Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Transcriptomic and metabolomic analyses reveal the mechanism of anthocyanin metabolism in H18 pepper leaves and the function of CaDFR1

Han Wang1,2,3*, Dongchen Li4*, Congsheng Yan1,2,3, Muhammad Aamir Manzoor5, Qiangqiang Ding1,2,3, Yan Wang1,2,3, Xiujing Hong1,2,3, Tingting Song1,2,3, Li Jia1,2,3#, Haikun Jiang1,2,3#

1 Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China.

2 Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Hefei 230001, China.

3 Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China.

4 College of Life Sciences, Anhui Agricultural University, Hefei 230036, China.

5 School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200030, China.

 Highlights 

1. The accumulation of anthocyanins on H18 pepper plants leads to a purple color in their leaves, with anthocyanins on the leaves decreasing as they grow and develop.

2. Anthocyanins produced with DHM as substrate occupy the main component of anthocyanins in H18 pepper leaves.

3. CaDRF1 plays an important role in the anthocyanin synthesis pathway of pepper leaves.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

花青苷在植物的生长、发育、繁殖和响应胁迫中发挥着至关重要的作用。此外,花青苷的抗氧化特性还能提高水果和蔬菜的品质。虽然前人对花青苷进行了较多的研究,但有关其成分以及花青苷代谢途径基因 DFR(二氢黄酮醇-4-还原酶)在辣椒叶片中的作用的信息还很有限。在这项研究中,我们使用了一种紫色叶片辣椒栽培品种 H18,其叶片上的花青苷随着生长发育而减少。靶向花青素代谢组学检测显示,飞燕草色素、锦葵色素和牵牛花色素的衍生物的含量与花青苷含量呈相同趋势,其中飞燕草色素衍生物是 H18 辣椒叶片的主要成分。对四个不同发育阶段的 H18 叶片进行了转录组测序。结果表明,不同阶段的差异基因主要与生物过程和类黄酮代谢途径有关。通过进化树和转录组表达量分析,确定了3个DFR候选功能基因。底物催化活性分析结果显示,仅CaDFR1表现出对二氢槲皮素(DHQ)、二氢杨梅素(DHM)和二氢山奈酚(DHK)三种底物的催化能力。VIGS 介导的 CaDFR1 沉默导致 H18 辣椒叶片和茎中花青苷含量显著降低,荧光定量显示花青苷代谢途径中其他候选功能基因的表达水平也有所下降。这项研究确定了 H18 辣椒叶片中的关键花青苷成分,并验证了 CaDFR1 的功能,为通过分子育种改变辣椒植株花青素含量提供了理论基础。



Abstract  

Anthocyanins play a crucial role in plant growth, development, reproduction, and stress response. Additionally, anthocyanins enhance the quality of fruits and vegetables due to their antioxidant properties. While numerous previous research has been conducted on anthocyanins, limited information exists regarding their composition and the role of the anthocyanin pathway gene DFR (dihydroflavonol 4-reductase) in chili pepper leaves. In this study, we used a purple leaf pepper cultivar H18 with anthocyanins on the leaves decreasing as they grow and develop. Targeted anthocyanin metabolite assays revealed that the contents of delphinidin, malvidin, and petunidin derivatives followed the same trend as the overall anthocyanin content, with delphinidin derivatives being the predominant component of H18 pepper leaves. Transcriptome sequencing was performed on H18 leaves at four different stages. The results showed that DEGs at various stages were primarily associated with biological processes and flavonoid metabolic pathways. Through evolutionary tree and expression analysis, three candidate genes involved in DFR function were identified. Substrate catalysis assays of CaDFRs demonstrated that only CaDFR1 was active, catalyzing DHQ, DHM, and DHK. VIGS-mediated silencing of CaDFR1 resullted in a significant decrease reduction in anthocyanin levels in H18 pepper leaves and stems and along with a decreased reduction in the expression levels of other candidate functional genes in the anthocyanin metabolic pathway. This study identifies the key anthocyanin components in the leaves of H18 peppers and validates the function of CaDFR1, providing a theoretical foundation for modifying anthocyanin content in pepper plants through molecular breeding.

Keywords:  anthocyanins       transcriptomic and metabolomic              dihydroflavonol 4-reductase              functional validation  
Online: 22 October 2025  
Fund: 

This work was supported by Postdoctoral Research Program Support of Anhui Province (2024C863), China Agriculture Research System of MOF and MARA (CARS-23-G40, CARS-23-G49), The Youth Development Fund from Anhui Academy of Agricultural Sciences (QNYC-202121). 

