Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Sea barley: evolutionary insights and potential for crop improvement

Zhengyuan Xu1, 2, Zheng Wang1, Yuling Zheng1, Hao Gao1, Qiufang Shen1, 2, Guoping Zhang1, 2#

1Key Laboratory of Crop Resource of Zhejiang Province, Department of AgronomyZhejiang University, Hangzhou 310058, China

2 Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China

 Highlights 

Sea barley is a wild Triticeae species exhibiting exceptional salt and waterlogging tolerance, serving as a genetic resource for enhancing stress tolerance in cereal crops.

The genome of diploid Hordeum marinum demonstrates significant adaptation to salinity and waterlogging conditions.

Sea barley exhibits partial cross-compatibility with wheat, facilitating the development of cultivars with enhanced stress tolerance.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

禾本科小麦族(Triticeae)是全球最重要的谷类作物来源,涵盖小麦、大麦和黑麦等,年产量达9亿吨,占谷物总产量的30%。利用野生近缘种对增强作物抗逆性至关重要。海大麦(Hordeum marinum Huds)作为小麦和大麦的野生近缘种,具有卓越的耐盐耐涝特性及其他优良性状,且与普通小麦存在部分杂交亲和性。该物种可望成为作物育种中优异基因的重要供体,既可作为从头驯化作物,也可作为盐碱地涝渍区饲草栽培。本文系统综述了海大麦的研究进展,重点阐述其起源演化、基因组特征、遗传转化、抗逆机制、真菌抗性及与小麦杂交亲和性,并指出当前研究的空白点与未来研究方向,以推动该资源在作物育种及新作物开发中的应用,助力海大麦从野生草种转型为气候智慧型农业的关键遗传资源。



Abstract  

Triticeae represents one of the most significant sources of cereal crops in Poaceae, including wheat, barley, and rye. Global annual production reaches 900 million tons, constituting 30% of total grain production. The utilization of wild relatives is crucial for enhancing crop resilience. Sea barley (Hordeum marinum Huds), a wild relative species of wheat and barley, demonstrates exceptional salt/waterlogging tolerance and other valuable traits. Moreover, it exhibits partial cross-compatibility with common wheat. Sea barley has emerged as an essential donor of elite genes for crop breeding, with potential applications both as a de novo domesticated crop and as forage cultivated in saline-alkali soils and waterlogged areas. This review synthesizes current knowledge regarding sea barley, emphasizing its origin, evolution, genome characteristics, genetic transformation, mechanisms of stress tolerance, fungal resistance, and cross-compatibility with wheat. Additionally, we identify key knowledge gaps and future research directions to enhance its utilization for crop breeding and novel crop development, aiming to transform sea barley from an underutilized wild grass into a genetic resource for climate-smart agriculture.

Keywords:  sea barley       genome sequencing              genetic transformation              gene-editing system              stress tolerance              cross-compatibility  
Online: 21 October 2025  
Fund: 

This study was supported by the Key Research Foundation of Science and Technology Department of Zhejiang Province, China (2021C02064-3) and the Jiangsu Collaborative Innovation Center for Modern Crop Production, China.

About author:  #Correspondence Guoping Zhang, E-mail: zhanggp@zju.edu.cn

Cite this article: 

Zhengyuan Xu, Zheng Wang, Yuling Zheng, Hao Gao, Qiufang Shen, Guoping Zhang. 2025. Sea barley: evolutionary insights and potential for crop improvement. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.10.010

Alamri S A, Barrett-Lennard E G, Teakle N L, Colmer T D. 2013. Improvement of salt and waterlogging tolerance in wheat: Comparative physiology of Hordeum marinum-Triticum aestivum amphiploids with their H. marinum and wheat parents. Functional Plant Biology, 40, 1168-1178.

Aronson J A. 1989. Haloph: A Data Base of Salt Tolerant Plants of the World. Office of Arid Lands Studies, University of Arizona, USA.

Avila C M, Rodriguez-Suarez C, Atienza S G. 2021. Tritordeum: Creating a new crop specie-the successful use of plant genetic resources. Plants, 10, 1029.

Avni R, Nave M, Barad O, Baruch K, Twardziok S O, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K, et al. 2017. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 357, 93-96.

