Microbiology, 62, 360-366.

Cathomen T, Joung J K. 2008. Zinc-finger nucleases: the next generation emerges. Molecular Therapy, 16, 1200-1207.

Chang P-K. 2003. The Aspergillus parasiticus protein AFLJ interacts with the aflatoxin pathway-specific regulator AFLR. Molecular Genetics and Genomics, 268, 711-719.

Chang P-K, Cary J W, Yu J, Bhatnagar D, Cleveland T E. 1995. The Aspergillus parasiticus polyketide synthase gene pksA, a homolog of Aspergillus nidulans wA, is required for aflatoxin B 1 biosynthesis. Molecular and General Genetics MGG, 248, 270-277.

Chang P-K, Horn B W, Dorner J W. 2009. Clustered genes involved in cyclopiazonic acid production are next to the aflatoxin biosynthesis gene cluster in Aspergillus flavus. Fungal Genetics and Biology, 46, 176-182.

Chang P-K, Scharfenstein L L, Ehrlich K C, Wei Q, Bhatnagar D, Ingber B F. 2012a. Effects of laeA deletion on Aspergillus flavus conidial development and hydrophobicity may contribute to loss of aflatoxin production. Fungal biology, 116, 298-307.

Chang P-K, Scharfenstein L L, Li R W, Arroyo-Manzanares N, De Saeger S, Di Mavungu J D. 2017. Aspergillus flavus aswA, a gene homolog of Aspergillus nidulans oefC, regulates sclerotial development and biosynthesis of sclerotium-associated secondary metabolites. Fungal Genetics and Biology, 104, 29-37.

Chang P-K, Scharfenstein L L, Mack B, Ehrlich K C. 2012b. Deletion of the Aspergillus flavus orthologue of A. nidulans fluG reduces conidiation and promotes production of sclerotia but does not abolish aflatoxin biosynthesis. Applied and Environmental Microbiology, 78, 7557-7563.

Chang P-K, Yabe K, Yu J. 2004a. The Aspergillus parasiticus estA-encoded esterase converts versiconal hemiacetal acetate to versiconal and versiconol acetate to versiconol in aflatoxin biosynthesis. Applied and environmental microbiology, 70, 3593-3599.

Chang P-K, Yu J, Ehrlich K C, Boue S M, Montalbano B G, Bhatnagar D, Cleveland T E. 2000. adhA in Aspergillus parasiticus is involved in conversion of 5′-hydroxyaverantin to averufin. Applied and environmental microbiology, 66, 4715-4719.

Chang P-K, Yu J, Yu J-H. 2004b. aflT, a MFS transporter-encoding gene located in the aflatoxin gene cluster, does not have a significant role in aflatoxin secretion. Fungal Genetics and Biology, 41, 911-920.

Chang Y C, Timberlake W E. 1993. Identification of Aspergillus brlA response elements (BREs) by genetic selection in yeast. Genetics, 133, 29-38.

Chavez-Granados P A, Manisekaran R, Acosta-Torres L S, Garcia-Contreras R. 2022. CRISPR/Cas gene-editing technology and its advances in dentistry. Biochimie, 194, 96-107.

Chen K, Shan Q, Gao C. 2014. An efficient TALEN mutagenesis system in rice. Methods, 69, 2-8.

Clutterbuck A. 1972. Absence of laccase from yellow-spored mutants of Aspergillus nidulans. Microbiology, 70, 423-435.

Cotty P. 1988. Aflatoxin and sclerotial production by Aspergillus flavus: influence of pH. growth, 4.

Crespo-Sempere A, Marin S, Sanchis V, Ramos A. 2013. VeA and LaeA transcriptional factors regulate ochratoxin A biosynthesis in Aspergillus carbonarius. International journal of food microbiology, 166, 479-486.

Da Motta S, Soares L V. 2000. Simultaneous determination of tenuazonic and cyclopiazonic acids in tomato products. Food Chemistry, 71, 111-116.

Davis N D, Diener U L. 1968. Growth and aflatoxin production by Aspergillus parasiticus from various carbon sources. Applied Microbiology, 16, 158.

de Oliveira Filho J G, da Cruz Silva G, de Paula Gomes M, de Sousa T L, Ferreira M D, Egea M B. 2022. External application of RNA interference (RNAi): an innovative tool for controlling fungi during food storage. Current Opinion in Food Science, 47, 100872.

Deepika V, Murali T, Satyamoorthy K. 2016. Modulation of genetic clusters for synthesis of bioactive molecules in fungal endophytes: A review. Microbiological Research, 182, 125-140.

Denison S H, Orejas M, Arst H N. 1995. Signaling of ambient pH in Aspergillus involves a cysteine protease. Journal of Biological Chemistry, 270, 28519-28522.

Dowzer C, Kelly J M. 1991. Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Molecular and Cellular Biology.

Dowzer C E, Kelly J M. 1989. Cloning of the cre A gene from Aspergillus nidulans: a gene involved in carbon catabolite repression. Current Genetics, 15, 457-459.

Du W, Obrian G, Payne G. 2007. Function and regulation of aflJ in the accumulation of aflatoxin early pathway intermediate in Aspergillus flavus. Food additives and contaminants, 24, 1043-1050.

Duran R M, Cary J W, Calvo A M. 2007. Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Applied microbiology and biotechnology, 73, 1158-1168.

Ehrlich K, Montalbano B, Cary J. 1999. Binding of the C6-zinc cluster protein, AFLR, to the promoters of aflatoxin pathway biosynthesis genes in Aspergillus parasiticus. Gene, 230, 249-257.

Ehrlich K C. 2009. Predicted roles of the uncharacterized clustered genes in aflatoxin biosynthesis. Toxins, 1, 37-58.

Ehrlich K C, Chang P-K, Scharfenstein Jr L L, Cary J W, Crawford J M, Townsend C A. 2010a. Absence of the aflatoxin biosynthesis gene, norA, allows accumulation of deoxyaflatoxin B1 in Aspergillus flavus cultures. FEMS microbiology letters, 305, 65-70.