About author:  #Correspondence Haikun Jiang, Tel/Fax: +86-0551-65160817, E-mail: Jhk211@163.com; Li Jia, Tel/Fax: +86-0551-65160817, E-mail: jiali820@aaas.org.cn * These authors have contributed equally to this work.

Cite this article: 

Han Wang, Dongchen Li, Congsheng Yan, Muhammad Aamir Manzoor, Qiangqiang Ding, Yan Wang, Xiujing Hong, Tingting Song, Li Jia, Haikun Jiang. 2025. Transcriptomic and metabolomic analyses reveal the mechanism of anthocyanin metabolism in H18 pepper leaves and the function of CaDFR1. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.10.011

Aiguo Z, Ruiwen D, Cheng W, Cheng C, Dongmei W. 2022. Insights into the catalytic and regulatory mechanisms of dihydroflavonol 4-reductase, a key enzyme of anthocyanin synthesis in Zanthoxylum bungeanum. Tree Physiology, 43, 169-184.

Araguirang G E, Richter A S. 2022. Activation of anthocyanin biosynthesis in high light - what is the initial signal? New Phytol, 236, 2037-2043.

Baenas N, Belović M, Ilic N, Moreno D A, García-Viguera C. 2019. Industrial use of pepper (Capsicum annum L.) derived products: Technological benefits and biological advantages. Food Chem, 274, 872-885.

Bashandy H, Pietiäinen M, Carvalho E, Lim K J, Elomaa P, Martens S, Teeri T H. 2015. Anthocyanin biosynthesis in gerbera cultivar 'Estelle' and its acyanic sport 'Ivory'. Planta, 242, 601-611.

Bate-Smith E C. 1973. Haemanalysis of tannins: The concept of relative astringency. Phytochemistry, 12, 907-912.

Bharti A K, Khurana J P. 2003. Molecular characterization of transparent testa (tt) mutants of Arabidopsis thaliana (ecotype Estland) impaired in flavonoid biosynthetic pathway. Plant Science, 165, 1321-1332.

Burge S, Kelly E, Lonsdale D, Mutowo-Muellenet P, McAnulla C, Mitchell A, Sangrador-Vegas A, Yong S Y, Mulder N, Hunter S. 2012. Manual GO annotation of predictive protein signatures: the InterPro approach to GO curation. Database (Oxford), 2012, bar068.

Butelli E, Titta L, Giorgio M, Mock H P, Matros A, Peterek S, Schijlen E G, Hall R D, Bovy A G, Luo J, Martin C. 2008. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol, 26, 1301-1308.

Cackett L, Luginbuehl L H, Schreier T B, Lopez-Juez E, Hibberd J M. 2022. Chloroplast development in green plant tissues: the interplay between light, hormone, and transcriptional regulation. New Phytol, 233, 2000-2016.

Cerqueira J V A, de Andrade M T, Rafael D D, Zhu F, Martins S V C, Nunes-Nesi A, Benedito V, Fernie A R, Zsögön A. 2023. Anthocyanins and reactive oxygen species: a team of rivals regulating plant development? Plant Mol Biol, 112, 213-223.

Chen C, Wu Y, Li J, Wang X, Zeng Z, Xu J, Liu Y, Feng J, Chen H, He Y, Xia R. 2023. TBtools-II: A "one for all, all for one" bioinformatics platform for biological big-data mining. Mol Plant, 16, 1733-1742.

Chen X, Liu W, Huang X, Fu H, Wang Q, Wang Y, Cao J. 2020. Arg-type dihydroflavonol 4-reductase genes from the fern Dryopteris erythrosora play important roles in the biosynthesis of anthocyanins. PLoS One, 15, e0232090.

Davies K M, Landi M, van Klink J W, Schwinn K E, Brummell D A, Albert N W, Chagné D, Jibran R, Kulshrestha S, Zhou Y, Bowman J L. 2022. Evolution and function of red pigmentation in land plants. Ann Bot, 130, 613-636.

Du M, Zhou K, Liu Y, Deng L, Zhang X, Lin L, Zhou M, Zhao W, Wen C, Xing J, Li C B, Li C. 2020. A biotechnology-based male-sterility system for hybrid seed production in tomato. Plant J, 102, 1090-1100.