Barrett-Lennard E G, Shabala S N. 2013. The waterlogging/salinity interaction in higher plants revisited-focusing on the hypoxia-induced disturbance to K+ homeostasis. Functional Plant Biology, 40, 872-882

Bartlett J G, Alves S C, Smedley M, Snape J W, Harwood W A. 2008. High throughput Agrobacterium-mediated barley transformation. Plant Methods, 4, 22.

Blattner F R. 2009. Progress in phylogenetic analysis and a new infrageneric classification of the barley genus Hordeum (Poaceae: Triticeae). Breeding Science, 59, 471-480.

Bohra A, Kilian B, Sivasankar S, Caccamo M, Mba C, McCouch S R, Varshney R K. 2022. Reap the crop wild relatives for breeding future crops. Trends in Biotechnology, 40, 412-431.

Brassac J, Jakob S S, Blattner F R. 2012. Progenitor-derivative relationships of Hordeum polyploids (Poaceae, Triticeae) inferred from sequences of TOPO6, a nuclear low-copy gene region. PLoS ONE, 7, e33808.

Byrt C S, Xu B, Krishnan M, Lightfoot D J, Athman A, Jacobs A K, Watson-Haigh N S, Plett D, Munns R, Tester M, Gilliham M. 2014. The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat. The Plant Journal, 80, 516-526.

Carmona A, Friero E, de Bustos A, Jouve N, Cuadrado Á. 2013. The evolutionary history of sea barley (Hordeum marinum) revealed by comparative physical mapping of repetitive DNA. Annals of Botany, 112, 1845-1855.

Chen C L, Hu Y X, Ikeuchi M, Jiao Y L, Prasad K, Su Y H, Xiao J, Xu L, Yang W B, Zhao Z, et al. 2024. Plant regeneration in the new era: From molecular mechanisms to biotechnology applications. Science China Life Sciences, 67, 1338-1367.

Colmer T D. 2003. Long-distance transport of gases in plants: A perspective on internal aeration and radial oxygen loss from roots. Plant Cell & Environment, 26, 17-36.

Colmer T D, Munns R, Flowers T J. 2005. Improving salt tolerance of wheat and barley: Future prospects. Australian Journal of Experimental Agriculture, 45, 1425-1443.

Coyne J A, Orr H A. 2004. Speciation. Sinauer Associates, Sunderland, Massachusetts.

Debernardi J M, Tricoli D M, Ercoli M F, Hayta S, Ronald P, Palatnik J F, Dubcovsky J. 2019. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnology, 38, 1274-1279.

Du X M, Fang T, Liu Y, Huang L Y, Zang M S, Wang G Y, Liu J Y, Fu J J. 2019. Transcriptome profiling predicts new genes to promote maize callus formation and transformation. Frontiers in Plant Science, 10, 1633.

Ejiri M, Fukao T, Miyashita T, Shiono K. 2021. A barrier to radial oxygen loss helps the root system cope with waterlogging-induced hypoxia. Breeding Science, 71, 40-50.

Ellis R P, Forster B P, Robinson D, Handley L L, Gordon D C, Russell J R, Powell W. 2000. Wild barley: A source of genes for crop improvement in the 21st century? Journal of Experimental Botany, 51, 9-17.

Feng H, Du Q W, Jiang Y, Jia Y, He T H, Wang Y B, Chapman B, Yu J X, Zhang H W, Gu M X, et al. 2025. Hordeum I genome unlocks adaptive evolution and genetic potential for crop improvement. Nature Plants, 11, 438-452.

Feuillet C, Salse J. 2009. Comparative genomics in the Triticeae. In: Feuillet C, Muehlbauer G J, eds., Genetics and Genomics of the Triticeae. Springer, New York, NY. pp. 451-477.

Gao C. 2021. Genome engineering for crop improvement and future agriculture. Cell, 184, 1621-1635.

Gao H, Chen M J, Jin N F, Ye L Z, Zhang G P, Shen Q F, Xu Z Y. 2025. A comprehensive analytical method 'Regulatome' revealed a novel pathway for aerenchyma formation under waterlogging in wheat. Physiologia Plantarum, 177, e70157.

Garthwaite A J, Armstrong W, Colmer T D. 2008. Assessment of O₂ diffusivity across the barrier to radial O₂ loss in adventitious roots of Hordeum marinum. New Phytologist, 179, 405-416.

Garthwaite A J, von Bothmer R, Colmer T D. 2005. Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl- into the shoots. Journal of Experimental Botany, 56, 2365-2378.

