|
Achlioptas P, Diamanti O, Mitliagkas I, Guibas L. 2018. Learning representations and generative models for 3D point clouds. PMLR, 80, 40-49.
Brown T B, Cheng R, Sirault X R, Rungrat T, Murray K D, Trtilek M, Furbank R T, Badger M, Pogson B J, Borevitz J O. 2014. TraitCapture: Genomic and environment modelling of plant phenomic data. Current Opinion in Plant Biology, 18, 73-79.
Chang Y, Jung C, Xu Y. 2021. FinerPCN: High fidelity point cloud completion network using pointwise convolution. Neurocomputing, 460, 266-276.
Chen H, Liu S, Wang C, Wang C, Gong K, Li Y, Lan Y. 2023. Point cloud completion of plant leaves under occlusion conditions based on deep learning. Plant Phenomics, 5, 0117.
Debnath S, Paul M, Debnath T. 2023. Applications of LiDAR in agriculture and future research directions. Journal of Imaging, 9, 57.
Du R, Ma Z, Xie P, He Y, Cen H. 2023. PST: Plant segmentation transformer for 3D point clouds of rapeseed plants at the podding stage. ISPRS Journal of Photogrammetry and Remote Sensing, 195, 380-392.
Ester M, Kriegel H P, Sander J, Xu X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. kdd, 96, 226-231.
Fan H, Su H, Guibas L. 2017. A point set generation network for 3D object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA. pp. 605-613.
Fei B, Yang W, Chen W M, Li Z, Li Y, Ma T, Hu X, Ma L. 2022. Comprehensive review of deep learning-based 3D point cloud completion processing and analysis. IEEE Transactions on Intelligent Transportation Systems, 23, 22862-22883.
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. 2020. Generative adversarial networks. Communications of the ACM, 63, 139-144.
Han B, Li Y, Bie Z, Peng C, Huang Y, Xu S. 2022. MIX-NET: Deep learning-based point cloud processing method for segmentation and occlusion leaf restoration of seedlings. Plants (Basel), 11, 3342.
Hu C, Li P, Pan Z. 2018. Phenotyping of poplar seedling leaves based on a 3D visualization method. International Journal of Agricultural and Biological Engineering, 11, 145-151.
Huang Z, Yu Y, Xu J, Ni F, Le X. 2020. PF-Net: Point fractal network for 3D point cloud completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Washington, USA. pp. 7662-7670.
Jin S, Su Y, Gao S, Wu F, Ma Q, Xu K, Ma Q, Hu T, Liu J, Pang S, Guan H, Zhang J, Guo Q. 2020. Separating the structural components of maize for field phenotyping using terrestrial LiDAR data and deep convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 58, 2644-2658.
Li R, Li X, Fu C W, Cohen-Or D, Heng P A. 2019. PU-GAN: A Point cloud upsampling adversarial network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, South Korea. pp. 7203-7212.
Lin C, Hu F, Peng J, Wang J, Zhai R. 2022. Segmentation and stratification methods of field maize terrestrial LiDAR point cloud. Agriculture, 12, 1450.
Liu M, Sheng L, Yang S, Shao J, Hu S M. 2019. Morphing and sampling network for dense point cloud completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, Hawaii, USA. pp. 11596-11603.
Liu Y, Wu X Q. 2023. 3D shape completion via deep learning: A method survey. Journal of Graphics, 44, 201-215.
Lu H, Shi H. 2020. Deep learning for 3D point cloud understanding: A survey. arXiv preprint, arXiv:2009.08920.
Luo L, Jiang X, Yang Y, Samy E R A, Lefsrud M, Hoyos-Villegas V, Sun S. 2023. Eff-3dpseg: 3d organ-level plant shoot segmentation using annotation-efficient deep learning. Plant phenomics, 5, 0080.
Ma X, Zhu K, Guan H, Feng J, Yu S, Liu G. 2019. High-throughput phenotyping analysis of potted soybean plants using colorized depth images based on a proximal platform. Remote Sensing, 11, 1085.