Espley R V, Jaakola L. 2023. The role of environmental stress in fruit pigmentation. Plant Cell Environ, 46, 3663-3679.

Forkmann G, Ruhnau B J Z f N C. 1987. Distinct Substrate Specificity of Dihydroflavonol 4-Reductase from Flowers of Petunia hybrida. 42, 1146 - 1148.

He S, Ye Y, Yuan Y, Lv M, Wang M, Xu Q, Xu X, Chen X. 2023. Insights into flavonoid biosynthesis during cucumber fruit peel coloration based on metabolite profiling and transcriptome analyses. Horticultural Plant Journal, 9, 763-776.

Helariutta Y, Elomaa P, Kotilainen M, Seppänen P, Teeri T H. 1993. Cloning of cDNA coding for dihydroflavonol-4-reductase (DFR) and characterization of dfr expression in the corollas of Gerbera hybrida var. Regina (Compositae). Plant Molecular Biology, 22, 183-193.

Huang Y, Zhou S, Zhao G, Ye F. 2021. Destabilisation and stabilisation of anthocyanins in purple-fleshed sweet potatoes: A review. Trends in Food Science & Technology, 116, 1141-1154.

Jaakola L. 2013. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci, 18, 477-483.

Jaakola L, Määttä K, Pirttilä A M, Törrönen R, Kärenlampi S, Hohtola A. 2002. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiol, 130, 729-739.

Johnson E T, Ryu S, Yi H, Shin B, Cheong H, Choi G. 2001. Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase. Plant J, 25, 325-333.

Johnson E T, Yi H, Shin B, Oh B J, Cheong H, Choi G. 1999. Cymbidium hybrida dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins. Plant J, 19, 81-85.

Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 28, 27-30.

Kapoor L, Simkin A J, George Priya Doss C, Siva R. 2022. Fruit ripening: dynamics and integrated analysis of carotenoids and anthocyanins. BMC Plant Biology, 22,

Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton T A, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao G Q, Nehra N S, Lu C Y, Dyson B K, Tsuda S, Ashikari T, Kusumi T, Mason J G, Tanaka Y. 2007. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol, 48, 1589-1600.

Koes R, Verweij W, Quattrocchio F. 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci, 10, 236-242.

Kubasek W L, Shirley B W, McKillop A, Goodman H M, Briggs W, Ausubel F M. 1992. Regulation of Flavonoid Biosynthetic Genes in Germinating Arabidopsis Seedlings. The Plant Cell, 4, 1229-1236.

Li C, Shi L, Li X, Wang Y, Bi Y, Li W, Ma H, Chen B, Zhu L, Fu Y. 2022. ECAP is a key negative regulator mediating different pathways to modulate salt stress-induced anthocyanin biosynthesis in Arabidopsis. New Phytol, 233, 2216-2231.

Liu H, Lou Q, Ma J, Su B, Gao Z, Liu Y. 2019. Cloning and Functional Characterization of Dihydroflavonol 4-Reductase Gene Involved in Anthocyanidin Biosynthesis of Grape Hyacinth. Int J Mol Sci, 20,

Liu J, Ai X, Wang Y, Lu Q, Li T, Wu L, Sun L, Shen H. 2020. Fine mapping of the Ca3GT gene controlling anthocyanin biosynthesis in mature unripe fruit of Capsicum annuum L. Theor Appl Genet, 133, 2729-2742.

Mattioli R, Francioso A, Mosca L, Silva P. 2020. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules, 25,

Mujanović I, Balijagić J, Bajagić M, Poštić D, Đurović S. 2024. Variations in polyphenol content and anthocyanin composition in bilberry populations (Vaccinium myrtillus L.) due to environmental factors. Journal of Food Composition and Analysis, 136, 106732.

Nakatsuka T, Suzuki T, Harada K, Kobayashi Y, Dohra H, Ohno H. 2019. Floral organ- and temperature-dependent regulation of anthocyanin biosynthesis in Cymbidium hybrid flowers. Plant Sci, 287, 110173.

Petit P, Granier T, d'Estaintot B L, Manigand C, Bathany K, Schmitter J-M, Lauvergeat V, Hamdi S, Gallois B. 2007. Crystal Structure of Grape Dihydroflavonol 4-Reductase, a Key Enzyme in Flavonoid Biosynthesis. Journal of Molecular Biology, 368, 1345-1357.