Ehrlich K C, Chang P-K, Yu J, Cotty P J. 2004. Aflatoxin biosynthesis cluster gene cypA is required for G aflatoxin formation. Applied and environmental microbiology, 70, 6518-6524.

Ehrlich K C, Li P, Scharfenstein L, Chang P-K. 2010b. HypC, the anthrone oxidase involved in aflatoxin biosynthesis. Applied and environmental microbiology, 76, 3374-3377.

Ehrlich K C, Mack B M, Wei Q, Li P, Roze L V, Dazzo F, Cary J W, Bhatnagar D, Linz J E. 2012. Association with AflR in endosomes reveals new functions for AflJ in aflatoxin biosynthesis. Toxins, 4, 1582-1600.

Ehrlich K C, Montalbano B, Boué S M, Bhatnagar D. 2005. An aflatoxin biosynthesis cluster gene encodes a novel oxidase required for conversion of versicolorin A to sterigmatocystin. Applied and Environmental Microbiology, 71, 8963-8965.

Ehrlich K C, Scharfenstein Jr L L, Montalbano B G, Chang P-K. 2008. Are the genes nadA and norB involved in formation of aflatoxin G1? International Journal of Molecular Sciences, 9, 1717-1729.

Etxebeste O, Herrero‐García E, Araújo‐Bazán L, Rodríguez‐Urra A B, Garzia A, Ugalde U, Espeso E A. 2009. The bZIP‐type transcription factor FlbB regulates distinct morphogenetic stages of colony formation in Aspergillus nidulans. Molecular Microbiology, 73, 775-789.

Etxebeste O, Ni M, Garzia A, Kwon N-J, Fischer R, Yu J-H, Espeso E A, Ugalde U. 2008. Basic-zipper-type transcription factor FlbB controls asexual development in Aspergillus nidulans. Eukaryotic cell, 7, 38-48.

Fasoyin O E, Wang B, Qiu M, Han X, Chung K-R, Wang S. 2018. Carbon catabolite repression gene creA regulates morphology, aflatoxin biosynthesis and virulence in Aspergillus flavus. Fungal Genetics and Biology, 115, 41-51.

Feng G H, Leonard T J. 1998. Culture conditions control expression of the genes for aflatoxin and sterigmatocystin biosynthesis in Aspergillus parasiticus and A. nidulans. Applied and Environmental Microbiology, 64, 2275-2277.

Fernandez Pinto V, Patriarca A, Locani O, Vaamonde G. 2001. Natural co-occurrence of aflatoxin and cyclopiazonic acid in peanuts grown in Argentina. Food Additives & Contaminants, 18, 1017-1020.

Ferrara M, Gallo A, Perrone G, Magistà D, Baker S E. 2020. Comparative genomic analysis of ochratoxin A biosynthetic cluster in producing fungi: New evidence of a cyclase gene involvement. Frontiers in Microbiology, 11, 581309.

Ferrara M, Perrone G, Gambacorta L, Epifani F, Solfrizzo M, Gallo A. 2016. Identification of a halogenase involved in the biosynthesis of ochratoxin A in Aspergillus carbonarius. Applied and Environmental Microbiology, 82, 5631-5641.

Fillinger S, Felenbok B. 1996. A newly identified gene cluster in Aspergillus nidulans comprises five novel genes localized in the alc region that are controlled both by the specific transactivator AlcR and the general carbon‐catabolite repressor CreA. Molecular microbiology, 20, 475-488.

Fire A, Xu S, Montgomery M K, Kostas S A, Driver S E, Mello C C. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. nature, 391, 806-811.

Fischer R, Kües U. 2006. Asexual sporulation in mycelial fungi. in: Growth, Differentiation and Sexuality, Springer, pp. 263-292.

Flipphi M, Mathieu M, Cirpus I, Panozzo C, Felenbok B. 2001. Regulation of the aldehyde dehydrogenase gene (aldA) and its role in the control of the coinducer level necessary for induction of the ethanol utilization pathway in Aspergillus nidulans. Journal of Biological Chemistry, 276, 6950-6958.

Forster H, Shuai B. 2020. RNAi-mediated knockdown of β-1, 3-glucan synthase suppresses growth of the phytopathogenic fungus Macrophomina phaseolina. Physiological and Molecular Plant Pathology, 110, 101486.

Froehlich A C, Liu Y, Loros J J, Dunlap J C. 2002. White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science, 297, 815-819.

Fu J, Gu M, Yan H, Zhang M, Xie H, Yue X, Zhang Q, Li P. 2023. Protein biomarker for early diagnosis of microbial toxin contamination: Using Aspergillus flavus as an example. Food Frontiers, 4, 2013-2023.

Fuller K K, Chen S, Loros J J, Dunlap J C. 2015. Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryotic cell, 14, 1073-1080.

Gaj T, Gersbach C A, Barbas C F. 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in biotechnology, 31, 397-405.

Gallagher R T, Richard J L, Stahr H M, Cole R J. 1978. Cyclopiazonic acid production by aflatoxigenic and non-aflatoxigenic strains of Aspergillus flavus. Mycopathologia, 66, 31-36.

Gallo A, Bruno K S, Solfrizzo M, Perrone G, Mulè G, Visconti A, Baker S E. 2012. New insight into the ochratoxin A biosynthetic pathway through deletion of a nonribosomal peptide synthetase gene in Aspergillus carbonarius. Applied and Environmental Microbiology, 78, 8208-8218.

Garzia A, Etxebeste O, Herrero‐Garcia E, Fischer R, Espeso E A, Ugalde U. 2009. Aspergillus nidulans FlbE is an upstream developmental activator of conidiation functionally associated with the putative transcription factor FlbB. Molecular microbiology, 71, 172-184.

Garzia A, Etxebeste O, Herrero‐García E, Ugalde U, Espeso E A. 2010. The concerted action of bZip and cMyb transcription factors FlbB and FlbD induces brlA expression and asexual development in Aspergillus nidulans. Molecular microbiology, 75, 1314-1324.