Garthwaite A J, Steudle E, Colmer T D. 2006. Water uptake by roots of Hordeum marinum: Formation of a barrier to radial O₂ loss does not affect root hydraulic conductivity. Journal of Experimental Botany, 57, 655-664.

Guerchi A, Mnafgui W, Jabri C, Merghni M, Sifaoui K, Mahjoub A, Ludidi N, Badri M. 2024. Improving productivity and soil fertility in Medicago sativa and Hordeum marinum through intercropping under saline conditions. BMC Plant Biology, 24, 158.

Hazzouri K M, Khraiwesh B, Amiri K M A, Pauli D, Blake T, Shahid M, Mullath S K, Nelson D, Mansour A L, Salehi-Ashtiani K, Purugganan M, Masmoudi K. 2018. Mapping of HKT1;5 Gene in barley using GWAS approach and its implication in salt tolerance mechanism. Frontiers in Plant Science, 9, 156.

Hayta S, Smedley M A, Demir S U, Blundell R, Hinchliffe A, Atkinson N, Harwood W A. 2019. An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods, 15, 121.

Huang L, Kuang L H, Li X, Wu L Y, Wu D Z, Zhang G P. 2018. Metabolomic and transcriptomic analyses reveal the reasons why Hordeum marinum has higher salt tolerance than Hordeum vulgare. Environmental and Experimental Botany, 156, 48-61.

Huang L, Kuang L H, Wu L Y, Shen Q F, Han Y, Jiang L X, Wu D Z, Zhang G P. 2020. The HKT transporter HvHKT1;5 negatively regulates salt tolerance. Plant Physiology, 182, 584-596.

Huang L, Kuang L H, Wu L Y, Wu D Z, Zhang G P. 2019. Comparisons in functions of HKT1;5 transporters between Hordeum marinum and Hordeum vulgare in responses to salt stress. Plant Growth Regulation, 89, 309-319.

IPCC (Intergovernmental Panel on Climate Change). 2023. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. Intergovernmental Panel on Climate Change, Geneva, Switzerland.

Isayenkov S, Hilo A, Rizzo P, Tandron Moya Y A, Rolletschek H, Borisjuk L, Radchuk V. 2020. Adaptation strategies of halophytic barley Hordeum marinum ssp. marinum to high salinity and osmotic stress. International Journal of Molecular Sciences, 21, 9019.

Islam S, Malik A I, Islam A K M R, Colmer T D. 2007. Salt tolerance in a Hordeum marinum-Triticum aestivum amphiploid, and its parents. Journal of Experimental Botany, 58, 1219-1229.

IWGSC (Internation Wheat Genome Sequencing Consortium). 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361, eaar7191.

Jakob S S, Ihlow A, Blattner F R. 2007. Combined ecological niche modelling and molecular phylogeography revealed the evolutionary history of Hordeum marinum (Poaceae)-niche differentiation, loss of genetic diversity, and speciation in Mediterranean Quaternary refugia. Molecular Ecology, 16, 1713-1727.

Jayakodi M, Padmarasu S, Haberer G, Bonthala V S, Gundlach H, Monat C, Lux T, Kamal N, Lang D I, Himmelbach A, et al. 2020. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature, 588, 284-289.

Jiménez J D, Clode P L, Signorelli S, Veneklaas E J, Colmer T D, Kotula L. 2021. The barrier to radial oxygen loss impedes the apoplastic entry of iron into the roots of Urochloa humidicola. Journal of Experimental Botany, 72, 3279-3293.

Jin N F, Cai Z Y, Ye L Z, Shen Q F, Zhang G P, Xu Z Y. 2025. Improvement of waterlogging tolerance in wheat by the stress priming through inducing aerenchyma formation. Plant Growth Regulation, 105, 245-255.

Jouve N, Carmona A, Bustos A D, Cuadrado A. 2018. The phylogenetic relationships of species and cytotypes in the genus Hordeum based on molecular karyotyping. Current Research in Phylogenetics and Evolutionary Biology, 10, CRPEB-102.

Kaur N, Qadir M, Francis D V, Alok A, Tiwari S, Ahmed Z F R. 2025. CRISPR/Cas9: A sustainable technology to enhance climate resilience in major Staple Crops. Frontiers in Genome Editing, 7, 1533197.

Kobayashi N I, Yamaji N, Yamamoto H, Okubo K, Ueno H, Costa A, Tanoi K, Matsumura H, Fujii-Kashino M, Horiuchi T, Nayef M A, Shabala S, An G, Ma J F, Horie T. 2017. OsHKT1;5 mediates Na⁺ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. The Plant Journal, 91, 657-670.