Petroni K, Pilu R, Tonelli C. 2014. Anthocyanins in corn: a wealth of genes for human health. Planta, 240, 901-911.

Polashock J J, Griesbach R J, Sullivan R F, Vorsa N. 2002. Cloning of a cDNA encoding the cranberry dihydroflavonol-4-reductase (DFR) and expression in transgenic tobacco. Plant Science, 163, 241-251.

Rodríguez-Lorenzo M, Mauri N, Royo C, Rambla J L, Diretto G, Demurtas O, Hilbert G, Renaud C, Tobar V, Huete J, Delrot S, Granell A, Martínez-Zapater J M, Carbonell-Bejerano P. 2023. The flavour of grape colour: anthocyanin content tunes aroma precursor composition by altering the berry microenvironment. J Exp Bot, 74, 6369-6390.

Rodríguez-Mena A, Ochoa-Martínez L A, González-Herrera S M, Rutiaga-Quiñones O M, González-Laredo R F, Olmedilla-Alonso B. 2023. Natural pigments of plant origin: Classification, extraction and application in foods. Food Chemistry, 398,

Ruan H, Shi X, Gao L, Rashid A, Li Y, Lei T, Dai X, Xia T, Wang Y. 2022. Functional analysis of the dihydroflavonol 4-reductase family of Camellia sinensis: exploiting key amino acids to reconstruct reduction activity. Hortic Res, 9, uhac098.

Saigo T, Wang T, Watanabe M, Tohge T. 2020. Diversity of anthocyanin and proanthocyanin biosynthesis in land plants. Curr Opin Plant Biol, 55, 93-99.

Seitz C, Vitten M, Steinbach P, Hartl S, Hirsche J, Rathje W, Treutter D, Forkmann G. 2007. Redirection of anthocyanin synthesis in Osteospermum hybrida by a two-enzyme manipulation strategy. Phytochemistry, 68, 824-833.

Shi L, Li X, Fu Y, Li C. 2023. Environmental Stimuli and Phytohormones in Anthocyanin Biosynthesis: A Comprehensive Review. Int J Mol Sci, 24,

Shi Q, Du J, Zhu D, Li X, Li X. 2020. Metabolomic and Transcriptomic Analyses of Anthocyanin Biosynthesis Mechanisms in the Color Mutant Ziziphus jujuba cv. Tailihong. J Agric Food Chem, 68, 15186-15198.

Sun C, Deng L, Du M, Zhao J, Chen Q, Huang T, Jiang H, Li C B, Li C. 2020. A Transcriptional Network Promotes Anthocyanin Biosynthesis in Tomato Flesh. Mol Plant, 13, 42-58.

Sun H-l, Wang X-y, Shang Y, Wang X-q, Du G-d, LÜ D-g. 2021. Preharvest application of melatonin induces anthocyanin accumulation and related gene upregulation in red pear (Pyrus ussuriensis). Journal of Integrative Agriculture, 20, 2126-2137.

Tanaka Y, Brugliera F, Chandler S. 2009. Recent progress of flower colour modification by biotechnology. Int J Mol Sci, 10, 5350-5369.

Tian J, Chen M C, Zhang J, Li K T, Song T T, Zhang X, Yao Y C. 2017. Characteristics of dihydroflavonol 4-reductase gene promoters from different leaf colored Malus crabapple cultivars. Hortic Res, 4, 17070.

Wang G, Chen B, Du H, Zhang F, Zhang H, Wang Y, He H, Geng S, Zhang X. 2018. Genetic mapping of anthocyanin accumulation-related genes in pepper fruits using a combination of SLAF-seq and BSA. PLoS One, 13, e0204690.

Wang X, Chen X, Luo S, Ma W, Li N, Zhang W, Tikunov Y, Xuan S, Zhao J, Wang Y, Zheng G, Yu P, Bai Y, Bovy A, Shen S. 2022. Discovery of a DFR gene that controls anthocyanin accumulation in the spiny Solanum group: roles of a natural promoter variant and alternative splicing. Plant J, 111, 1096-1109.

Xia D, Zhou H, Wang Y, Li P, Fu P, Wu B, He Y. 2021. How rice organs are colored: The genetic basis of anthocyanin biosynthesis in rice. The Crop Journal, 9, 598-608.

Xie D Y, Jackson L A, Cooper J D, Ferreira D, Paiva N L. 2004. Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula. Plant Physiol, 134, 979-994.