Georgianna D R, Payne G A. 2009. Genetic regulation of aflatoxin biosynthesis: from gene to genome. Fungal Genetics and Biology, 46, 113-125.

Gil-Serna J, Vázquez C, González-Jaén M T, Patiño B. 2015. Clustered array of ochratoxin A biosynthetic genes in Aspergillus steynii and their expression patterns in permissive conditions. International Journal of Food Microbiology, 214, 102-108.

González Castro N, Bjelic J, Malhotra G, Huang C, Alsaffar S H. 2021. Comparison of the feasibility, efficiency, and safety of genome editing technologies. International Journal of Molecular Sciences, 22, 10355.

Guzmán-de-Peña D, Aguirre J, Ruiz-Herrera J. 1998. Correlation between the regulation of sterigmatocystin biosynthesis and asexual and sexual sporulation in Emericella nidulans. Antonie Van Leeuwenhoek, 73, 199-205.

Han K-H, Han K-Y, Kim M-S, Lee D-B, Kim J-H, Chae S-K, Chae K-S, Han D-M. 2003. Regulation of nsdD expression in Aspergillus nidulans. Journal of Microbiology, 41, 259-261.

Han K-H, Kim J H, Moon H, Kim S, Lee S-S, Han D-M, Jahng K-Y, Chae K-S. 2008. The Aspergillus nidulans esdC (early sexual development) gene is necessary for sexual development and is controlled by veA and a heterotrimeric G protein. Fungal Genetics and Biology, 45, 310-318.

Han K H, Han K Y, Yu J H, Chae K S, Jahng K Y, Han D M. 2001. The nsdD gene encodes a putative GATA‐type transcription factor necessary for sexual development of Aspergillus nidulans. Molecular microbiology, 41, 299-309.

Haque M A, Wang Y, Shen Z, Li X, Saleemi M K, He C. 2020. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microbial pathogenesis, 142, 104095.

Hardie D G, Hawley S A, Scott J W. 2006. AMP‐activated protein kinase–development of the energy sensor concept. The Journal of physiology, 574, 7-15.

Harris J P, Mantle P G. 2001. Biosynthesis of ochratoxins by Aspergillus ochraceus. Phytochemistry, 58, 709-716.

He Q, Cheng P, Yang Y, Wang L, Gardner K H, Liu Y. 2002. White collar-1, a DNA binding transcription factor and a light sensor. Science, 297, 840-843.

Henry K M, Townsend C A. 2005. Ordering the reductive and cytochrome P450 oxidative steps in demethylsterigmatocystin formation yields general insights into the biosynthesis of aflatoxin and related fungal metabolites. Journal of the American Chemical Society, 127, 3724-3733.

Holmes R A. 2008. Characterization of an aflatoxin biosynthetic gene and resistance in maize seeds to Aspergillus flavus.

Holzapfel C. 1968. The isolation and structure of cyclopiazonic acid, a toxic metabolite of Penicillium cyclopium Westling. Tetrahedron, 24, 2101-2119.

Holzapfel C, Wilkins D. 1971. On the biosynthesis of cyclopiazonic acid. Phytochemistry, 10, 351-358.

Horky P, Skalickova S, Baholet D, Skladanka J. 2018. Nanoparticles as a solution for eliminating the risk of mycotoxins. Nanomaterials, 8, 727.

Hu X, Zhang P, Wang D, Jiang J, Chen X, Liu Y, Zhang Z, Tang B Z, Li P. 2021. AIEgens enabled ultrasensitive point-of-care test for multiple targets of food safety: Aflatoxin B1 and cyclopiazonic acid as an example. Biosensors and Bioelectronics, 182, 113188.

Huang L, Dong H, Zheng J, Wang B, Pan L. 2019. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion. Microbiological research, 223, 44-50.

Huff W E, Hamilton P B. 1979. Mycotoxins–their biosynthesis in fungi: ochratoxins–metabolites of combined pathways. Journal of Food Protection, 42, 815-820.

Hynes M. 1975. Studies on the role of the are A gene in the regulation of nitrogen catabolism in Aspergillus nidulans. Australian journal of biological sciences, 28, 301-314.

Jia M, Liao X, Fang L, Jia B, Liu M, Li D, Zhou L, Kong W. 2021. Recent advances on immunosensors for mycotoxins in foods and other commodities. TrAC Trends in Analytical Chemistry, 136, 116193.

Jiang C, Lan L, Yao Y, Zhao F, Ping J. 2018. Recent progress in application of nanomaterial-enabled biosensors for ochratoxin A detection. TrAC Trends in Analytical Chemistry, 102, 236-249.

Jiang W, Marraffini L A. 2015. CRISPR-Cas: new tools for genetic manipulations from bacterial immunity systems. Annual review of microbiology, 69, 209-228.

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. 2012. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. science, 337, 816-821.

Kale S P, Milde L, Trapp M K, Frisvad J C, Keller N P, Bok J W. 2008. Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus. Fungal Genetics and Biology, 45, 1422-1429.

Karolewiez A, Bogs C, Geisen R. 2005. Genetic background of ochratoxin A production in Penicillium. Mycotoxin Research, 21, 46-48.

Karolewiez A, Geisen R. 2005. Cloning a part of the ochratoxin A biosynthetic gene cluster of Penicillium nordicum and characterization of the ochratoxin polyketide synthase gene. Systematic and Applied Microbiology, 28, 588-595.

Kato N, Brooks W, Calvo A M. 2003. The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Eukaryotic cell, 2, 1178-1186.

Kelkar H S, Skloss T W, Haw J F, Keller N P, Adams T H. 1997. Aspergillus nidulans stcL encodes a putative cytochrome P-450 monooxygenase required for bisfuran desaturation during aflatoxin/sterigmatocystin biosynthesis. Journal of Biological Chemistry, 272, 1589-1594.

Keller N, Brown D, Butchko R, Fernandes M, Kelkar H, Nesbitt C, Segner S, Bhatnagar D, Cleveland T, Adams T. 1995a. A conserved polyketide mycotoxin gene cluster in Aspergillus nidulans. Molecular approaches to food safety issues involving toxic microorganisms, 18, 263-277.