Nguyen D T, Hua B S, Tran M K, Pham Q H, Yeung S K. 2016. A field model for repairing 3D shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Nevada, USA. pp. 5676–5684.
Qi C R, Yi L, Su H, Guibas L J. 2017. PointNet++: Deep hierarchical feature learning on point sets in a metric space. Advances in Neural Information Processing Systems, 30, 1-10.
Schunck D, Magistri F, Rosu R A, Cornelissen A, Chebrolu N, Paulus S, Leon J, Behnke S, Stachniss C, Kuhlmann H, Klingbeil L. 2021. Pheno4D: A spatio-temporal dataset of maize and tomato plant point clouds for phenotyping and advanced plant analysis. PLoS ONE, 16, e0256340.
Thakur S, Bawiskar S, Singh S K, Shanmugasundaram M. 2020. Autonomous farming-visualization of image processing in agriculture. In Proceedings of Inventive Communication and Computational Technologies, Perambalur, India. pp. 345-351.
Ullman S. 1979. The interpretation of structure from motion. Proceedings of the Royal Society of London, 203, 405-426.
Wang Y, Chen Y, Zhang X, Gong W. 2021. Research on measurement method of leaf length and width based on point cloud. Agriculture, 11, 63.
Wen X, Xiang P, Han Z, Cao Y P, Wan P, Zheng W, Liu Y S. 2021. PMP-Net: Point cloud completion by learning multi-step point moving paths. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Tennessee, USA. pp. 7443-7452.
Wen X, Xiang P, Han Z, Cao Y P, Wan P, Zheng W, Liu Y S. 2023. PMP-Net++: Point cloud completion by transformer-enhanced multi-step point moving paths. IEEE Trans Pattern Anal Mach Intell, 45, 852-867.
Xia T, Sheng W, Song R, Li H, Zhang M. 2023. A review of three-dimensional multispectral imaging in plant phenotyping. In: Sensing Technologies for Field and In-House Crop Production (Technology Review and Case Studies). Springer. pp. 1-18.
Xiang P, Wen X, Liu Y S, Cao Y P, Wan P, Zheng W, Han Z. 2021. SnowflakeNet: Point cloud completion by snowflake point deconvolution with skip-transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, Quebec, Canada. pp. 5499-5509.
Xie H, Yao H, Zhou S, Mao J, Zhang S, Sun W. 2020. GRNet: Gridding residual network for dense point cloud completion. In: Proceedings of the European Conference on Computer Vision, Scotland, United Kingdom. pp. 365-381.
Xue J, Hou X, Zeng Y. 2021. Review of image-based 3D reconstruction of building for automated construction progress monitoring. Applied Sciences, 11, 7840.
Yang R, He Y, Lu X, Zhao Y, Li Y, Yang Y, Kong W, Liu F. 2024. 3D-based precise evaluation pipeline for maize ear rot using multi-view stereo reconstruction and point cloud semantic segmentation. Computers and Electronics in Agriculture, 216, 108512.
Yang Y, Feng C, Shen Y, Tian D. 2017. FoldingNet: Point cloud auto-encoder via deep grid deformation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA. pp. 206-215.
Yuan W, Khot T, Held D, Mertz C, Hebert M. 2018. PCN: Point completion network. In: Proceeding of the 2018 International Conference on 3D Vision (3DV), Verona, Italy. pp. 728-737.
Yusri A, Haziq M, Ma J, Ns K, Mhm R. 2022. Preservation of cultural heritage: A comparison study of 3D modelling between laser scanning, depth image, and photogrammetry methods. Journal of Mechanical Engineering (JMechE), 19, 125-146.
Zhang J, Chen X, Cai Z, Pan L. 2021. Unsupervised 3D shape completion through GAN inversion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Tennessee, USA. pp. 1768-1777.
Zhou J, Wu Y, Chen J, Cui M, Gao Y, Meng K, Wu M, Guo X, Wen W. 2023. Maize stem contour extraction and diameter measurement based on adaptive threshold segmentation in field conditions. Agriculture, 13, 678.
|