Komatsuda T, Salomon B, Bryngelsson T, von Bothmer R. 2001. Phylogenetic analysis of Hordeum marinum Huds. based on nucleotide sequences linked to the vrs1 locus. Plant Systematics and Evolution, 227, 137-144.

Kotula L, Colmer T D, Nakazono M. 2014. Effects of organic acids on the formation of the barrier to radial oxygen loss in roots of Hordeum marinum. Functional Plant Biology, 41, 187-202.

Kotula L, Schreiber L, Colmer T D, Nakazono M. 2017. Anatomical and biochemical characterisation of a barrier to radial O₂ loss in adventitious roots of two contrasting Hordeum marinum accessions. Functional Plant Biology, 44, 845-857.

Kuang L H, Shen Q F, Chen L Y, Ye L Z, Yan T, Chen Z H, Waugh R, Li Q, Huang L, Cai S G, Fu L B, Xing P W, Wang K, Shao J R, Wu F B, Jiang L X, Wu D Z, Zhang G P. 2022. The genome and gene editing system of sea barleygrass provide a novel platform for cereal domestication and stress tolerance studies. Plant Communications, 3, 100333.

Lesk C, Rowhani P, Ramankutty N. 2016. Influence of extreme weather disasters on global crop production. Nature, 529, 84-87.

Li G W, Wang L J, Yang J P, He H, Jin H B, Li X M, Ren T H, Ren Z L, Li F, Han X, et al. 2021. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nature Genetics, 53, 574-584.

Linde-Laursen I, von Bothmer R, Jacobsen N. 1992. Relationships in the genus Hordeum: Giemsa C-banded karyotypes. Hereditas, 116, 111-116.

Ling H Q, Ma B, Shi X L, Liu H, Dong L L, Sun H, Cao Y H, Gao Q, Zheng S S, Li Y, et al. 2018. Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature, 557, 424-428.

Luan H Y, Guo B J, Pan Y H, Lv C, Shen H Q, Xu R G. 2018. Morpho-anatomical and physiological responses to waterlogging stress in different barley (Hordeum vulgare L.) genotypes. Plant Growth Regulation, 85, 399-409.

Luo M C, Gu Y Q, Puiu D, Wang H, Twardziok S O, Deal K R, Huo N X, Zhu T T, Wang L, Wang Y, et al. 2017. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature, 551, 498-502.

Maccaferri M, Harris N S, Twardziok S O, Pasam R K, Gundlach H, Spannagl M, Ormanbekova D, Lux T, Prade V M, Milner S G, et al. 2019. Durum wheat genome highlights past domestication signatures and future improvement targets. Nature Genetics, 51, 885-895.

Malik A I, English J P, Colmer T D. 2009. Tolerance of Hordeum marinum accessions to O₂ deficiency, salinity and these stresses combined. Annals of Botany, 103, 237-248.

Malik A I, Islam A K M R, Colmer T D. 2011. Transfer of the barrier to radial oxygen loss in roots of Hordeum marinum to wheat (Triticum aestivum): Evaluation of four H. marinum-wheat amphiploids. New Phytologist, 190, 499-508.

Mamidi S, Healey A, Huang P, Grimwood J, Jenkins J, Barry K, Sreedasyam A, Shu S, Lovell J T, Feldman M, Wu J, et al. 2020. A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci. Nature Biotechnology, 38, 1203-1210.

Maršálová L, Vítámvás P, Hynek R, Prášil I T, Kosová K. 2016. Proteomic response of Hordeum vulgare cv. Tadmor and Hordeum marinum to salinity stress: Similarities and differences between a glycophyte and a halophyte. Frontiers in Plant Science, 7, 1154.

Mascher M, Wicker T, Jenkins J, Plott C, Lux T, Koh C S, Ens J, Gundlach H, Boston L B, Tulpová Z, et al. 2021. Long-read sequence assembly: A technical evaluation in barley. The Plant Cell, 33, 1888-1906.

McDonald M P, Galwey N W, Colmer T D. 2001. Waterlogging tolerance in the tribe Triticeae: The adventitious roots of Critesion marinum have a relatively high porosity and a barrier to radial oxygen loss. Plant Cell & Environment, 24, 585-596.