Keller N P, Kantz N J, Adams T H. 1994. Aspergillus nidulans verA is required for production of the mycotoxin sterigmatocystin. Applied and environmental microbiology, 60, 1444-1450.

Keller N P, Nesbitt C, Sarr B, Phillips T D, Burow G B. 1997. pH regulation of sterigmatocystin and aflatoxin biosynthesis in Aspergillus spp. Phytopathology, 87, 643-648.

Keller N P, Segner S, Bhatnagar D, Adams T H. 1995b. stcS, a putative P-450 monooxygenase, is required for the conversion of versicolorin A to sterigmatocystin in Aspergillus nidulans. Applied and environmental microbiology, 61, 3628-3632.

Kim H-R, Chae K-S, Han K-H, Han D-M. 2009. The nsdC gene encoding a putative C2H2-type transcription factor is a key activator of sexual development in Aspergillus nidulans. Genetics, 182, 771-783.

Kim H-S, Han K-Y, Kim K-J, Han D-M, Jahng K-Y, Chae K-S. 2002. The veA gene activates sexual development in Aspergillus nidulans. Fungal Genetics and Biology, 37, 72-80.

Kim M-J, Lee M-K, Pham H Q, Gu M J, Zhu B, Son S-H, Hahn D, Shin J-H, Yu J-H, Park H-S. 2020. The velvet regulator VosA governs survival and secondary metabolism of sexual spores in Aspergillus nidulans. Genes, 11, 103.

Kim Y-G, Cha J, Chandrasegaran S. 1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences, 93, 1156-1160.

Krappmann S, Bayram O z r, Braus G H. 2005. Deletion and allelic exchange of the Aspergillus fumigatus veA locus via a novel recyclable marker module. Eukaryotic Cell, 4, 1298-1307.

Kulmburg P, Mathieu M, Dowzer C, Kelly J, Felenbok B. 1993. Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor mediating carbon cataboiite repression in Aspergillus nidulans. Molecular microbiology, 7, 847-857.

Kumar P, Mahato D K, Sharma B, Borah R, Haque S, Mahmud M C, Shah A K, Rawal D, Bora H, Bui S. 2020. Ochratoxins in food and feed: Occurrence and its impact on human health and management strategies. Toxicon, 187, 151-162.

Kwon N-J, Shin K-S, Yu J-H. 2010a. Characterization of the developmental regulator FlbE in Aspergillus fumigatus and Aspergillus nidulans. Fungal Genetics and Biology, 47, 981-993.

Kwon N J, Garzia A, Espeso E A, Ugalde U, Yu J H. 2010b. FlbC is a putative nuclear C2H2 transcription factor regulating development in Aspergillus nidulans. Molecular microbiology, 77, 1203-1219.

Lau V, Davie J R. 2017. The discovery and development of the CRISPR system in applications in genome manipulation. Biochemistry and Cell Biology, 95, 203-210.

Law D J, Timberlake W E. 1980. Developmental regulation of laccase levels in Aspergillus nidulans. Journal of bacteriology, 144, 509-517.

Lee B N, Adams T. 1996. FluG and flbA function interdependently to initiate conidiophore development in Aspergillus nidulans through brlA beta activation. The EMBO journal, 15, 299-309.

Lee B N, Adams T H. 1994. Overexpression of fIbA, an early regulator of Aspergillus asexual sporulation, leads to activation of brIA and premature initiation of development. Molecular microbiology, 14, 323-334.

Lengeler K B, Davidson R C, D'souza C, Harashima T, Shen W-C, Wang P, Pan X, Waugh M, Heitman J. 2000. Signal transduction cascades regulating fungal development and virulence. Microbiology and molecular biology reviews, 64, 746-785.

Li T, Liu B, Chen C Y, Yang B. 2014. TALEN utilization in rice genome modifications. Methods, 69, 9-16.

Li T, Liu B, Spalding M H, Weeks D P, Yang B. 2012. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature biotechnology, 30, 390-392.

Liang M, Cai X, Gao Y, Yan H, Fu J, Tang X, Zhang Q, Li P. 2022. A versatile nanozyme integrated colorimetric and photothermal lateral flow immunoassay for highly sensitive and reliable Aspergillus flavus detection. Biosensors and Bioelectronics, 213, 114435.

Liu J, Sun L, Zhang N, Zhang J, Guo J, Li C, Rajput S A, Qi D. 2016. Effects of nutrients in substrates of different grains on Aflatoxin B 1 production by Aspergillus flavus. BioMed Research International, 2016.

Liu X, Walsh C T. 2009. Cyclopiazonic acid biosynthesis in Aspergillus sp.: characterization of a reductase-like R* domain in cyclopiazonate synthetase that forms and releases cyclo-acetoacetyl-L-tryptophan. Biochemistry, 48, 8746-8757.

Lockington R A, Kelly J M. 2001. Carbon catabolite repression in Aspergillus nidulans involves deubiquitination. Molecular microbiology, 40, 1311-1321.

Lockington R A, Kelly J M. 2002. The WD40‐repeat protein CreC interacts with and stabilizes the deubiquitinating enzyme CreB in vivo in Aspergillus nidulans. Molecular Microbiology, 43, 1173-1182.

MacPherson S, Larochelle M, Turcotte B. 2006. A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiology and Molecular Biology Reviews, 70, 583-604.

Mah J-H, Yu J-H. 2006. Upstream and downstream regulation of asexual development in Aspergillus fumigatus. Eukaryotic cell, 5, 1585-1595.

Marshall M A, Timberlake W E. 1991. Aspergillus nidulans wetA activates spore-specific gene expression. Molecular and cellular biology, 11, 55-62.

Mayorga M E, Timberlake W. 1990. Isolation and molecular characterization of the Aspergillus nidulans wA gene. Genetics, 126, 73-79.