Xu H, Wang G, Ji X, Xiang K, Wang T, Zhang M, Shen G, Zhang R, Zhang J, Chen X. 2024. JrATHB-12 mediates JrMYB113 and JrMYB27 to control the anthocyanin levels in different types of red walnut. Journal of Integrative Agriculture, 23, 2649-2661.

Ying J, Wen S, Cai Y, Ye Y, Li L, Qian R. 2024. Decoding anthocyanin biosynthesis regulation in Asparagus officinalis peel coloration: Insights from integrated metabolomic and transcriptomic analyses. Plant Physiol Biochem, 215, 108980.

Zhang J, Li S, An H, Zhang X, Zhou B. 2022. Integrated transcriptome and metabolome analysis reveals the anthocyanin biosynthesis mechanisms in blueberry (Vaccinium corymbosum L.) leaves under different light qualities. Front Plant Sci, 13, 1073332.

Zhang S-l, Deng P, Xu Y-c, LÜ S-w, Wang J-j. 2016. Quantification and analysis of anthocyanin and flavonoids compositions, and antioxidant activities in onions with three different colors. Journal of Integrative Agriculture, 15, 2175-2181.

Zhang Y, Butelli E, Martin C. 2014. Engineering anthocyanin biosynthesis in plants. Curr Opin Plant Biol, 19, 81-90.

Zhou Y, Deng Y, Liu D, Wang H, Zhang X, Liu T, Wang J, Li Y, Ou L, Liu F, Zou X, Ouyang B, Li F. 2021. Promoting virus-induced gene silencing of pepper genes by a heterologous viral silencing suppressor. Plant Biotechnol J, 19, 2398-2400.

Zhu L, Liao Y, Zhang T, Zeng Z, Wang J, Duan L, Chen X, Lin K, Liang X, Han Z, Huang Y, Wu W, Hu H, Xu Z F, Ni J. 2024. Reactive oxygen species act as the key signaling molecules mediating light-induced anthocyanin biosynthesis in Eucalyptus. Plant Physiol Biochem, 212, 108715.

 

[1] Niu Wang, Weidong Zhang, Zhenyu Zhong, Xiongbo Zhou, Xinran Shi, Xin Wang. FGF7 secreted from dermal papillae cell regulates the proliferation and differentiation of hair follicle stem cell[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3583-3597.
[2] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[3] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[4] Zuxian Chen, Bingbing Zhao, Yingying Wang, Yuqing Du, Siyu Feng, Junsheng Zhang, Luxiang Zhao, Weiqiang Li, Yangbao Ding, Peirong Jiao. H5N1 avian influenza virus PB2 antagonizes duck IFN-β signaling pathway by targeting mitochondrial antiviral signaling protein[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3614-3625.
[5] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[6] Yufeng Xiao, Meiqi Dong, Xian Wu, Shuang Liang, Ranhong Li, Hongyu Pan, Hao Zhang. Enrichment, domestication, degradation, adaptive mechanism, and nicosulfuron bioremediation of bacteria consortium YM2[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3529-3545.
[7] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[8] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[9] Zishuai Wang, Wangchang Li, Zhonglin Tang. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3574-3582.
[10] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[11] Minghui Li, Yilan Chen, Siqiao Wang, Xueke Sun, Yongkun Du, Siyuan Liu, Ruiqi Li, Zejie Chang, Peiyang Ding, Gaiping Zhang. Plug-and-display nanoparticle immunization of the core epitope domain induces potent neutralizing antibody and cellular immune responses against PEDV[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3598-3613.
[12] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[13] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[14] Mingxin Feng, Ying Hu, Xin Yang, Jingwen Li, Haochen Wang, Yujia Liu, Haijun Ma, Kai Li, Jiayin Shang, Yulin Fang, Jiangfei Meng. Uncovering the miRNA-mediated regulatory network involved in postharvest senescence of grape berries[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3465-3483.
[15] Li Liu, Yifeng Feng, Ziqi Han, Yaxiao Song, Jianhua Guo, Jing Yu, Zidun Wang, Hui Wang, Hua Gao, Yazhou Yang, Yuanji Wang, Zhengyang Zhao. Functional analysis of the xyloglucan endotransglycosylase/hydrolase gene MdXTH2 in apple fruit firmness formation[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3418-3434.
No Suggested Reading articles found!