Medini W, Farhat N, Al-Rawi S, Mahto H, Qasim H, Ben-Halima E, Bessrour M, Chibani F, Abdelly C, Fettke J, Rabhi M. 2019. Do carbohydrate metabolism and partitioning contribute to the higher salt tolerance of Hordeum marinum compared to Hordeum vulgareActa Physiologiae Plantarum, 41, 190.

Metoui-Ben Mahmoud O, Hidri R, Abdelly C, Debez A. 2024. Bacillus pumilus isolated from sabkha rhizosphere ameliorates the behavior of the facultative halophyte Hordeum marinum when salt-challenged by improving nutrient uptake and soil health-related traits. Plant Stress, 11, 100383.

Miller W, Makova K D, Nekrutenko A, Hardison R C. 2004. Comparative genomics. Annual Review of Genomics and Human Genetics, 5, 15-56.

Munns R, James R A, Xu B, Athman A, Conn S J, Jordans C, Byrt C S, Hare R A, Tyerman S D, Tester M, Plett D, Gilliham M. 2012. Wheat grain yield on saline soils is improved by an ancestral Na⁺ transporter gene. Nature Biotechnology, 30, 360-364.

Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.

Murphy D J. 2007. People, Plants and Genes: The Story of Crops and Humanity. Oxford University Press, UK.

Nevo E, Chen G X. 2010. Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell & Environment, 33, 670-685.

Nobrega M A, Pennacchio L A. 2004. Comparative genomic analysis as a tool for biological discovery. The Journal of Physiology, 554, 31-39.

Ovesna J, Chrpova J, Kolarikova L, Svoboda P, Hanzalova A, Palicova J, Holubec V. 2023. Exploring wild Hordeum spontaneum and Hordeum marinum Accessions as genetic resources for fungal resistance. Plants, 12, 3258.

Pedersen O, Sauter M, Colmer T D, Nakazono M. 2020. Regulation of root adaptive anatomical and morphological traits during low soil oxygen. New Phytologist, 229, 42-49.

Przetakiewicz A, Orczyk W, Nadolska-Orczyk A. 2003. The effect of auxin on plant regeneration of wheat, barley and triticale. Plant Cell Tissue and Organ Culture, 73, 245-256.

Renziehausen T, Chaudhury R, Hartman S, Mustroph A, Schmidt-Schippers R R. 2025. A mechanistic integration of hypoxia signaling with energy, redox, and hormonal cues. Plant Physiology, 197, kiae596.

Saoudi W, Taamalli W, Badri M, Talbi O Z, Abdelly C. 2024. Genetic variation in growth, ionic accumulation and salt tolerance indices under long-term salt stress in halophytic Tunisian sea barley (Hordeum marinum ssp. marinum). Crop & Pasture Science, 75, CP23199.

Sato K, Abe F, Mascher M, Haberer G, Gundlach H, Spannagl M, Shirasawa K, Isobe S. 2021a. Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar 'Fielder'. DNA Research, 28, dsab008.

Sato K, Mascher M, Himmelbach A, Haberer G, Spannagl M, Stein N. 2021b. Chromosome-scale assembly of wild barley accession “OUH602”. G3-Genes Genomes Genetics, 11, jkab244.

Schnable P S, Ware D, Fulton R S, Stein J C, Wei F S, Pasternak S, Liang C Z, Zhang J W, Fulton L, Graves T A, et al. 2009. The B73 maize genome: Complexity, diversity, and dynamics. Science, 326, 1112-1115.

Schreiber M, Mascher M, Wright J, Padmarasu S, Himmelbach A, Heavens D, Milne L, Clavijo B J, Stein N, Waugh R. 2020. A genome assembly of the barley ‘transformation reference’ cultivar Golden Promise. G3-Genes Genomes Genetics, 10, 1823-1827.

Shen Q F, Fu L B, Su T T, Ye L Z, Huang L, Kuang L H, Wu L Y, Wu D Z, Chen Z H, Zhang G P. 2020. Calmodulin HvCaM1 negatively regulates salt tolerance via modulation of HvHKT1s and HvCAMTA4. Plant Physiology, 183, 1650-1662.

Shi X, Ling H. 2018. Current advances in genome sequencing of common wheat and its ancestral species. The Crop Journal, 6, 15-21.

Shiono K, Yoshikawa M, Kreszies T, Yamada S, Hojo Y, Matsuura T, Mori I C, Schreiber L, Yoshioka T. 2022. Abscisic acid is required for exodermal suberization to form a barrier to radial oxygen loss in the adventitious roots of rice (Oryza sativa). New Phytologist, 233, 655-669.