Mayorga M E, Timberlake W E. 1992. The developmentally regulated Aspergillus nidulans wA gene encodes a polypeptide homologous to polyketide and fatty acid synthases. Molecular & general genetics : MGG, 235, 205-12.

Meyers D M, Obrian G, Du W, Bhatnagar D, Payne G. 1998. Characterization of aflJ, a gene required for conversion of pathway intermediates to aflatoxin. Applied and Environmental Microbiology, 64, 3713-3717.

Miller K Y, Toennis T M, Adams T H, Miller B L. 1991. Isolation and transcriptional characterization of a morphological modifier: the Aspergillus nidulans stunted (stuA) gene. Molecular and General Genetics MGG, 227, 285-292.

Mirabito P M, Adams T H, Timberlake W E. 1989. Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell, 57, 859-868.

Mizutani O, Arazoe T, Toshida K, Hayashi R, Ohsato S, Sakuma T, Yamamoto T, Kuwata S, Yamada O. 2017. Detailed analysis of targeted gene mutations caused by the Platinum-Fungal TALENs in Aspergillus oryzae RIB40 strain and a ligD disruptant. Journal of bioscience and bioengineering, 123, 287-293.

Mooney J L, Yager L N. 1990. Light is required for conidiation in Aspergillus nidulans. Genes & development, 4, 1473-1482.

Morita H, Hatamoto O, Masuda T, Sato T, Takeuchi M. 2007. Function analysis of steA homolog in Aspergillus oryzae. Fungal Genetics and Biology, 44, 330-338.

Morris A J, Malbon C C. 1999. Physiological regulation of G protein-linked signaling. Physiological reviews, 79, 1373-1430.

Mussolino C, Morbitzer R, Lütge F, Dannemann N, Lahaye T, Cathomen T. 2011. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic acids research, 39, 9283-9293.

Nakayashiki H, Hanada S, Quoc N B, Kadotani N, Tosa Y, Mayama S. 2005. RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genetics and Biology, 42, 275-283.

Navale V, Vamkudoth K R, Ajmera S, Dhuri V. 2021. Aspergillus derived mycotoxins in food and the environment: Prevalence, detection, and toxicity. Toxicology Reports, 8, 1008-1030.

Neff K L, Argue D P, Ma A C, Lee H B, Clark K J, Ekker S C. 2013. Mojo Hand, a TALEN design tool for genome editing applications. BMC bioinformatics, 14, 1-7.

Negrete‐Urtasun S, Reiter W, Diez E, Denison S H, Tilburn J, Espeso E A, Peñalva M A, Arst J, Herbert N. 1999. Ambient pH signal transduction in Aspergillus: completion of gene characterization. Molecular Microbiology, 33, 994-1003.

Ni M, Yu J-H. 2007. A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PloS one, 2, e970.

Nidhi S, Anand U, Oleksak P, Tripathi P, Lal J A, Thomas G, Kuca K, Tripathi V. 2021. Novel CRISPR–Cas systems: an updated review of the current achievements, applications, and future research perspectives. International journal of molecular sciences, 22, 3327.

Nødvig C S, Nielsen J B, Kogle M E, Mortensen U H. 2015. A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PloS one, 10, e0133085.

Nowrousian M. 2007. Of patterns and pathways: microarray technologies for the analysis of filamentous fungi. Fungal Biology Reviews, 21, 171-178.

O'Hara E B, Timberlake W. 1989. Molecular characterization of the Aspergillus nidulans yA locus. Genetics, 121, 249-254.

OBrian G R, Fakhoury A M, Payne G A. 2003. Identification of genes differentially expressed during aflatoxin biosynthesis in Aspergillus flavus and Aspergillus parasiticus. Fungal Genetics and Biology, 39, 118-127.

Pabo C O, Peisach E, Grant R A. 2001. Design and selection of novel Cys2His2 zinc finger proteins. Annual review of biochemistry, 70, 313-340.

Panozzo C, Cornillot E, Felenbok B. 1998. The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites. Journal of Biological Chemistry, 273, 6367-6372.

Park H-S, Nam T-Y, Han K-H, Kim S C, Yu J-H. 2014. VelC positively controls sexual development in Aspergillus nidulans. PloS one, 9, e89883.

Park H-S, Ni M, Jeong K C, Kim Y H, Yu J-H. 2012. The role, interaction and regulation of the velvet regulator VelB in Aspergillus nidulans.

Pateman J A J, Doy C, Olsen J, Norris U, Creaser E, Hynes M. 1983. Regulation of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldDH) in Aspergillus nidulans. Proceedings of the Royal Society of London. Series B. Biological Sciences, 217, 243-264.

Payne G, Brown M. 1998. Genetics and physiology of aflatoxin biosynthesis. Annual review of phytopathology, 36, 329-362.

Peñalva M A, Arst J, Herbert N. 2004. Recent advances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts. Annu. Rev. Microbiol., 58, 425-451.

Peñalva M A, Tilburn J, Bignell E, Arst H N. 2008. Ambient pH gene regulation in fungi: making connections. Trends in microbiology, 16, 291-300.

Pontecorvo G, Roper J, Chemmons L, MacDonald K, Bufton A. 1953. The genetics of Aspergillus nidulans. Advances in genetics, 5, 141-238.

Power I L, Dang P M, Sobolev V S, Orner V A, Powell J L, Lamb M C, Arias R S. 2017. Characterization of small RNA populations in non-transgenic and aflatoxin-reducing-transformed peanut. Plant Science, 257, 106-125.

Prade R A, Timberlake W E. 1993. The Aspergillus nidulans brlA regulatory locus consists of overlapping transcription units that are individually required for conidiophore development. The EMBO Journal, 12, 2439-2447.

Price M S, Conners S B, Tachdjian S, Kelly R M, Payne G A. 2005. Aflatoxin conducive and non-conducive growth conditions reveal new gene associations with aflatoxin production. Fungal Genetics and Biology, 42, 506-518.

Prieto R, Woloshuk C. 1997. ord1, an oxidoreductase gene responsible for conversion of O-methylsterigmatocystin to aflatoxin in Aspergillus flavus. Applied and environmental microbiology, 63, 1661-1666.

Purschwitz J, Müller S, Kastner C, Schöser M, Haas H, Espeso E A, Atoui A, Calvo A M, Fischer R. 2008. Functional and physical interaction of blue-and red-light sensors in Aspergillus nidulans. Current Biology, 18, 255-259.

Ran F A, Hsu P D, Wright J, Agarwala V, Scott D A, Zhang F. 2013. Genome engineering using the CRISPR-Cas9 system. Nature protocols, 8, 2281-2308.

Rodgers K, McVey M. 2016. Error‐prone repair of DNA double‐strand breaks. Journal of cellular physiology, 231, 15-24.

Rodrigues I, Naehrer K. 2012. A three-year survey on the worldwide occurrence of mycotoxins in feedstuffs and feed. Toxins, 4, 663-675.

Röhrig J, Kastner C, Fischer R. 2013. Light inhibits spore germination through phytochrome in Aspergillus nidulans. Current genetics, 59, 55-62.

Roy P, Lockington R A, Kelly J M. 2008. CreA-mediated repression in Aspergillus nidulans does not require transcriptional auto-regulation, regulated intracellular localisation or degradation of CreA. Fungal Genetics and Biology, 45, 657-670.

Roze L V, Hong S-Y, Linz J E. 2013. Aflatoxin biosynthesis: current frontiers. Annual review of food science and technology, 4, 293-311.

Sakuno E, Wen Y, Hatabayashi H, Arai H, Aoki C, Yabe K, Nakajima H. 2005. Aspergillus parasiticus cyclase catalyzes two dehydration steps in aflatoxin biosynthesis. Applied and environmental microbiology, 71, 2999-3006.

Sakuno E, Yabe K, Nakajima H. 2003. Involvement of two cytosolic enzymes and a novel intermediate, 5′-oxoaverantin, in the pathway from 5′-hydroxyaverantin to averufin in aflatoxin biosynthesis. Applied and environmental microbiology, 69, 6418-6426.

Salame T M, Yarden O, Hadar Y. 2010. Pleurotus ostreatus manganese‐dependent peroxidase silencing impairs decolourization of Orange II. Microbial biotechnology, 3, 93-106.

Sarikaya Bayram Ö, Bayram Ö, Valerius O, Park H S, Irniger S, Gerke J, Ni M, Han K-H, Yu J-H, Braus G H. 2010. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS genetics, 6, e1001226.

Seo J-A, Guan Y, Yu J-H. 2006. FluG-dependent asexual development in Aspergillus nidulans occurs via derepression. Genetics, 172, 1535-1544.

Seo J-A, Guan Y, Yu J-H. 2003. Suppressor mutations bypass the requirement of fluG for asexual sporulation and sterigmatocystin production in Aspergillus nidulans. Genetics, 165, 1083-1093.

Serif M, Lepetit B, Weißert K, Kroth P G, Bartulos C R. 2017. A fast and reliable strategy to generate TALEN-mediated gene knockouts in the diatom Phaeodactylum tricornutum. Algal research, 23, 186-195.

Seshime Y, Juvvadi P R, Tokuoka M, Koyama Y, Kitamoto K, Ebizuka Y, Fujii I. 2009. Functional expression of the Aspergillus flavus PKS–NRPS hybrid CpaA involved in the biosynthesis of cyclopiazonic acid. Bioorganic & medicinal chemistry letters, 19, 3288-3292.

Sewall T C, Mims C W, Timberlake W E. 1990. abaA controls phialide differentiation in Aspergillus nidulans. The Plant Cell, 2, 731-739.

Sheppard D C, Doedt T, Chiang L Y, Kim H S, Chen D, Nierman W C, Filler S G. 2005. The Aspergillus fumigatus StuA protein governs the up-regulation of a discrete transcriptional program during the acquisition of developmental competence. Molecular biology of the cell, 16, 5866-5879.

Shimizu K, Keller N P. 2001. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics, 157, 591-600.

Shukla V K, Doyon Y, Miller J C, DeKelver R C, Moehle E A, Worden S E, Mitchell J C, Arnold N L, Gopalan S, Meng X. 2009. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature, 459, 437-441.

Streit E, Naehrer K, Rodrigues I, Schatzmayr G. 2013. Mycotoxin occurrence in feed and feed raw materials worldwide: long‐term analysis with special focus on Europe and Asia. Journal of the Science of Food and Agriculture, 93, 2892-2899.

Stringer M, Dean R, Sewall T, Timberlake W. 1991. Rodletless, a new Aspergillus developmental mutant induced by directed gene inactivation. Genes & Development, 5, 1161-1171.

Tao L, Yu J-H. 2011. AbaA and WetA govern distinct stages of Aspergillus fumigatus development. Microbiology, 157, 313-326.

Tilburn J, Sarkar S, Widdick D, Espeso E, Orejas M, Mungroo J, Penalva M, Arst Jr H. 1995. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid‐and alkaline‐expressed genes by ambient pH. The EMBO Journal, 14, 779-790.

Todd R, Lockington R, Kelly J. 2000. The Aspergillus nidulans creC gene involved in carbon catabolite repression encodes a WD40 repeat protein. Molecular and General Genetics MGG, 263, 561-570.

Tokuoka M, Seshime Y, Fujii I, Kitamoto K, Takahashi T, Koyama Y. 2008. Identification of a novel polyketide synthase–nonribosomal peptide synthetase (PKS–NRPS) gene required for the biosynthesis of cyclopiazonic acid in Aspergillus oryzae. Fungal Genetics and Biology, 45, 1608-1615.

Townsend J A, Wright D A, Winfrey R J, Fu F, Maeder M L, Joung J K, Voytas D F. 2009. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature, 459, 442-445.

Uppala S, Bowen K, Woods F. 2013. Pre-harvest aflatoxin contamination and soluble sugars of peanut. Peanut Science, 40, 40-51.