Subbarao G V, Kishii M, Bozal-Leorri A, Ortiz-Monasterio I, Gao X, Ibba M I, Karwat H, Gonzalez-Moro M B, Gonzalez-Murua C, Yoshihashi T, Tobita S, Kommerell V, Braun H J, Iwanaga M. 2021. Enlisting wild grass genes to combat nitrification in wheat farming: A nature-based solution. Proceedings of the National Academy of Sciences of the United States of America, 118, e2106595118.

Tam K P, Chan H W, Clayton S. 2023. Climate change anxiety in China, India, Japan, and the United States. Journal of Environmental Psychology, 87, 101991.

Tibesigwa D G, Zhuang W H, Matola S H, Zhao H Q, Li W X, Yang L, Ren J R, Liu Q Q, Yang J L. 2025. Molecular insights into salt stress adaptation in plants. Plant Cell and Environment, 48, 5604-5615.

van Veen H, Triozzi P M, Loreti E. 2025. Metabolic strategies in hypoxic plants. Plant Physiology, 197, kiae564.

Vidoz M L, Loreti E, Mensuali A, Alpi A, Perata P. 2010. Hormonal interplay during adventitious root formation in flooded tomato plants. The Plant Journal, 63, 551-562.

Vogel J, Hill T. 2008. High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Reports, 27, 471-478.

Walkowiak S, Gao L, Monat C, Haberer G, Kassa M T, Brinton J, Ramirez-Gonzalez R H, Kolodziej M C, Delorean E, Thambugala D, et al. 2020. Multiple wheat genomes reveal global variation in modern breeding. Nature, 588, 277-283.

Wang F Y, He B Q, Hong Y, Fu L B, Shen Q F, Zhang G P. 2023. Time-course of genotype and hormone-related effects on callus proliferation in barley genetic transformation. Crop Design, 2, 100043.

Wang H W, Sun S L, Ge W Y, Zhao L F, Hou B Q, Wang K, Lyu Z F, Chen L Y, Xu S S, Guo J, et al. 2020. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 368, eaba5435.

Watanabe K, Takahashi H, Sato S, Nishiuchi S, Omori F, Malik A, Colmer T D, Mano Y, Nakazono M. 2017. A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nicaraguensis is located on the short-arm of chromosome 3. Plant Cell & Environment, 40, 304-316.

Wu D Z, Shen Q F, Cai S G, Chen Z H, Dai F, Zhang G P. 2013. Ionomic responses and correlations between elements and metabolites under salt stress in wild and cultivated barley. Plant and Cell Physiology, 54, 1976-1988.

Xu Z Y, Han A L, Wang F Y, Gao H, Shen Q F, Zhang G P. 2025a. Transcriptome and metabolome profiles revealed differential response to waterlogging in leaves between sea barley (Hordeum marinum) and barley (Hordeum vulgare). Journal of Plant Growth Regulation, doi: 10.1007/s00344-025-11818-0.

Xu Z Y, Shen Q F, Zhang G P. 2022a. The mechanisms for the difference in waterlogging tolerance among sea barley, wheat and barley. Plant Growth Regulation, 96, 431-441.

Xu Z Y, Wang F Y, Tu Y S, Xu Y F, Shen Q F, Zhang G P. 2022b. Transcriptome analysis reveals genetic factors related to callus induction in barley. Agronomy, 12, 749.

Xu Z Y, Wang Z, Gao H, Chen M J, Zheng Y L, Shen Q F, Zhang G P. 2025b. An integrated analysis of transcriptome and metabolome reveals aerenchyma-mediated antioxidant defense and energy metabolism conferring high waterlogging tolerance in sea barley. Plant Stress, 16, 100813.

Xu Z Y, Ye L Z, Shen Q F, Zhang G P. 2024. Advances in the study of waterlogging tolerance in plants. Journal of Integrative Agriculture, 23, 2877-2897.

Yaduvanshi N P S, Setter T L, Sharma S K, Singh K N, Kulshreshtha N. 2014. Influence of waterlogging on yield of wheat (Triticum aestivum), redox potentials, and concentrations of microelements in different soils in India and Australia. Soil Research, 50, 489-499.

Yerlikaya B A, Yerlikaya S, Gül B, Yoldas H, Kavas M, Mohamed H I. 2025. Harnessing CRISPR/Cas9 in engineering biotic stress immunity in crops. Planta, 262, 54.