Vallim M A, Miller K Y, Miller B L. 2000. Aspergillus SteA (sterile12‐like) is a homeodomain‐C2/H2‐Zn+ 2 finger transcription factor required for sexual reproduction. Molecular microbiology, 36, 290-301.

Van der Merwe K, Steyn P, Fourie L, Scott D B, Theron J. 1965. Ochratoxin A, a toxic metabolite produced by Aspergillus ochraceus Wilh. Nature, 205, 1112-1113.

Varga J, Frisvad J C, Samson R. 2011. Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Studies in Mycology, 69, 57-80.

Vienken K, Fischer R. 2006. The Zn (II) 2Cys6 putative transcription factor NosA controls fruiting body formation in Aspergillus nidulans. Molecular microbiology, 61, 544-554.

Vienken K, Scherer M, Fischer R. 2005. The Zn (II) 2Cys6 putative Aspergillus nidulans transcription factor repressor of sexual development inhibits sexual development under low-carbon conditions and in submersed culture. Genetics, 169, 619-630.

Wang W, Zhang Q, Ma F, Li P. 2022. Simultaneous determination of aflatoxins, fumonisin B1, T-2 and cyclopiazonic acid in agri-products by immunomagnetic solid-phase extraction coupled with UHPLC-MS/MS. Food Chemistry, 378, 132020.

Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature biotechnology, 32, 947-951.

Wang Y, Wang L, Liu F, Wang Q, Selvaraj J N, Xing F, Zhao Y, Liu Y. 2016. Ochratoxin A producing fungi, biosynthetic pathway and regulatory mechanisms. Toxins, 8, 83.

Wang Y, Wang L, Wu F, Liu F, Wang Q, Zhang X, Selvaraj J N, Zhao Y, Xing F, Yin W-B. 2018. A consensus ochratoxin A biosynthetic pathway: Insights from the genome sequence of Aspergillus ochraceus and a comparative genomic analysis. Applied and environmental microbiology, 84, e01009-18.

Weaver A C, Adams N, Yiannikouris A. 2020. Invited Review: Use of technology to assess and monitor multimycotoxin and emerging mycotoxin challenges in feedstuffs. Applied Animal Science, 36, 19-25.

Wen Y, Hatabayashi H, Arai H, Kitamoto H K, Yabe K. 2005. Function of the cypX and moxY genes in aflatoxin biosynthesis in Aspergillus parasiticus. Applied and Environmental Microbiology, 71, 3192-3198.

Wieser J, Adams T H. 1995. flbD encodes a Myb-like DNA-binding protein that coordinates initiation of Aspergillus nidulans conidiophore development. Genes & development, 9, 491-502.

Wieser J, Lee B N, Fondon J W, Adams T H. 1994. Genetic requirements for initiating asexual development in Aspergillus nidulans. Current genetics, 27, 62-69.

Wieser J, Yu J-H, Adams T H. 1997. Dominant mutations affecting both sporulation and sterigmatocystin biosynthesis in Aspergillus nidulans. Current genetics, 32, 218-224.

Wu J, Miller B L. 1997. Aspergillus asexual reproduction and sexual reproduction are differentially affected by transcriptional and translational mechanisms regulating stunted gene expression. Molecular and Cellular Biology.

Xiao P, Shin K-S, Wang T, Yu J-H. 2010. Aspergillus fumigatus flbB encodes two basic leucine zipper domain (bZIP) proteins required for proper asexual development and gliotoxin production. Eukaryotic cell, 9, 1711-1723.

Xie T, Misumi J, Aoki K, Zhao W, Liu S. 2000. Absence of p53-mediated G1 arrest with induction of MDM2 in sterigmatocystin-treated cells. International journal of oncology, 17, 737-779.

Yabe K, Ando Y, Hashimoto J, Hamasaki T. 1989. Two distinct O-methyltransferases in aflatoxin biosynthesis. Applied and environmental microbiology, 55, 2172-2177.

Yabe K, Hamasaki T. 1993. Stereochemistry during aflatoxin biosynthesis: cyclase reaction in the conversion of versiconal to versicolorin B and racemization of versiconal hemiacetal acetate. Applied and environmental microbiology, 59, 2493-2500.

Yamada O, Ikeda R, Ohkita Y, Hayashi R, Sakamoto K, Akita O. 2007. Gene silencing by RNA interference in the koji mold Aspergillus oryzae. Bioscience, biotechnology, and biochemistry, 71, 138-144.

Yan H, Fu J, Tang X, Wang D, Zhang Q, Li P. 2022. Sensitivity enhancement of paper-based sandwich immunosensor via nanobody immobilization instead of IgG antibody, taking aflatoxingenetic fungi as an analyte example. Sensors and Actuators B: Chemical, 373, 132760.

Yang Y, Li G, Wu D, Liu J, Li X, Luo P, Hu N, Wang H, Wu Y. 2020. Recent advances on toxicity and determination methods of mycotoxins in foodstuffs. Trends in food science & Technology, 96, 233-252.

Yu J-H, Butchko R A, Fernandes M, Keller N P, Leonard T J, Adams T H. 1996a. Conservation of structure and function of the aflatoxin regulatory gene aflR from Aspergillus nidulans and A. flavus. Current genetics, 29, 549-555.

Yu J-H, Keller N. 2005. Regulation of secondary metabolism in filamentous fungi. Annu. Rev. Phytopathol., 43, 437-458.

Yu J-H, Rosén S, Adams T H. 1999. Extragenic suppressors of loss-of-function mutations in the Aspergillus FlbA regulator of G-protein signaling domain protein. Genetics, 151, 97-105.

Yu J-H, Wieser J, Adams T. 1996b. The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. The EMBO journal, 15, 5184-5190.

Yu J, Cary J, Bhatnagar D, Cleveland T, Keller N, Chu F. 1993. Cloning and characterization of a cDNA from Aspergillus parasiticus encoding an O-methyltransferase involved in aflatoxin biosynthesis. Applied and Environmental Microbiology, 59, 3564-3571.

Yu J, Chang P-K, Bhatnagar D, Cleveland T E. 2003. Cloning and functional expression of an esterase gene in Aspergillus parasiticus. Mycopathologia, 156, 227-234.

Yu J, Chang P-K, Bhatnagar D, Cleveland T E. 2000a. Cloning of a sugar utilization gene cluster in Aspergillus parasiticus. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1493, 211-214.

Yu J, Chang P-K, Cary J W, Bhatnagar D, Cleveland T E. 1997. avnA, a gene encoding a cytochrome P-450 monooxygenase, is involved in the conversion of averantin to averufin in aflatoxin biosynthesis in Aspergillus parasiticus. Applied and environmental microbiology, 63, 1349-1356.

Yu J, Chang P-K, Ehrlich K C, Cary J W, Bhatnagar D, Cleveland T E, Payne G A, Linz J E, Woloshuk C P, Bennett J W. 2004. Clustered pathway genes in aflatoxin biosynthesis. Applied and environmental microbiology, 70, 1253-1262.

Yu J, Chang P-K, Ehrlich K C, Cary J W, Montalbano B, Dyer J M, Bhatnagar D, Cleveland T E. 1998. Characterization of the critical amino acids of an Aspergillus parasiticus cytochrome P-450 monooxygenase encoded by ordA that is involved in the biosynthesis of aflatoxins B1, G1, B2, and G2. Applied and environmental microbiology, 64, 4834-4841.

Yu J, Chang P-K, Payne G A, Cary J W, Bhatnagar D, Cleveland T E. 1995. Comparison of the omtA genes encoding O-methyltransferases involved in aflatoxin biosynthesis from Aspergillus parasiticus and A. flavus. Gene, 163, 121-125.

Yu J, Ronning C M, Wilkinson J R, Campbell B C, Payne G A, Bhatnagar D, Cleveland T E, Nierman W C. 2007. Gene profiling for studying the mechanism of aflatoxin biosynthesis in Aspergillus flavus and A. parasiticus. Food additives and contaminants, 24, 1035-1042.

Yu J, Woloshuk C P, Bhatnagar D, Cleveland T E. 2000b. Cloning and characterization of avfA and omtB genes involved in aflatoxin biosynthesis in three Aspergillus species. Gene, 248, 157-167.

Zhang F, Maeder M L, Unger-Wallace E, Hoshaw J P, Reyon D, Christian M, Li X, Pierick C J, Dobbs D, Peterson T. 2010. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proceedings of the National Academy of Sciences, 107, 12028-12033.

Zhang J, Zhu L, Chen H, Li M, Zhu X, Gao Q, Wang D, Zhang Y. 2016. A polyketide synthase encoded by the gene An15g07920 is involved in the biosynthesis of ochratoxin A in Aspergillus niger. Journal of agricultural and food chemistry, 64, 9680-9688.

Zhang L, Dou X-W, Zhang C, Logrieco A F, Yang M-H. 2018. A review of current methods for analysis of mycotoxins in herbal medicines. Toxins, 10, 65.

Zhao J, Fang H, Zhang D. 2020. Expanding application of CRISPR-Cas9 system in microorganisms. Synthetic and systems biotechnology, 5, 269-276.

Zheng X, Zheng P, Zhang K, Cairns T C, Meyer V, Sun J, Ma Y. 2018. 5S rRNA promoter for guide RNA expression enabled highly efficient CRISPR/Cas9 genome editing in Aspergillus niger. ACS synthetic biology, 8, 1568-1574.

Zhou R, Linz J E. 1999. Enzymatic function of the Nor-1 protein in aflatoxin biosynthesis in Aspergillus parasiticus. Applied and environmental microbiology, 65, 5639-5641.

Zingales V, Fernández-Franzón M, Ruiz M-J. 2020. Sterigmatocystin: Occurrence, toxicity and molecular mechanisms of action–A review. Food and Chemical Toxicology, 146, 111802.

[1] Niu Wang, Weidong Zhang, Zhenyu Zhong, Xiongbo Zhou, Xinran Shi, Xin Wang. FGF7 secreted from dermal papillae cell regulates the proliferation and differentiation of hair follicle stem cell[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3583-3597.
[2] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[3] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[4] Zuxian Chen, Bingbing Zhao, Yingying Wang, Yuqing Du, Siyu Feng, Junsheng Zhang, Luxiang Zhao, Weiqiang Li, Yangbao Ding, Peirong Jiao. H5N1 avian influenza virus PB2 antagonizes duck IFN-β signaling pathway by targeting mitochondrial antiviral signaling protein[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3614-3625.
[5] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[6] Yufeng Xiao, Meiqi Dong, Xian Wu, Shuang Liang, Ranhong Li, Hongyu Pan, Hao Zhang. Enrichment, domestication, degradation, adaptive mechanism, and nicosulfuron bioremediation of bacteria consortium YM2[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3529-3545.
[7] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[8] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[9] Zishuai Wang, Wangchang Li, Zhonglin Tang. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3574-3582.
[10] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[11] Minghui Li, Yilan Chen, Siqiao Wang, Xueke Sun, Yongkun Du, Siyuan Liu, Ruiqi Li, Zejie Chang, Peiyang Ding, Gaiping Zhang. Plug-and-display nanoparticle immunization of the core epitope domain induces potent neutralizing antibody and cellular immune responses against PEDV[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3598-3613.
[12] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[13] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[14] Mingxin Feng, Ying Hu, Xin Yang, Jingwen Li, Haochen Wang, Yujia Liu, Haijun Ma, Kai Li, Jiayin Shang, Yulin Fang, Jiangfei Meng. Uncovering the miRNA-mediated regulatory network involved in postharvest senescence of grape berries[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3465-3483.
[15] Li Liu, Yifeng Feng, Ziqi Han, Yaxiao Song, Jianhua Guo, Jing Yu, Zidun Wang, Hui Wang, Hua Gao, Yazhou Yang, Yuanji Wang, Zhengyang Zhao. Functional analysis of the xyloglucan endotransglycosylase/hydrolase gene MdXTH2 in apple fruit firmness formation[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3418-3434.
No Suggested Reading articles found!