Yin B, Sun G L, Sun D K, Ren X F. 2020. Phylogenetic analysis of two single-copy nuclear genes revealed origin of tetraploid barley Hordeum marinum. PLoS ONE, 15, e0235475.

Yu S P, Du Q W. 2023. The complete chloroplast genome of Hordeum marinum ssp. marinum. Mitochondrial DNA Part B, 8, 1426-1429.

Zeng X Q, Xu T, Ling Z H, Wang Y L, Li X F, Xu S Q, Xu Q J, Zha S, Qimei W M, et al. 2020. An improved high-quality genome assembly and annotation of Tibetan hulless barley. Scientific Data, 7, 139.

Zhang F N, Batley J. 2020. Exploring the application of wild species for crop improvement in a changing climate. Current Opinion in Plant Biology, 56, 218-222.

Zhang H, Zhang Y, Yue Y J, Li Y, Lin Y, Sheng Z Y, Wang J A. 2010. Seasonal changes in desalination mechanisms and economic benefit analysis on the ‘raised field-shallow pond’ in saline-alkali regions around the bohai sea. Resources Science, 32, 442-447.

Zhang J, Fu X X, Li R Q, Zhao X, Liu Y, Li M H, Zwaenepoel A, Ma H, Goffinet B, Guan Y, et al. 2020. The hornwort genome and early land plant evolution. Nature Plants, 6, 107-118.

Zhang W T, Liu J, Zhang Y X, Qiu J, Li Y, Zheng B J, Hu F H, Dai S J, Huang X H. 2020. A high-quality genome sequence of alkaligrass provides insights into halophyte stress tolerance. Science China Life Sciences, 63, 1269-1282.

Zhou W G, Chen F, Meng Y J, Chandrasekaran U, Luo X F, Yang W Y, Shu K. 2020. Plant waterlogging/flooding stress responses: From seed germination to maturation. Plant Physiology and Biochemistry, 148, 228-236.

Zhu J K. 2001. Plant salt tolerance. Trends in Plant Science, 6, 66-71.

[1] Niu Wang, Weidong Zhang, Zhenyu Zhong, Xiongbo Zhou, Xinran Shi, Xin Wang. FGF7 secreted from dermal papillae cell regulates the proliferation and differentiation of hair follicle stem cell[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3583-3597.
[2] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[3] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[4] Zuxian Chen, Bingbing Zhao, Yingying Wang, Yuqing Du, Siyu Feng, Junsheng Zhang, Luxiang Zhao, Weiqiang Li, Yangbao Ding, Peirong Jiao. H5N1 avian influenza virus PB2 antagonizes duck IFN-β signaling pathway by targeting mitochondrial antiviral signaling protein[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3614-3625.
[5] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[6] Yufeng Xiao, Meiqi Dong, Xian Wu, Shuang Liang, Ranhong Li, Hongyu Pan, Hao Zhang. Enrichment, domestication, degradation, adaptive mechanism, and nicosulfuron bioremediation of bacteria consortium YM2[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3529-3545.
[7] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[8] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[9] Zishuai Wang, Wangchang Li, Zhonglin Tang. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3574-3582.
[10] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[11] Minghui Li, Yilan Chen, Siqiao Wang, Xueke Sun, Yongkun Du, Siyuan Liu, Ruiqi Li, Zejie Chang, Peiyang Ding, Gaiping Zhang. Plug-and-display nanoparticle immunization of the core epitope domain induces potent neutralizing antibody and cellular immune responses against PEDV[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3598-3613.
[12] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[13] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[14] Mingxin Feng, Ying Hu, Xin Yang, Jingwen Li, Haochen Wang, Yujia Liu, Haijun Ma, Kai Li, Jiayin Shang, Yulin Fang, Jiangfei Meng. Uncovering the miRNA-mediated regulatory network involved in postharvest senescence of grape berries[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3465-3483.
[15] Li Liu, Yifeng Feng, Ziqi Han, Yaxiao Song, Jianhua Guo, Jing Yu, Zidun Wang, Hui Wang, Hua Gao, Yazhou Yang, Yuanji Wang, Zhengyang Zhao. Functional analysis of the xyloglucan endotransglycosylase/hydrolase gene MdXTH2 in apple fruit firmness formation[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3418-3434.
No Suggested Reading articles found!